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Reality Mining in Sensor-based Mobile-driven
Environments

Dennis G. Geisse!, Iven John?, Sebastian Kotstein?

Abstract: Reality Mining refers to an application of data mining, using sensor data to derive
behavioral patterns in the real world. However, research in this field started a decade ago when
technology was far behind today's state of the art. This paper discusses which requirements are now
posed to applications in the context of Reality Mining. A survey has shown which sensors are
available in state-of-the-art smartphones and usable to gather data for Reality Mining. As another
contribution of this paper, a Reality Mining Application Architecture is proposed to facilitate the
implementation of such applications. A proof of concept verifies the assumptions made on Reality
Mining and the presented architecture.

Keywords: Reality Mining, application architecture, sensor-based environments, smartphone
features, wearable sensors, Android applications, big data applications

1 Introduction

When Nathan Eagle and Alex Pentland began conducting their research in a field they
named Reality Mining in 2004, their aim was to derive behavioral patterns from data
collected by sensors in the real world [EP06]. As technology has evolved since then and
big data technologies are increasingly adopted, questions arise how this evolution affects
the initial understanding of Reality Mining. While Eagle and Pentland were restricted to
few available sensors built into phones at that time, currently available smartphones
feature much more sensor technology. There are even more measurements available when
expanding the range with environmental sensors. How that improves the possibilities to
capture reality, i.e. the movement of an individual in the real world, has not yet been
evaluated.

How to use the potential of such sensor technology is also not yet explored in research.
Insights of possible challenges for the acceptance of such applications as well as
architectural approaches would be valuable for building Reality Mining applications.
While there is existing research regarding the architecture of general big data applications
[PP15, Kr14, Bil6], none of them considers the generation of data through remote sensors
and its transfer to a central storage and analytics system. They also do not consider how
to make data available for remote applications.
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The contribution of this paper is an illustration of how smartphones have evolved in
previous years and what impact this has on the idea of Reality Mining. In addition, an
architecture for building Reality Mining applications is introduced and applied in a proof
of concept.

2 Methodology and Focus of This Paper

To further focus the research of this paper, there are two research questions derived from
the changes introduced by the smartphone evolution, examining what this means to Reality
Mining and how these changes may be leveraged to support Reality Mining.

1.  How does the variety of available sensors refine the idea of Reality Mining?

2. What are the core components required for a Reality Mining application capturing
and processing data to achieve user benefit and how do they relate?

Before these research questions are answered, Section 3 aims to clarify the initial position
on changes in smartphones since the first approach to Reality Mining was researched by
Eagle and Pentland in 2004 [EP06]. The goal is to determine whether or not the technology
advances — limited to features, sensors and technology that provide added value for Reality
Mining — where substantial and how they evolved over time. This study contributes to
providing the foundation of available data for a more refined Reality Mining approach and
shows how the variety of sensors available in mobile devices in 2015 has increased
manyfold. This provides opportunities for new use cases when looking into the subject
Reality Mining.

Given research from the smartphone survey [GJK16] it is assumed that the sensor
landscape has evolved since 2004. This leads to challenging Reality Mining in definition
and execution. When applying well-spread as well as new technologies to the idea of
Reality Mining, research question one will determine if and how Reality Mining evolves
alongside these technologies. This includes classification criteria for Reality Mining
applications.

Having determined how Reality Mining evolved alongside technologies, research question
two applies this knowledge to identify common components in Reality Mining
applications based on the aforementioned research. The idea is to have a common set of
tools to base Reality Mining applications on. Any derived solution needs to be tested
against a practical use case for verification purposes and to determine advantages,
disadvantages and restrictions.

The research paper will be oriented along the research questions introduced above. As
such it will explore each question in-depth before concluding the findings and introducing
pointers on further research opportunities.
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3 Evolution of Smartphone Features

The acquisition of data in Reality Mining applications is critical, which should not be
neglected while planning such an application. Depending on the use case of the
application, different kinds of data must be acquired. This requires a special capturing
device, e.g. a smartphone or a smart watch having appropriate sensors. This device must
be affordable for and available to a large target group of potential users, otherwise only a
fraction of the target group would be able to access and use the application. Also,
considering group prediction capabilities, the application requires data from many users —
otherwise the quality would suffer. So all in all, two issues have to be considered: On the
one hand, state-of-the-art smartphones and mobile devices must provide the required
features (e.g. sensors) for capturing the data and on the other hand those features must be
supported by many "popular” devices (i.e. devices used by a large target group) [GJK16].
Hence, a smartphone feature survey was conducted to identify and classify the state-of-
the-art smartphone features which might be potentially relevant for Reality Mining
applications. Furthermore, the survey illustrates the evolution of these identified features
in the smartphones market — especially the support for each feature — between 2004 and
2015 [GJK16]. Presenting the whole approach and procedure of this survey would go
beyond the scope of this paper. Nevertheless, this paper will provide the most important
relevant facts and results of this survey.

