
A general paradigm
for fast, adaptive clustering of biological sequences

Knut Reinert, Markus Bauer, Andreas Döring, Gunnar W. Klau, Aaron L. Halpern

reinert,mbauer,doering,gunnar@mi.fu-berlin.de
ahalpern@venterinstitute.org

Abstract: There are numerous methods that compute clusterings of biological sequences based
on pairwise distances. This necessitates the computation of O(n2) sequence comparisons.
Users usually want to apply the most sensitive distance measure which normally is the most
expensive in terms of runtime. This poses a problem if the number of sequences is large or the
computation of the measure is slow.

In this paper we present a general heuristic to speed up distance based clustering meth-
ods considerably while compromising little on the accuracy of the results. The speedup comes
from using fast comparison methods to perform an initial ‘top-down’ split into relatively ho-
mogeneous clusters, while the slower measures are used for smaller groups. Then profiles
are computed for the final groups and the resulting profiles are used in a bottom-up phase to
compute the final clustering.

The algorithm is general in the sense that any sequence comparison method can be em-
ployed (e.g. for DNA, RNA or amino acids). We test our algorithm using a prototypical imple-
mentation for agglomerative RNA clustering and show its effectiveness.

1 Introduction

Clustering biological sequences like DNA, RNA or proteins is a daily task in bioinformatics re-
search (see for example [ZLZ05, LUDT05, YLL99, SLL02]). The main challenge lies in the ever
growing number of sequences to be compared which makes classic phylogenetic tree construc-
tion too costly. Instead, researchers are clustering sequences based on measures of similarity
which might be purely sequence based [DSO78, HH92], or even incorporate structural features
in the case of RNA or proteins. Lazareva-Ulitsky and colleagues [LUDT05] showed that func-
tional similarity scores and evolutionary distance are indeed highly correlated and hence groupings
based on the results of hierarchical clustering techniques often sufficiently approximate the evolu-
tionary relations. Almost all clustering methods have in common that they require as input a matrix
containing the pairwise distances (or similarities) of the sequences to be clustered. Although hier-
archical clustering is fast, this can pose a problem if there are many sequences to cluster and the
method for pairwise comparison is relatively expensive. For example in the case of RNA com-
parison the computation of the single sequence structure similarity is for most programs in the
range of several seconds to several minutes. If the comparison took one second, then the pairwise
comparison of 10, 000 sequences would take about 1.6 CPU years. Clearly this is not feasible and
one has to resort to faster methods (e.g. [LJG01]). This, however, has the unwanted effect that the

15

faster method is less accurate which might lead to incorrect clustering results.

In this paper we describe a general procedure to address this problem and to speed up the com-
putation of any method based on pairwise distances considerably. We exemplify our idea by im-
plementing a method to quickly cluster a set of RNA sequences using agglomerative clustering
(average linkage) and an accurate, yet costly distance measure. We compare the results to the
clustering obtained without our speedup.

Informally our method is illustrated in Fig. 1. Our goal is to minimize the number of comparisons
using the expensive method. To achieve this, we first heuristically divide the input top-down into
smaller, meaningful groups using a fast comparison method. Success at this point requires some
“easy” splits in the data. Then we compute profiles of all sequences in these groups and all pairwise
distances between the profiles. We finally apply the clustering algorithm of our choice to this data.
The general idea of dividing data into smaller groups is not new [LJG01], however the systematic
approach we take is.

We use a hierarchy of methods to compute similarities between sequences. In this hierarchy the
methods become subsequently slower (from the first method on level 1 to the most sensitive method
at the final level) while they also become more accurate. As illustrated in Fig. 1 we divide the
initial input set into groups using the fastest method. Depending on their size, those groups are
then further refined by using slower, but more accurate methods, until the groups are small enough
for applying the final method.

’

(n−1)th level

second level

final level

first level

final split and profile computation

. .

bottom-up phase

Figure 1: Illustration of our approach. Each colored circle represents a sequence and their spatial proximity
should resemble their distance. The colors should indicate the “true” cluster they belong to.

