Utilizing a fault-tolerance protocol
for colocating interfering cells in a wireless network

Spiro Trikaliotis, Jorg Diederich
spiro@ivs.cs.uni-magdeburg.de, joerg.diederich @ graffiti.net
Institute for Distributed Systems
University of Magdeburg, Germany

Abstract: Achieving quality-of-service (QoS) in multi-hop wireless networks is still
an open research topic. Our approach uses clusters which are located directly nearby,
resulting in overlapping transmission areas. Such overlapping transmission areas are
prone to the so-called "hidden station problem”. This paper shows the results of an
experiment which shows that this effect can be highly reduced with the help of a fault-
tolerance protocol, namely, our “reliable group-communication protocol” (RGCP).

1 Introduction

In disaster situations, it is crucial for the aid to be able to be as fast and coordinated as
possible. For this purpose, communcation between all aiders has to be fast and reliable.
Unfortunately, one cannot depend on any infrastructure, as the disaster might have de-
stroyed that, too. Voice-over-IP (VoIP) is a possible solution for this, if [P communication
can be set up without pre-built infrastructure. Mobile Ad-Hoc Networks (MANET) allow
to establish such a communication without the need for an infrastructure. The network or-
ganizes itself to be able to deliver information over many hops of wireles stations, without
help from the user or some infrastructure backbone. Now, applications like voice-over-1P
(VoIP) are asking for quality-of-service (QoS) in the underlying network in order to op-
erate correctly. Currently, mostly infrastructure networks are used, where at most the last
connecting link is done on a wireless medium. This approach has the advantage that QoS
can be achieved with already known mechanisms which are used for wired network, with
only small or even no additions for the wireless part of the connection. QoS for MANETSs
is a relatively new area of research. In fact, most current MANETS do not allow for QoS
guarantees, as achieving quality of service in a multi-hop ad-hoc network is a non-trivial
task. Obviously, VoIP asks for QoS: VoIP needs some guaranteed bandwidth and some
maximum delay in order to be usable.

As the network topology is potentially changing at a rapid pace, achieving QoS in such a
scenario cannot be achieved without some properties of the underlying routing protocol.
For example, this routing protocol has to be very fault-tolerant in order to tolerate the high
loss rate of network traffic which is to be expected in this scenario.

Our approach [Tri04] to achieve QoS in a MANET is based on the fact that the problems

106

in achieving QoS in ad-hoc networks mostly arise because of the potentially high number
of involved and moving nodes, which makes planning very hard for the protocol. Further-
more, routing protocols for ad-hoc networking tend to use reactive approaches. With these
approaches, information on the network structure is only sampled when it is necessary.
This reduces the network utilization and energy consumption of the nodes significantly,
which is very important for wireless scenarios. Unfortunately, reactive approaches do
not carry enough information to be able to react to moving stations in a manner that the
given QoS guarantees are not violated. Our approach partitions the network into “’natural”
clusters of nodes which consist of nodes which are very likely to remain nearby for the
future. This allows the network to gain a rather stable structure which helps in reducing
the network traffic needed to hold the network together.

Due to the limited reachability of the wireless medium, not every station can talk with
each other. Because of this, the communication in wireless networks is often looked at
as communication of cells, that is, of stations which are in direct reach of each other.
The clusters mentioned above are such cells. When two such cells are colocated, that
is, located one directly by the other, there are stations of both cells which can talk to
each other. Additionally, there are stations which cannot see the stations from the other
cell. This imposes a problem, the so-called "hidden station problem”, because the stations
cannot determine if their messages will collide with each other.

Our approach distinguishes between communication inside of a cluster (intra-cluster) and
between different clusters (inter-cluster). The intra-cluster communication is based on a
proactive protocol. Each station inside of the cluster is polled one after the other, and
the information is broadcast in the cluster. This way, every station has equal knowledge
about what data is available in the cluster. This intra-cluster communication is done with a
variant of RGCP [NS03], a protocol which is designed for just that type of communication.
Additionally, RGCP is designed with fault-tolerance in mind. This means, it can tolerate
many losses without affecting the delivery of messages. With many colocated cells which
do not control each other, this is very important.