The survey has identified 22 smartphone features relevant for Reality Mining applications
which are capable of providing details about the user behavior and environmental
conditions. Additionally, it has identified three more partially relevant features which are
not content of further analysis [GJK16]. The identified features and their classifications
are shown in Table 1.

Feature Category Feature Category
Touchscreen User Input Finger Sensor
Wifi Gesture Sensor
Bluetooth . Heart Rate Sensor Human Sensor
NFC Communication Proximity Sensor
Infrared SpO2
(GSM) Microphone
GPS Camera
GLONASS . Luxmeter
(Beidou) Localization & UV Sensor Environmental
Movement
(Step Counter) Magnetometer Sensor
Accelerometer Thermometer
Gyroscope Barometer
Humidity Sensor

Tab. 1: Identified features and their classifications. Excluded features in brackets [GJK16].
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The survey selected 143 smartphones released in Germany between January 2004 and
May 2015. These smartphones have been analyzed regarding their support for the
identified relevant features by determining whether a smartphone supports a feature. This
results in a feature counter for each smartphone that was used to rank all analyzed devices
regarding their overall capability for Reality Mining.

By analyzing the support of each feature per year, the survey reveals an interesting fact
which applies on nearly every feature observed in this survey: The support of an
introduced feature is commonly growing over the next years after its first occurrence
which means that the vendors would rather add new additional features to a smartphone
than replacing old features. For instance, state-of-the-art features of 2006 (e.g. Bluetooth,
Wi-Fi or GPS) are still supported by smartphones released in 2015. But it has to be
considered that technology revisions might have changed (e.g. upgrading from
IEEE802.11g to IEEE802.11n), which is not considered the survey.

Average Number of Features
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Fig. 1: Average number of features supported by a smartphone released per year [GJK16]

Figure 1 shows the average number of features of smartphones introduced in the
corresponding years. As depicted, the average number of features has been increased from
3.86 features in 2004 to 13.25 in the year 2015.

4 Refining Reality Mining

In 2004, Eagle and Pentland have demonstrated the potential of smartphones being aware
of the behavior of their users [EP06]. They have equipped 100 test users with Nokia 6600
smartphones as wearable sensors for recognizing social patterns in the daily behavior of
an individual user as well as of a whole group [EP06]. Compared to modern phones, those
devices have a limited feature set, consisting of Bluetooth, Infrared, Global System for
Mobile Communications (GSM), a Camera and a Microphone [GS15], but only Bluetooth
and GSM have been used as sensors for their study. In the meantime, the average number
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of Reality Mining-relevant features has increased from 3.86 features in 2004 to 13.25
features in 2015 — for comparison: The Nokia 6600 has 4 features, considering that GSM
has been excluded from the Smartphone Feature Survey [GJK16]. This leads to the
question, whether the initial idea of Reality Mining by Eagle and Pentland [EP06] can be
refined and extended with new technological or even social aspects considering the fact
that the smartphone market has experienced a remarkable technological progress in the
last decade with products like the first iPhone [Kel2] or the introduction of the Android
operating system [Anl6].

To answer this question, the aspects of the study of Eagle and Pentland [EP06] have to be
examined and discussed from today's perspective. Their study has two elementary
objectives beside the demonstration of the ability to use smartphones as wearable sensors,
namely the creation of a predictive classifier describing daily, weekly or even yearly
patterns of an individual user as well as the identification of community structures, like
friendships, work groups and organizational groups. These predictive and descriptive
models have primarily relied on the location of the users as well as their proximity to other
users and static known devices. Moreover, collected information about the phone status,
call logs and use of applications improves the models. For detecting the location of a user
both Bluetooth as a short-range radio frequency (RF) network for detecting static devices
(e.g. Desktop Computers) within a range of 10 meters and GSM as a long-range RF
technology being capable of tracking the Cell Tower IDs were used. Using these
techniques together completes the data in case a user has no service (e.g. in the center of
a building), but might be in range of a static device — or vice versa. The proximity of users
is also based on Bluetooth, by discovering other Bluetooth devices (representing users)
that are in range. To summarize, the study has returned descriptive data reflecting
individual user behavior as well as the relationships between users.

From a technological point of view in 2015, they have only used the Bluetooth and GSM
features of the Communication category [GJK16]. More accurate tracking technologies
(category Location & Movement), e.g. Global Positioning System (GPS), have been
considered but were not supported as built-in features in smartphones from 2004 [GJK16].
If Eagle and Pentland had had access to GPS capable smartphones in 2004, the location
determination would have been more accurate and less complex. This leads to the
conclusion that today's variety of additional features, when compared to 2004, enables
new use cases which can rely on more accurate data. Nevertheless, if a feature is planned
to be used in a Reality Mining application, its support on the smartphone market should
be analyzed to avoid limitations on the target group [GJK16].

