Concolic Testing of Concurrent Programs”

Azadeh Farzan®, Andreas Holzer?, Niloofar Razavi', Helmut Veith?

I Computer Science Department 2 Vienna University of Technology
University of Toronto Institut fiir Informationssysteme 184/4
40 St. George Street Favoritenstrae 9-11
Toronto, Ontario M5S 2E4, Canada A-1040 Vienna, Austria

Abstract: We describe (con)?colic testing — a systematic testing approach for con-
current software. Based on concrete and symbolic executions of a concurrent program,
(con)?colic testing derives inputs and schedules such that the execution space of the
program under investigation is systematically explored. We introduce interference sce-
narios as key concept in (con)?colic testing. Interference scenarios capture the flow of
data among different threads and enable a unified representation of path and interfer-
ence constraints.

Overview

White-box testing concurrent programs has been a very active area of research in re-
cent years. To alleviate the interleaving explosion problem that is inherent in the anal-
ysis of concurrent programs a wide range of heuristic-based techniques have been de-
veloped. Most of these techniques [WKGGO09, SFM10, SA06, RIKG12] do not provide
meaningful coverage guarantees, i.e., a precise notion of what tests cover. Other such
techniques [MQBO7] provide coverage guarantees only over the space of interleavings by
fixing the input values during the testing process. Sequentialization techniques [LR09]
translate a concurrent program to a sequential program that has the same behavior (up
to a certain context bound), and then perform a complete static symbolic exploration of
both input and interleaving spaces of the sequential program for the property of interest.
However, the sequential programs generated are not appropriate models for dynamic test
generation due to the nondeterminism they involve. Recently, dynamic test generation was
applied to sequentialized programs [RFH12]. Yet, this approach lacks completeness.

We propose (con)?colic testing, a new and systematic approach for the systematic explo-
ration of both input and interleaving spaces of concurrent programs. (Con)Zcolic test-
ing can provide meaningful coverage guarantees during and after the testing process.
(Con)?colic testing can be viewed as a generalization of sequential concolic (concrete
and symbolic) testing [GKS05] to concurrent programs that aims to achieve maximal code
coverage for the programs. (Con)2colic testing exploits interferences among threads. An
interference occurs when a thread reads a value that is generated by another thread. We
introduce the new concept of interference scenario as a representation of a set of inter-
ferences among threads. Conceptually, interference scenarios describe the prefix of a
concurrent program run such that all program runs with the same interference scenario

*This is a summary of [FHRV13]. This work was supported by the Canadian NSERC Discovery Grant, the
Vienna Science and Technology Fund (WWTF) grant PROSEED, and the Austrian National Research Network
S11403-N23 (RiSE) of the Austrian Science Fund (FWF).

101



follow the same control flow during execution of that prefix. By systematically enumer-
ating interference scenarios, (con)?colic testing explores the input and scheduling space
of a concurrent program to generate tests (i.e., input values and a schedule) that cover a
previously uncovered part of the program.

Our (con)?colic testing framework has four main components: (1) A concolic execution
engine executes the concurrent program according to a given input vector and schedule.
The program is instrumented such that, during the execution, all important events are
recorded. This information is used to generate further interference scenarios. (2) A path
exploration component decides what new scenario to try next, aiming at covering previ-
ously uncovered parts of the program. (3) A realizability checker checks for the realiz-
ability of the interference scenario provided by the path exploration component. Based
on this interference scenario it extracts two constraint systems (one for the input values
and one for the schedule) and checks for the satisfiability of them. If both are satisfiable,
then the generated input vector and the schedule are used in the next round of concolic
execution. (4) An interference exploration component extends unrealizable interference
scenarios by introducing new interferences. (Con)?colic testing can be instantiated with
different search strategies to explore the interference scenario space.

To evaluate our approach we have implemented the tool CONCREST! [FHRV13]. It sup-
ports multi-threaded C programs and uses a search strategy that targets assertion violations
and explores interference scenarios according to the number of interferences in an ascend-
ing order. This exploration strategy is complete modulo the explored interference bound
and produces minimal error traces (wrt. the number of interferences).

References

[FHRV13] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic testing. In
Proc. ESEC/SIGSOFT FSE, pages 37-47,2013.

[GKSO05] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing.
In Proc. PLDI, pages 213-223. ACM, 2005.

[LRO9] A. Lal and T. Reps. Reducing Concurrent Analysis Under a Context Bound to Sequen-
tial Analysis. Formal Methods in System Design, 35:73-97, 2009.

[MQBO7] M. Musuvathi, S. Qadeer, and T. Ball. CHESS: A Systematic Testing Tool for Concur-
rent Software, 2007.

[RFH12] N. Razavi, A. Farzan, and A. Holzer. Bounded-Interference Sequentialization for Test-
ing Concurrent Programs. In ISoLA, pages 372-387, 2012.

[RIKG12] N. Razavi, F. Ivancic, V. Kahlon, and A. Gupta. Concurrent Test Generation Using
Concolic Multi-trace Analysis. In Proc. APLAS, pages 239-255. Springer, 2012.

[SA06] K. Sen and G. Agha. CUTE and jCUTE: concolic unit testing and explicit path model-
checking tools. In CAV, pages 419-423, 2006.

[SFM10] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: Weaving Threads to Ex-
pose Atomicity Violations. In Proc. FSE, pages 37-46. ACM, 2010.

[WKGGO09] C. Wang, S. Kundu, M. K. Ganai, and A. Gupta. Symbolic Predictive Analysis for
Concurrent Programs. In Proc. FM, pages 256-272. Springer, 2009.

"http://forsyte.at/software/concrest/

102



