
UNICASE Trace Client: A CASE Tool Integrating
Requirements Engineering, Project Management and Code

Implementation

Alexander Delater, Barbara Paech

Institute of Computer Science, University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{delater, paech}@informatik.uni-heidelberg.de

Abstract: Artifacts for requirements engineering, project management and code im-
plementation are usually stored in separate tools, which makes traceability between
these artifacts difficult. We developed the tool UNICASE Trace Client, which stores
the aforementioned artifacts in a single environment with full traceability between all
artifacts. In this paper, we describe the three traceability link creation process sup-
ported by our tool as well as its advanced features for traceability link usage.

1 Introduction

Requirements-to-code traceability reflects the knowledge where requirements are imple-
mented in the code. The simple creation of such links is very important for a development
project, as the manual creation can, for example, lead to higher development effort. In pre-
vious work [DNP12], we presented an approach that captures traceability links between
requirements and code as the development progresses by using artifacts from project man-
agement called work items. Based on this approach, we developed the tool UNICASE
Trace Client [UTC]. It is an extension to the model-based CASE tool UNICASE [UNI],
which is an Eclipse plug-in developed in an open-source project. UTC integrates itself
seamlessly in Eclipse and supporting plug-ins, e.g. Subversion, and supports three pro-
cesses for traceability link creation between requirements, work items and code. Based on
these links, it supports various features for traceability link usage.

The remainder of this paper is structured as follows: Section 2 describes the three trace-
ability link creation processes and features supported by UTC. Section 3 concludes the
paper and discusses future work.

2 UNICASE Trace Client

UTC incorporates artifacts from requirements engineering (features, functional require-
ments), project management (work items, sprints, developers) and code (code files, revi-

459



sions). A feature is realized in a sprint and is detailed in one or more functional require-
ments. Work items describe work to be done to realize functional requirements, they are
assigned to developers, have a completion status and a due date. A work item must have
one or more linked functional requirements and is contained in a sprint. A feature can
be related to a work item, e.g. during bug fixing. One work item can create one or more
revisions. A revision contains one or more changed code files and is stored in a version
control system (VCS).

For using UTC, we presume the following situation in a development project and the used
development process. First, a list of features and functional requirements exists. Second,
a project manager has planned the implementation of the features in sprints and s/he has
broken down the implementation schedule of the functional requirements into work items
for the developers. Third, all work items are already assigned to developers.

2.1 Traceability Link Creation Processes

UTC uses work items to link requirements and code during development. As we presume
that the implementation of the requirements is planned in work items, UTC captures links
between the work item and the code that is created by its assigned developer. We identified
three possibilities of developers to select a work item that is related to their implemented
code. Developers can select a work item before they start the implementation of code
(Process A), during implementation when they have created code but have not yet stored
it as a new revision in a VCS (Process B), or after implementation when they have created
code that is already stored as a revision in a VCS (Process C). These three processes are
depicted in Figure 1. In general, developers should not perform any change in the code
without a work item describing the realization of a requirement.

Requirements, work items and revisions are stored as artifacts in UTC. However, revisions
only contain a subset of information (revision number, author, creation date and list of
changed code files) that is stored in the VCS. More detailed information, e.g. what lines
of code were changed in the revision, can be found in the VCS.

2.1.1 Process A) Select Work Item Before Implementation

First, the developer selects a work item from his/her list of assigned work items. While
working on the work item and implementing new code or changing existing code, all re-
quirements the developer looks at during implementation are automatically captured. For
example, s/he may look at requirements to know what to implement. When finishing the
implementation of the work item, the developer is asked to validate all captured require-
ments and new/changed code files, which means s/he confirms all related and removes
all non-related requirements or code files. The validated requirements are automatically
linked to the work item and the validated code files are stored in a new revision in the
VCS. A new revision artifact is automatically created and stored in UTC and linked to the
work item.

460



Process C: Link Work Item After Implementation to Previously Created Revision

Process B: Select Work Item During Implementation

Process A: Select Work Item Before Implementation

Select
Work Item

Capture
Requirements

Implement
Code

Validate
Captured

Req. & Code

Link Captured
Requirements to

Selected
Work Item

Create
Revision in

VCS

Link Selected
Work Item to
Revision

Select Work
Item

Implement
Code

Create
Revision in

VCS

Link Selected
Work Item to
Revision

Select
Revision from

VCS
Select Work

Item
Link Selected
Work Item to
Revision

Legend
Activity Activity performed

in all processes Start EndSplit/Join of con-
current activities

Validate
Code

Figure 1: Traceability Link Creation Processes

2.1.2 Process B) Select Work Item During Implementation

In contrast to Process A, in Process B a developer does not need to select a work item
before implementation. Instead, s/he starts directly with implementation. After the im-
plementation of code and before creating a new revision stored in the VCS, the developer
validates the new/changed code files and selects a work item from his/her list of assigned
work items. A new revision with the validated code files is stored in the VCS. A new re-
vision artifact is automatically created and stored in UTC and linked to the selected work
item. In this process, no requirements are captured and validated.