At the final level the groups are possibly split again using the most sensitive method and then
for the c resulting groups of this split we compute a profile. This requires the computation of all
pairwise distances for each group. Those distances are finally used as the input of any bottom-up
clustering method (e.g. agglomerative clustering). The main rationale behind using a hierarchy of
methods is that many data sets will exhibit characteristics that allow them to be divided into large

16

divergent groups by almost any method, while more sensitive methods may be required to resolve
structure within the smaller groups. This in turn allows us to use very fast, less sensitive methods
first, and more sensitive but more costly methods later. Obviously our method will give best results
(both regarding accuracy and speed), if we divide the input into reasonable sets with few mistakes
(as illustrated in Fig. 1). However, our method will always use the most sensitive method at the
final level, so mistakes as illustrated in Fig. 1 can be corrected before the bottom-up phase.

The method outlined raises a number of questions. For example, what should the size of the final
groups be? How do we incorporate the intrinsic properties of the pairwise distances into our top-
down phase? What speed-up can be achieved? What are the trade offs of using our methods versus
computing a clustering based on an all-against-all comparison?

We will address those questions in Sect. 2. After this, we describe the effectiveness of our method
by implementing a method to cluster RNA sequences using structure-sequence alignment algo-
rithms and demonstrate how much time we can gain and how sensitive our method is.

2 Methods

We are looking for a partition of n sequences {S1, S2, . . . , Sn} =: M into about c clusters of size
u ≈ �n/c�. In the following we argue with normalized distance functions (between 0 and 1). We
assume that normalized similarity functions can be easily converted into a distance function, since
we do not make any assumptions about the functions. In particular they do not have to form a
metric.

Our top-down method is generic and supports strategies inspired by average, single, or complete
linkage clustering. Given a distance function d that computes the distance between two sequences
and two sets A and B of sequences (with |A ∪ B| > 1), we define:

d+(A, B) :=
�

a∈A,b∈B,a �=b

d(A, B)

dmin(A, B) := min
a∈A,b∈B,a �=b

d(A, B)

dmax(A, B) := max
a∈A,b∈B,a �=b

d(A, B)

In the case that |A ∪B| = 1, the distance is naturally defined as 0. We define the average distance
of two nonempty, disjoint sets A and B as d+(A, B) := d+(A,B)

|A|·|B| . We also define d+(A, A) :=
2·d+(A,A)
|A|·(|A|−1) for sets with |A| > 1 and as 0 for |A| = 1. We also define dmin(A, B) := dmin(A, B),

and dmax(A, B) := dmax(A, B).

Note that after joining two sets A and B, we can compute the distances dop(A ∪ B, C) to an-
other set C simply by dop(A ∪ B, C) = op (dop(A, C), dop(B, C)) and dop(A ∪ B, A ∪ B) =
op (dop(A, A), dop(B, B), dop(A, B))

17

Our top-down method is a variation of a standard agglomerative clustering algorithm: d+ is used
for ‘average linkage’, dmin for ‘single linkage’, and dmax for ‘complete linkage’ clustering.

2.1 The choice of c

One of the first questions arising when implementing our method is how large the final groups
should be. We can compute a good target size as follows: If we have c final groups, each group
contains on average n/c many sequences. For each group we have to compute

�
n/c
2

�
comparisons

using our expensive final method. Given this, one would like to make the groups not too big.
However, if the groups are small, then c is larger and we also have to compute

�
c
2

�
comparisons

between group profiles. Those are two conflicting goals. The total number of comparisons is:

v(c) :=
1

2
· (n2

c
+ c2) ≈

�
n/c

2

	
· c +

�
c

2

	

If we take the first derivative v�(c) = c− n2

2c2 we can easily see that the function v has a minimum

at cmin = 3

n2

2 and hence a good final group size would be approximately 3
√

2n. If we consider

the speedup we observe that v(1)/v(cmin) is in Θ(n2/3). For example for n = 2000 we could
reduce the number of expensive comparisons from about 2 million to about 24000 comparisons,
or (assuming 1 second for each comparison) from 23 days to less than seven hours.