The inter-cluster communication is done via a reactive protocol, thus, data is only collected
when it is needed. This protocol is out of the scope of this paper. Later papers will deal
with this one.

Thus, in this paper, we show a setup to measure the throughput of RGCP in the case
of colocated cells. Beside the throughput, the application losses and media losses are
monitored, too, to be able to appreciate the measured values of throughput.

This paper is organized as follows: Section 2 presents a short description of the RGCP
protocol, while section 3 describes the used implementation. In section 4, the experiment
setup is presented. The results are shown in section 5. Finally, section 6 closes this paper.

2 The protocol RGCP

RGCP is a protocol for reliable group communication. That is, every station is aware of the
group it is communicating with, and the protocol ensures that all correct stations deliver

107

the same set of messages in the same order.

To achieve this, this protocol uses a round-based approach. A central station, the coordina-
tor, polls every station in its group, granting it the token which allows the station to send.
The station getting the token answers with data to be sent to the group. The coordinator
takes this information and broadcasts it to the whole group. After this, the coordinator
proceeds with the next station, until it has polled every station in the group. Subsequently,
the next round is started, polling the first station.

Thus, to summarize, in RGCP, a round consists of the following actions:

e For each station A in the group:

1. The coordinator polls station A for any data (POLL)

2. Station A answers to the coordinator with the data it has to sent (Request Unit,
RQU)

3. The coordinator broadcasts this data to all stations in the group (broadcast unit,
BCU)

This implements the main channel in RGCP communication. As RGCP has to ensure
atomicity, ordering of all information, fault-tolerance and the group membership, there is
more data to be sent. This is done via sub-channels, data which is sent piggy-back on all
three types of data (POLL, RQU, BCU). [NS03], [MNS99] explain this in more detail.

RGCP is designed to maintain fault-tolerance. That is, it handles message losses by intro-
ducing redundancy whenever needed. For this purpose, a scheme is used which utilizes
sequence numbers as well as explicit acknowledges sent from the group members to the
coordinator (in a RQU) and decisions sent from the coordinator to the groups members (via
a BCU). The details are beyond the scope of this paper; they are explained in [MNS99].

If no message losses occur, this protocol does not impose much overhead, only some
bits which are sent piggy-back are used additionally to the data to be sent. The central
coordinator allows for a stable reachability of all nodes.

Whenever message losses occur, the station has to re-send its RQU or the coordinator has
to re-send its BCU, depending upon which message got lost. This adds some overhead to
the protocol to ensure the delivery of data. If RGCP is used stand-alone, this overhead is
not very big, as message losses do not occur that frequently in this scenario. The central
coordinator makes sure every station gets the token to send one after another, serializ-
ing the access of the stations to the medium and significantly reducing the probability of
collisions.

Anyway, in a scenario with many colocated coordinators, this is not true anymore. In every
cell, there is one station holding the token to send, thus, the send data frames compete for
the wireless medium, resulting in media losses. The fault-tolerance parts of RGCP have to
make sure no data is lost at the application level. To achieve this, data is re-sent on a quite
regular basis, resulting in lower bandwidth.

The important question is: How much does this affect the available bandwidth? Does the
bandwidth deteriorate much more than the physical limits dictate? With n colocated cells,

108

Application

Synchronous Channel
Shared Memory RGCP Stack

?

Reliable Multicast
Polling NIC driver

v 1

Figure 2: Overall architecture

Figure 1: Microprotocol stack

we expect the bandwidth per cell to fall to 1/n of all available bandwidth, as the sum of the
bandwidth of all cells cannot be bigger than the physical bandwidth available. Anyhow, a
good algorithm should not be much worse than that.