It is important to note that Processes A and B do not force developers to select a work item
related to the current implementation. In case the developer implemented code that s/he
does not want to be linked to a work item, s/he can omit the linking of a work item, which
ends Processes A and B.

2.1.3 Process C) Link Work Item After Implementation

In contrast to Processes A and B, Process C occurs after implementation and it represents
an alternative way for the developer to link code to a work item. A VCS stores a history
of all previously created revisions with information by whom and when each revision was
created, as well as all changed code files. In case a developer has implemented code
without selecting a work item before implementation (see Process A) or without selecting
a work item during implementation (see Process B), s/he can manually select to link a
previously created revision to a work item from his/her assigned work items list. A new
revision artifact is created and stored in UTC and linked the selected work item. Like in
Process B, no requirements are captured and validated.

461



Issue tracking systems (e.g. Trac) and project management applications (e.g. Redmine)
also support VCS integration like UTC, which means linking work items to revisions.
However, these tools do not support requirements as discrete artifacts. Tools supporting
the same artifacts as UTC are, for example, IBM Rational Team Concert or Polarion Re-
quirements. However, unlike these tools, UTC can capture links between these artifacts
during development. Moreover, UTC can automatically infer direct traceability links be-
tween requirements and code using work items, which is explained in the following.

2.1.4 Inferring Traceability Links Between Requirements and Code

The created traceability links of Processes A, B and C are used by UTC to infer direct links
between requirements and code based on the corresponding work items. In [DNP12], we
presented an algorithm for inferring links that is executed when the developer changes the
completion status of a work item from assigned to done. The algorithm connects in a brute
force manner all linked requirements of a work item with all the code files in the linked
revisions of a work item.

Changes in the code do not have a direct impact on the artifacts and links stored in UTC.
However, changes in the code can lead to new (inferred) links to requirements. Over time,
inferred links might become obsolete due to work on other work items. Thus, we are
currently working on intelligent algorithms to discard links not relevant anymore.

Summing up, the only manual work in UTC is to establish initial links between work items
and requirements (which is typical for issue management) and to validate the captured
links (which should be easy as the links refer to the work just finished). Besides this,
there is no other additional work required to achieve traceability between requirements
and code.

2.2 Features for Traceability Link Usage

Versioning: The EMFStore [EMF] is a repository and VCS for the Eclipse Modeling
Framework designed for collaborative editing and versioning of models. The EMFStore
is the foundation for UNICASE, and thus UTC. All artifacts in UTC are part of a model
that is versioned with EMFStore. This allows versioning all artifacts and the traceability
links between them and as a result, supports merging and conflict detection. For example,
one can follow all changes of a requirement and its traceability links over time as well as
revert to a previous version.

Graph Visualization: UTC supports graph visualization of all artifacts and the traceabil-
ity links between them. Advanced layout algorithms can be applied to the graph and one
can search within the graph.

Traceability between Requirements & Code: Using inferred links between require-
ments and code, UTC helps to analyze which code contributes to the realization of which
requirement.

462



Requirements Context: During implementation, a developer can look at the require-
ments context that shows all requirements linked to the currently open code file. Due to
agile software development techniques, development teams can change quickly. This fea-
ture supports new developers joining the project trying to understand the purpose of the
implemented code.

Progress of Implementation: Work items have a completion status and are linked to
requirements. Thus, work items enable to identify not implemented requirements as well
as the progress of their implementation. UTC enables to see how far all requirements
are already implemented, as well as identifying not implemented requirements requiring
increased attention.

Requirements Impact Analysis: If a requirement needs to be changed to reflect changed
customer demands, all related artifacts potentially affected by this change can be identified.
Affected requirements and work items can be identified, e.g. if a change in a requirement
is comprehensive, related requirements and their planning of realization described in work
items needs to be adapted. An initial set of code files can be identified, which can be
a starting point for detailed impact analysis. The changes in the code files can result in
additional changes in other code files.

3 Conclusion

We developed UTC and it integrates requirements engineering, project management and
code implementation in a single environment with full traceability between all artifacts.
Currently UTC is used in an academic case study. We want to compare the effort and
quality of the created traceability links to the results of other conducted exploratory case
studies. Furthermore, we will work on intelligent algorithms to discard links between
requirements and code not relevant anymore due to work on other work items.

References

[DNP12] Delater, A.; Narayan, N.; Paech, B.: Tracing Requirements and Source Code During Soft-
ware Development. In ICSEA 12: Proc. 7th Int. Conf. of Software Engineering Advances,
Lissabon, 2012; pp. 274-282

[EMF] EMFStore, A model repository for EMF-based models, http://eclipse.org/emfstore/ (Last
Access: January 30, 2013)

[UNI] UNICASE, Technical University Munich, Chair for Applied Software Engineering,
http://www.unicase.org/ (Last Access: January 30, 2013)

[UTC] UNICASE Trace Client at Google Code, http://code.google.com/p/unicase/wiki/ Trace-
Client (Last Access: January 30, 2013)

463