2.2 The division threshold t

During the top-down phase we divide each group at a given level into subgroups using all pairwise
distances of the members of this group computed with the respective method of this level. The
question is of course, how we define the subgroups for the next level? Assume the maximal input
size that can be handled by the method of the next level is u. As simple strategy would be to
compute a standard agglomerative clustering and identify the u nearest elements (one group), then
the next u elements (another group) and so on. This has two disadvantages. First, we always pass
to the next method the largest set it can handle, and second the grouping does not use already
computed distance information which for example could clearly exhibit many clusters of size
smaller than u. Hence we decided to implement a strategy that examines the distance data derived
at the initial level.

To define the subgroups we use for op ∈ {+, min, max}, the linkage quotient for two disjoint,
nonempty sets A and B of sequences that is defined as:

Top(A, B) = λsep(A, B) · λsize(A, B) , (1)

18

with

λsep(A, B) =
dop(A, B)

max{dpm(A), dop(A, A)} + max{dpm(B), dop(B, B)} and

λsize(A, B) =
4 · |A| · |B|
(|A| + |B|)2 .

where dpm(A) is the smallest positive distance of elements in A to any other element in the input
set. The division by dop(B, B) should accommodate for the “density” of a group. In the case of
singletons we approximate this by introducing dpm(A).

(a) A = red circles, B = blue circles (b) A = red circles, B = blue circles

d = 0.3

d = 0.2d = 0.1 d = 0.1

top3(x,y)
t(x,y)

100
200

300
400

500
600

700
800

900
1000

0
100

200
300

400
500

600
700

800
900

1000

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Figure 2: Left figure: In situation (a) we want to join the groups A and B, whereas in (b) we might want to
keep them apart. The value d denotes the approximate distance of each pair of sequences. Right figure: 3D
plot of linkage quotient with maximal value 2 for different group sizes t = 1.7. The axes show the number
of elements in A and B. All combinations that lie above the plane would not be joined by the procedure
SPLITSET.

To define the groups for the next level we start with singletons for each element of a group and
greedily join sets. The smaller the linkage quotient Top(A, B) for two sets A and B, the more
likely they are joined together. The idea behind the definition of linkage quotient is that the separa-
tion factor λsep(A, B) becomes larger, the better A and B are separated compared to the “density”
they already have (This motivates our definition of “distance” for singletons. If the distance was
0 or small we would never join them). For example λsep(A, B) would be near 0.5 if we sampled
randomly from sequences with similar distances (see Fig. 2 (a)). Figure 2 (b) shows a situation
where the separation factor λsep(A, B) is around 1. Generally it can become very large if very
dense clusters are far apart. The size factor λsize(A, B) is normalized to 1 and is larger if the
two sets are similar in size reaching its maximum for |A| = |B|. The minimum value approaches
4/(|A| + |B|).
Hence we will preferably join badly separated sets of unequal size for subsequent separation with
a more sensitive method, whereas equally sized, well separated sets will be joined much later, if
at all. More specifically, the algorithm joins two disjoint sets A and B if Top(A, B) ≤ t for a
suitable linkage threshold t. Figure 2 shows the Top function for varying group sizes and with
dop(A, B) = 0.2, dop(A, A) = dop(B, B) = 0.05 together with a cut-off plane at t = 1.7.

19

How can we define a suitable cutoff for the linkage quotient? We argue as follows: From the
discussion in the previous section we know that we would like to obtain cmin groups each of size
≈ n/cmin. Also, if we assume for the sake of argument that the final cmin groups are the most
homogeneous with respect to our final method, then the cmin · �

n/cmin
2

�
smallest distances should

occur in the pairwise comparisons of elements in the respective groups. All larger distances should
occur between elements of different groups. Our threshold should definitely encourage the joining
of groups that have small inter and small intra distance whereas it should refrain from joining
groups with large distances in between the groups. We can choose a threshold tcut that achieves
this as follows. We sort all pairwise distances using our initial method. Then we take the average
of the cmin ·

�
n/cmin

2

�
smallest distances and denote it by dintra as well as the average of the remaining,

large distances and denote it by dinter. Then we define tcut = dinter/(2 · dintra).

We illustrate that this is a reasonable choice using the following small examples of 12 sequences.

b)

d = 0.1d = 0.1

d = 0.1

d = 0.1 d = 0.1

d = 0.1

. . .