3 Implementation architecture

RGCP implements some features (like atomicity, order, and fault-tolerance) which do not
necessarily depend upon each other. Thus, it seems logical to divide it into several smaller
parts which can be designed, tested and used separately. RGCP is built with such a mi-
croprotocol architecture in mind. The RGCP implementation consists of several modules,
the microprotocols, as described in [Van04]. Each one provides a communication feature
of RGCP. Like in the ISO/OSI model, the microprotocols are arranged in layers which are
implemented in a protocol stack. Protocol functions not needed may easily be disabled by
taking out the appropriate microprotocols of the stack (unlike in the OSI model).

Figure 1 shows the arrangement of microprotocols used for RGCP and thus, in this ex-
periment. The uppermost protocol provides the interface to applications, while the lowest
provides the interface to the network driver. For each microprotocol two different imple-
mentations exist, as a station can perform one of two different tasks in a running network,
a coordinator or an ordinary station. These different implementations can not be mixed
inside a stack. However, the role can change while operating.

Looking at the OSI-model, the protocol stack can be considered as a dispatcher between
components working at upper and lower layers. The shared memory is intended to be used

109

by these components, too. An application, which uses RGCP to communicate with other
applications, communicates with the protocol stack via the shared memory. At the bottom,
the network device (NIC) driver is attached in the same way.

The complete architecture of the implementation is shown in figure 2.

4 Measured values

Depending on the kind of data they are related to, the determination of measured values is
done in very different ways. As throughput and application losses are related to application
data, both are measured with the help of an appropriate application. Media losses detecte
by RGCP may be determined best at the detection mechanisms itself inside of the protocol
stack

4.1 Throughput

Like in many benchmarks and tests, the main value of interest is the maximum throughput.
Thus, the task was to transmit as much data as possible from one application to other
applications, within a certain amount of time.

A transmission requires one sender and - at least - one receiver. Both were implemented
to run independently from each other in the measuring application. The same application
was running on all clients during the experiment. As shown in section 3, the application
exchanges application data with the protocol stack via the shared memory. With respect to
this additional component, sender and receiver had clear tasks:

e At any time, the sender had to ensure, that the shared memory contains at least one
unprocessed data packet in the outgoing queue.

e The receiver raised a simple counter if new application data were available. It was
informed of this case by the shared memory implementation.

It showed that new data packets were filled much quicker into the shared memory than
they were processed and taken out by the protocol stack. In order to avoid continous
overloads, sender and shared memory were synchronized. If the outgoing queue of the
shared memory was completly filled, the sender stopped it’s work until 40% of the queue
were freed again.

The described proceeding would only enable a throughput value in number of packets per
time, which is a highly dependent value. For simplicity, all packets received (and sent
out, of course) contained the same payload length. With this information, the desired
throughput value was computable in bytes per second.

110

4.2 Application losses

Although RGCP provides reliability, sent application data still can get lost. This is possible
in case the assumptions on the used radio network, which in turn are used to configure the
protocol stack, do not fit with reality.

If atomarity is enabled, application losses get a special meaning. Atomarity ensures either
all applications on all clients receive certain data, or none does. Therefore, an application
loss signalizes that at least one client did not acknowledge the receipt of data. In fact, even
if all but one client were successful, this results in an application loss.

The fixed order of data transmissions in conjunction with receiving the own data allows
each station to detect application losses. As an application requests RGCP to transmit
data to the whole group, it may receive its own data back in return. This is the normal
behaviour of RGCP: data is sent from a client to the access point, which broadcasts this
data to the whole group. Each cooperation between access point and client treats data in
a strict sequential order. Only if the processing of one unit is finished, the next will be
processed. Knowing this, an application could sign outgoing data with a strict increasing
sequence number in order to detect losses of own sent data. Whenever the difference of
sequence numbers between received data is more than one, at least one loss has occured.
In fact, the difference minus one tells the number of successive losses.

This implementation was done with the application mentioned before in section 4.1. Know-
ing the first sequence number ever sent out even allows it to detect the loss of the data
packets first sent.