. . .

d = 0.4

d = 0.4

d = 0.4

a) c)

Figure 3: Assume that dintra is always 0.1 and dinter is always 0.4.

For 12 sequences the optimal group size is �12/4.16� = 3 and cmin = 4. Hence we take the
average of the 4 · �3

2

�
= 12 distances as dintra and the average of the remaining distances as dinter.

For the three cases depicted in Fig. 3 this yields: a) tcut = dinter/(2 · dintra) = 0.366/0.2 = 1.83, b)
tcut = 0.3/0.2 = 1.5, and c) tcut = 0.4/0.25 = 1.6.

It is easy to check that our algorithm will perform as expected in all three cases. It will join sin-
gletons with small distances (since the linkage coefficient is 0.1

0.1+0.1 · 4·1·1
22 = 0.5, which is smaller

than the threshold) and will not join singletons with large distance since the linkage coefficient is
0.4

0.1+0.1 · 4·1·1
22 = 2. Also, it will not join the low distance two element groups in c) since the linkage

coefficient is 0.4
0.1+0.1 · 4·2·2

42 = 2.

2.3 The top-down-phase in detail

We are now ready to describe the top-down procedure in pseudo code. Recall that we are looking
for a partition of n sequences {S1, S2, . . . , Sn} =: M into about c clusters of size u ≈ �n/c�.

Assume S is a subset of M that contains candidates for being grouped together (initially the top-
down phase starts with M itself.) The constant u is the maximal group size for a given level
(provided by the user) and and Res is the resulting set of groups that is passed to the next level
of comparisons. The variable t denotes the linkage threshold and D the matrix of all pairwise
distances. Then the following pseudo code in Fig. 4 describes how subgroups are generated.

In this pseudo code the function UPDATEDISTANCES chooses the appropriate method Ai and

20

SPLITSET(D, S, u, t)

PS ← {{Si}|Si ∈ S};
Res ← ∅;
while |PS | > 1

do
Select X, Y ∈ PS with dop(X, Y) minimal; |X | ≥ |Y |;
if (|X |+ |Y | ≤ u) and (Top(X, Y) ≤ t)

then join X and Y ;
UPDATEDISTANCES(D, X, Y, S);
PS . remove(X);
PS . remove(Y);
PS . insert(X ∪ Y);

else extract X
PS . remove(X);
Res . insert(X);

Res ← Res ∪PS ;
return Res;

Figure 4: Pseudo code for procedure SPLITSET.

updates only the distances involving X and Y .

Assume we are given our preferred and most sensitive method Afinal for which we require that it can
compute a profile (needed for the later bottom-up phase). In addition we are given a set of methods
to compute distances between two sequences where Ainitial = A1 is the fastest and Afinal = An is
the slowest. Further we are given ui for all 1 ≤ i ≤ n with u1 = n + 1 > u2 > . . . > ufinal.

Then the pseudo code in Fig. 5 describes the complete subdivision phase.

In the above code the procedure COMPUTEDISTANCES(D, S, Ai) only recomputes the pairwise
distances of elements in S using method Ai. Note that the final method is never used in the while
loop, but only in the last call of SPLITSET used for the profile computation. The returned profiles
can now be used in the bottom-up phase which can employ any sort of clustering that requires a
distance matrix.

3 Results

To demonstrate our method we implemented a program for computing an average linkage cluster-
ing of RNA sequences based on a pairwise structural distance measure.

Using this program we demonstrate how much we can decrease the run time in reality by com-
paring the runtime of our method to a normal agglomerative clustering procedure for which we
compute all pairwise distances. Secondly we show that the definition of a linkage quotient thresh-

21

PARTITION(M)

n ← |M |;
cmin ← 3

�
n2/2;

ufinal = b · �n/cmin�; // b between 1.0 and 2.0
COMPUTEDISTANCES(D, M, Ainitial);
tcut ← α · COMPUTETHRESHOLD(D, n, cmin);
Res ← SPLITSET(D, M, u2, tcut);
while ∃S ∈ Res with |S| > ufinal

do
choose i with ui ← min uj with |S| < uj ;
COMPUTEDISTANCES(D, S, Ai);
R ← SPLITSET(D, S, ui+1, tcut);
Res = Res −S;
Res = Res ∪R;

Profiles ← ∅;
for all S ∈ Res

do
COMPUTEDISTANCES(D, S, Afinal);
R ← SPLITSET(D, S, ufinal, tcut);
Profiles ← Profiles ∪ profiles of all S ∈ R computed with Afinal;

return Profiles ;

Figure 5: Pseudo code for main procedure.

old effectively prevents small, well-defined clusters from being merged only because the final
group size is not reached. Finally we show that our prototypical RNA clustering procedure pro-
duces high quality results. Our tests are intended to show the effectiveness of the generic method
for speeding up clustering, rather than the merits of the specific methods for RNA comparison that
are employed. However we give exemplary evidence of its performance.

The program was implemented using the SeqAn library for biological sequence analysis [DWRR,
DWRR07]. We start by describing the methods we use for our implementation and point out again
that our hierarchical method will work for any set of distance functions.

Methods used for RNA comparison We use the following methods to cluster RNA sequences.
As the final, and most costly, method we choose LaRA [BKR07]. LaRA produces high-quality
multiple sequence-structure RNA alignments. It transforms the original problem into an integer
linear programming formulation and finds provably optimal or near-optimal solutions using La-
grangian relaxation. LaRA is part of the LiSA library for structural alignments [KBMP07].

To be applied within the clustering framework described in this paper, our RNA alignment method
provides two functionalities: First, given a number of sequences S, it returns a consensus represen-
tation of a multiple structural alignment of S. This occurs at the final level, where LaRA computes

22

multiple structural alignment for each of the small groups. Currently, we compute the multiple
alignment by first computing all pairwise sequence-structure alignments of S and then passing
this information to the program T-COFFEE [NHH00], which computes a consistency-based mul-
tiple alignment. Given such a multiple alignment we compute a consensus base pair probability
matrix based on the structural information of the sequences in S.

Second, as the final method is used in the bottom-up phase, we must be able to align two of these
consensus representations and return a distance that reflects the similarity of the two representa-
tions. This distance is used by the clustering method in the bottom-up phase. LaRA employs a
profile-structure alignment approach for this task.

As our initial method we implemented a fast k-mer based distance as described in [Edg04]. More
specifically, if s1 and s2 are two sequences of length n1 and n2 resp., then dist kmer(s1, s2) =
1 −

q min(c1(q), c2(q))/(min(n1, n2) − k + 1), where the sum ranges over all possible k-
mers q and c1(q) and c2(q) is the number of occurrences of q in the respective sequences. In our
experiments we used k = 4.

Runtime evaluation We used subsets of 39 RNAs stemming from 4 different families from the
Rfam database [GJMM+05]: the families are RF00034 (RprA), RF00198 (SL1), RF00243 (traJ),
and RF00434 (BTE) which all have an average sequence length between 100-110 nucleotides (we
list the accession numbers in Appendix A.1). The subsets contain 7, 94, 6, and 17 sequences, resp.

We then randomly generated subsets of size 3, 6, 9, 12, 16, 20, 25, 30, 35. For this test we only
used our fast initial k-mer method and as the final method LaRA, so the results do not get diluted
by intermediate methods. Figure 6 clearly illustrates that our method achieves a large speedup.

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

"runtimefast.gnu"
"runtimeslow.gnu"

0.86*x**(2)
6.31*x**(4/3)

Figure 6: Run time comparison of the hierarchical method compared to the time needed for all pairwise
comparisons. Data shown together with a fitted polynomial. The x-axis shows the number of sequences, the
y-axis the run time in seconds.

23

It shows the original measurements and fitted polynomials. The usual method has to compute
all pairwise comparisons so the pairwise comparisons fit neatly a quadratic curve (least square
fit is 0.86 · x2). Our method is considerably faster but does not completely reach the theoretical
optimal speedup. The least square fit results in the polynomial 6.3 ·x4/3 but the real runtime seems
to follow a polynomial with slightly higher degree (the discrepancy is due to the fact that the
pairwise distance computation for profiles is indeed slower than the pairwise distance computation
for single sequences and also from the not perfect cluster sizes).