4.3 Media losses

As mentioned in section 2, RGCP uses a round-based communication approach. Each
client communicates with the appropriate access point exactly once in a round. This com-
munication is divided into three parts: poll, request and broadcast. The first and the last
one, that means poll and broadcast, are done by the access point with one transmission
each. The request is done by a client with a transmission, too. Of course, all three trans-
missions could fail due to errors on the media.

The detection of losses uses the error detection mechanisms of RGCP. The possibilities to
detect losses are as follows:

e Poll
Each poll transmission contains the actual round number. This number is sequen-
tially increasing. So, a client could easily detect losses by comparing the round
numbers of the actual received poll and of the poll received last. The difference —
minus one — tells the number of successive losses.

e Request unit
From a certain point of view, the request transmission is an acknowledgment of a

111

client to a previous poll message. Because the poll message could get lost before, the
absence of a request does not necessary mean it was lost.Therefore the loss detection
at the access point is not possible.

The loss detection at the originating client is not possible too. A request is indeed
followed by a broadcast sent by the access point. But this broadcast is no direct reac-
tion to a received request, therefore it is not useable as any kind of acknowledgment.
Additionally, this broadcast could get lost as well.

e Broadcast
Just like the poll messages, the access point marks all broadcasts with an increas-
ing sequence number. So the proceeding in order to detect a loss of one or more
broadcasts is the same as it is for poll messages.

The measurement of broadcast losses can exactly be done by each client, as explained
before. The problem in determining request losses can be solved by treating poll and
request messages as one unit. Since a request is a reaction to a poll, it can only get lost as a
poll was received. In reverse, if a poll got lost, there’s no request which can get lost. This
means, if a loss of one of these both messages occurs, it is exactly a loss of one of them.
Unfortunatly it can’t be said - by the sender of the poll - which message got lost, whether
poll or request.

At least in theory, it would be possible to distinguish between lost poll and request mes-
sages. For this, the clients had to measure lost polls, as described in the first point above,
and notice the missing round numbers. The appropriate access point has to do the same
for each poll/request loss. The intersection of the collected numbers by each client and the
access point would present lost polls, and the remaining numbers represent lost requests.

In detail, the measurement of poll/request losses happens at each access point. Here poll
messages are sent out and request messages are received. After sending a poll, an access
point expects the receiving of a request within a certain time. According to the thoughts
just presented, if the time elapsed without a receipt, exactly one media loss has occured.

5 Results

The main idea of the experiment was to determine the influence of multiple active groups
on each other. An active group in terms of the experiment consists of one access point
station and one or more client stations. All stations were creating network traffic during
the whole time of measurement.

Due to design intention and implementation, as shown in sections 2 and 3, RGCP is very
flexible and adjustable. Together with different configuration possibilities of each group,
the number of global configurations increases dramatically. The following restrictions
were specified in order to determine possible configurations:

e every group consists of one client station and the respective access point station

112

Throughput with varied group number and payload Application losses
with varied group number and payload

60000 | 7
= 123
% 50000 - 5%
B 28 00001 F
= o=
— 40000 <3
%n 30000 |- .;% le-05
£ 20000 | £2
g 1e-06 F
10000 ! ! ‘ = !) !
one group two groups three groups one group two groups three groups
[128 byte t 256 byte 512 byte —*— | [128 byte —— 256 byte —<— 512 byte —%— |
Figure 3: Development of throughput Figure 4: Development of application losses

e every group transmits data with the same payload

e every station of every group is configured with the same settings for tolerated suc-
cessive media losses, the so-called omission degree (O D)

e every group runs for the same duration as other groups. All groups start simultane-
ously and end simultaneously.

e all groups communicate at the same channel and in direct reach of each other. Be-
cause of this, every station can send to and receive from every other station.

This experiment was run with one, two and three simultaneous active groups. For each of
this three possibilities, the payload of transmitted data was varied from 128 to 256 to 512
bytes. Taken this all together, nine different configurations were used in this experiment.
Each run took 10 minutes. In order to receive a representative set of data, the runs of every
configuration were done 5 times.

Additionally, the composition of groups was varied in order to reduce possible influences
by the used hardware. This was done by selecting different computer systems for the
respective groups. So, one computer could have been client or access point in different
groups in the same configuration.

The results of all five runs done with a certain group composition were averaged. Finally,
the averaged results of different group compositions within a configuration were averaged,
too.

Figure 3 shows the development of data throughput as the number of active groups in-
creases.

With every additional group, the throughput significantly decreases. In comparision to a
single active group, the throughput of each of two active groups decreases by more than 35
percent. In comparison of two and three active groups, the throughput decreases by more
than 27 percent. Using a higher payload slightly enforces the decrease by approximatly
1.8 percent.

113

Poll/Request losses Broadcast losses

with varied group number and payload with varied group number and payload

7 0.1 ¢ Z 00001 |

-~ 4
8% 29 1e-05
gg 23 1e6
Z2 oo} 2 ©
?rg < % 1e-07
25 B le-08 |
= 5]
&% 0001 | < le09f

= ! ‘ ‘ 2 . ‘ ‘

one group two groups three groups one group two groups three groups
[128 byte — 256 byte 512byte —%— | (128 byte —+— 256 byte —*— 512byte —*— |

Figure 5: Development of poll/request losses Figure 6: Development of broadcast losses

In order to be comparable to the measurments done in [Sch00], loss results were related to
the number of received packets. This proceeding allows an estimation about the necessary
number of packets for a loss to occur. The more intuitive approach to relate losses to
the number of transmitted packets wasn’t realizeable. Because of the buffer structure
explained in 3, only the number of received packets could be determined for shure. The
development of application losses is shown in figure 4.

As mentioned in 4.3, two kinds of media losses were measured. The development of
poll/request losses shows figure 5, and figure 6 does the same for broadcast losses.

For a better visual understanding, a logarithmic scale of the loss results was choosen. Not
surprising, all figures show dramatically increases of all loss values, as more groups are
active. In comarision between both kinds of media losses, poll/request losses happen a
lot more often than broadcast losses. Application losses approximatly happen in the same
regions as broadcast losses.

6 Conclusion

This paper showed the behaviour of a cell-based fault-tolerant protocol for sending data
to the cell members in a “foreign” scenario, that is, in a scenario where many of these
cells are colocated. This protocol was never intended to be used this way. Anyway, the
fault-tolerance aspects of the protocol make it behave in a well-tempered way even in this
scenario.

This protocol will be used in such a scenario to provide quality of service for the commu-
nication of nodes in a mobile ad-hoc network.

114

References

[MNS99] M. Mock, E. Nett, and St. Schemmer. Efficient Reliable Real-Time Communication for

[NSO03]

[Sch00]

[Tri04]

[Van04]

Wireless Local Area Networks. In Third European Dependable Computing Conference
EDCC-3, pages 380-397, September 1999.

E. Nett and St. Schemmer. Reliable Real-Time Communication in Cooperative Mobile
Applications. In IEEE Transactions on Computers, volume 52(2), pages 166-180, 2003.

Stefan Schemmer. Zuverldssige Echtzeit-Gruppenkommunikation auf einem lokalem
Funknetz. Diploma thesis, Institute for Autonomous Intelligent Systems (AIS) of the
GMD in cooperation with the Institute for Distributed Systems (IVS) of the Otto-von-
Guericke-University Magdeburg, January 2000.

Spiro Trikaliotis. Utilizing Fault-Tolerance for Achieving QoS in Ad-hoc Networks. In
Workshop Proceedings Dependability and Fault-Tolerance, Organic and Pervasive Com-
puting, International Conference on Architecture of Computing Systems (ARCS), pages
66-75, March 2004.

Sebastian Vandersee. Effiziente Realisierung in SDL spezifizierter Mikroprotokoll-

Architekturen. Diploma thesis, Institute for Distributed Systems (IVS), Otto-von-
Guericke-University Magdeburg, April 2004.

115