Effectiveness of linkage threshold and quality of clustering In order to evaluate the effec-
tiveness of the linkage threshold we constructed an input data set of 19 rather well separated
RNA sequences: the data set is a subset of the 4 Rfam families that we used for our runtime
test and contains 4 sequences from RF00034 (sequences 3, 4, 5, 6), 9 from RF00198 (sequences
7, 8, 9, 10, 11, 12, 13, 14, 15), 3 from RF00243 (sequences 16, 17, 18), and 3 from RF00434 (se-
quences 0, 1, 2). We then ran the method with a final maximal group size of 19. That means
that the procedure SPLITSET will stop joining sets only if the linkage threshold is exceeded. Af-
ter the distance computation with our initial k-mer method we inspected the groups computed
by the first call of SPLITSET and found that the program forms the groups {0, 1, 2}, {3, 4, 5, 6},
{7, 8, 9, 10, 11, 12, 13, 14, 15}, and {16, 17, 18} which is actually the correct clustering already.
This shows that the linkage quotient indeed stops the formation of larger groups if the groups are
separated sufficiently. The subsequent computation of the inter-group distances with the sensitive
method resulted of course in the correct clustering.

As a second test we used 15 sequences from 3 families (again numbered {0,1,2,3,4}, {5,6,7,8,9},
{10,11,12,13,14}) from the Rfam database: 5 sequences from RF00504 (Glycine riboswitch),
RF00005 (tRNA), and RF00031 (SECIS elements) showing an average pairwise sequence identity
of 0.45, 0.33, and 0.35, respectively. We list the accession numbers in App. A.2. This test set
was chosen because it exhibits very little sequence similarity and is hard to cluster using sequence
similarity alone (Figure 9 in the appendix shows the clustering result obtained with T-COFFEE).
Indeed, our k-mer method produces distances between the sequences in the range of 0.62 − 0.88
and does not reveal clear clusters. On the other hand, our sensitive method is able to resolve the
correct clusters in this difficult test set using the full distance matrix (see nodes 23, 24, and 27 in
Fig. 7.)

How will our method work on this extreme example? Our method computes the following group-
ing before the final split with the most sensitive method: {0, 1, 2},{3},{4, 6},{7, 8, 9},{10, 13},
and {11, 12, 14} and finally computes the clustering depicted in Fig. 8. As it can be seen we com-
pute two clusters correctly, but do not succeed for the third. Nevertheless our fast method is much
better than the result computed by T-COFFEE.

4 Conclusion

We presented in this paper a general adaptive scheme to speed up sequence based clustering algo-
rithms in the best case from O(n2) to O(n4/3). We demonstrated its effectiveness on a prototypic
implementation of an RNA clustering tool.

24

As future work we will apply our method also to purely sequence based clustering of DNA and
proteins and conduct a thorough evaluation of the resulting tools both in terms of speedup and accu-
racy (there are several recent methods for evaluating clusterings [Mei02,ZLZ05,SLL02,LUDT05,
THG07] which we will use in this context). Also we plan to employ sparse matrix techniques in
case that the number of sequences in the input is prohibitive for storing the entire distance matrix.

References

[BKR07] M. Bauer, G. W. Klau, and K. Reinert. Accurate Multiple Sequence-Structure Alignment of
RNA Sequences Using Combinatorial Optimization. BMC Bioinformatics, 2007. To appear.

[DSO78] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins.
In Atlas of Protein Sequence and Structure, volume 5, pages 345–352, 1978.

[DWRR] A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn – the C++ library for sequence
analysis. http://www.seqan.de.

[DWRR07] A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn: An efficient, generic C++ library for
sequence analysis. BMC Bioinformatics, submitted, 2007.

[Edg04] R.C. Edgar. Local homolgy recognition and distance measures in linear time using compressed
amino acid alphabets. Nucleic Acids Research, 32(1):380–385, 2004.

[GJMM+05] S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A. Bateman. Rfam:
Annotating Non-Coding RNAs in Complete Genomes. Nucl. Ac. Res., 33:D121–D141, 2005.

[HH92] S. Henikoff and J. G. Henikoff. Amino Acid Substitution Matrices from Protein Blocks. Pro-
ceedings of the National Academy of Sciences, 89:10915–10919, 1992.

[KBMP07] G. W. Klau, M. Bauer, P. May, and L. Petzold. LiSA: a library for structural alignment algo-
rithms, 2007. http://www.planet-lisa.net.

[LJG01] W. Li, L. Jaroszewski, and A. Godzik. Clustering of highly homologous sequences to reduce
the size of large protein databases. Bioinformatics, 17(3):282–283, 2001.

[LUDT05] B. Lazareva-Ulitsky, K. Diemer, and P.D. Thomas. On the quality of tree-based protein classi-
fication. Bioinformatics, 21(9):1876–1890, 2005.

[Mei02] M. Meila. Comparing Clusterings. University of Washington, Statistics, Technical Report,
2002.

[NHH00] C. Notredame, D. G. Higgins, and J. Heringa. T-Coffee: A novel method for fast and accurate
multiple sequence alignment. Journal of Molecular Biology, 2000.

[SLL02] O. Sasson, N. Linial, and M. Linial. The metric space of proteins – comparative study of
clustering algorithms. Bioinformatics, 18:S14–S21, 2002.

[THG07] E. Torarinsson, J.H. Havgaard, and J. Gorodkin. Multiple structural alignment and clustering
of RNA sequences. Bioinformatics, 23(8):926–932, 2007.

[YLL99] G. Yona, N. Linial, and M. Linial. ProtoMap: automatic classification of protein sequences, a
hierarchy of protein families and local maps of protein space. Proteins, 37:360–378, 1999.

[ZLZ05] D. Zhou, J. Li, and H. Zha. A new Mallows Distance Based MEtric For Computing Clusterings.
In Proceedings of 22nd International Conference on Machine Learning, pages 1028–1035,
2005.

25

Appendix

A Accession Numbers

A.1 Runtime Evaluation

© RF00034 (RprA):
U000962.1768396-1768503, AE0169841.44786-44893, AE0087591.13089-
12982, AL6272711.108510-108617, BX5718671.288515-288628,
BX9508511.2106268-2106157, AJ4141521.107933-108041

© RF00198 (SL1):
U908311.1-100, U908321.1-99, U316461.55-159, U316351.55-159,
U316371.55-157, AJ2790331.195-299, AJ3115271.55-157,
AF2971191.1277-1381, AF2821791.149-252,

© RF00243 (traJ):
M209411.109-216, AF5506791.2929-3039,X558961.933-1040,
AF2376971.390-500,AE0064711.61487-61592,AF3895291.1005-1112

© RF00434 (BTE):
AB0760431.1872-1973, AB0760421.1877-1973, AB0760461.1867-1967,
D110281.4805-4903, D110321.4816-4915,AB0760471.1872-1973,
AJ0074921.1972-2071, X076531.4819-4918, AJ0074911.1974-2073,
AF2351671.4816-4915, D857831.4816-4915, X800501.6-105,
L240491.5262-5363,AB0760481.1871-1967, AF4413931.5292-5389,
AF2187982.4817-4938, AY2207391.4842-4940

A.2 Clustering Evaluation

© RF00504 (Glycine riboswitch):
AP001516.1 246305-246211, AE016822.1 1714518-1714420, AP002996.2
13233-13334, AP004599.1 137133-137028, AE011751.1 9538-9457

© RF00005 (tRNA):
AL021918.1 94597-94678, M86495.1 1026-1092, S64977.1 800-870,
X54408.1 1-73, X66438.1 1-72

© RF00031 (SECIS elements):
L12743.1 694-758, AF241527.2 359-424, X13710.1 946-1008, AB032826.1
1401-1464, AL049837.4 130674-130738

26

Figure 7: Result of average linkage clustering using the full distance matrix computed with the most sensitive
method

27

Figure 8: Result of average linkage clustering using the hierarchical method.

Figure 9: Result of sequence based clustering using TCOFFEE.