Additionally, social aspects might have changed — especially due to the fact that the
sharing of personal and private data is a sensitive matter today. This has to be considered
for any Reality Mining use case. The privacy aspect has already been considered by Eagle
and Pentland, but their study is a proof of concept under lab conditions with the approval
of all participants [EP06]. Today's applications have to respect the Privacy of their users,
which is a legal and moral issue. But even if privacy is respected, the users might not be
willing to share their data. However, users are more likely to provide their private data if
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they have a benefit by sharing them [QR15]. This research has adapted this statement into
a generic approach which applies to every Reality Mining application.

Benefit

User System

N

Reality Data
Fig. 2: Reality Mining Cycle

The Reality Mining Cycle, illustrated in Figure 2, exhibits the fact that Reality Mining
applications have to provide a benefit to each individual user, otherwise the users would
not use the application and would not share the data describing their behavior with the
system. Furthermore, the Goal Support of an application can provide further incentive for
using the application. In this context, support describes the degree of simplification and
automation of a daily process of the user using the application whereas the added User
Benefit is more of the objective of the application. Moreover, a Reality Mining application
can be rated by its Social Value, which is the benefit for the community when using the
application. These four dimension — Privacy, User Benefit, Goal Support and Social Value
— introduced in this section were identified as the base criteria for today’s Reality Mining
applications.

This section has shown that the changes in the mobile technology landscape driven by a
variety of new features broaden possibilities for use cases, but also bring challenges. New
possibilities and emerging social aspects refine the original idea and focus of Reality
Mining, answering the first research question.

5 Reality Mining Application Architecture

Building applications in the context of Reality Mining poses challenges regarding the
applications architecture [CZ14]. As the Reality Mining cycle introduced in Figure 2
suggests, such applications always have some kind of data exchange between the users
and the Reality Mining system at its core. In the following discussion on how a Reality
Mining application can be architected, the Reality Mining system will be called the
backend.
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Reality Mining applications using the stated possibilities of today's smartphones can be
considered big data applications, since smartphones are widely adopted and their variety
of sensors may produce large amounts of data in several formats [CZ14]. Hence, an
architecture for big data applications will serve as the starting point from where a Reality
Mining architecture is built. With their research on common implementations of big data
applications, Paékkonen and Pakkala have proposed a reference architecture to realize big
data systems [PP15], which, however, does not take into account where data originates
and how it is transferred to the backend. Figure 3 shows a schematic architecture where
elements of the Padkkdnen and Pakkala reference architecture [PP15] are used to build the
backend. In comparison to the original architecture, it is extended with elements necessary
to integrate remote sensors such as smartphones. The following description highlights

components of the resulting architecture in italics.

Applications
Presentation
Network
(with Requirements) ,
Py Analytics
Landing Zone \nges't-ion Data Lake

o}
Sea of Sensors

Fig. 3: Extended Big Data Reference Architecture

As the reference architecture proposes, the backend is comprised of elements for data
extraction, loading, processing and analysis as well as interfacing [PP15]. In particular,
Ingestion (4) represents the step of moving data into a central storage, the Data Lake, from
where it can be loaded for further purposes. In this architecture there is no restriction as to
what type of data can be ingested, because nowadays there are possibilities to process all
kinds of data whether structured, semi-structured or unstructured [Kr14, PP15]. Based on
this data, Analytics refers to steps of data processing in terms of both data preparation and
data analysis. Further, Presentation allows for steps to create content that can be presented
to the outside, i.e. to Applications (6) where users interact with the backend (5) through
arbitrary interfaces.

To allow Reality Mining applications, this architecture needs to be extended by elements
(1), (2) and (3). The Sea of Sensors, i.e. all sensors that are contributing to the Reality
Mining application, are a crucial component in such applications and therefore mandatory.
The Network is necessary to transfer data from its remote origin (1). Depending on the
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application there can be several requirements to the Network, e.g. regarding latency or
bandwidth. Data is received by the Landing Zone, which then serves as a data source from
where it can be ingested (4) into the backend (5).

This extended big data architecture as depicted in Figure 3 features all necessary elements
for Reality Mining applications. However, it is constructed strictly sticking to the big data
reference architecture proposed by Padkkonen and Pakkala. Thus, it is more of a big data
architecture with Reality Mining capabilities than a Reality Mining architecture utilizing
existing big data research. The aim of this paper, however, is to optimize it for Reality
Mining. Weakening the dependency from the big data reference architecture leads to a
similar yet more mobile-centric approach, the Reality Mining Application Architecture
shown in Figure 4.

b Presentation

Applications

Analytics

Internet ; Web Service 4 Data Lake

o O
Static

Fig. 4: Reality Mining Application Architecture

In the proposed Reality Mining Application Architecture, a Web Service replaces both the
Landing Zone and the Ingestion introduced in the extended big data reference architecture
approach, since Reality Mining data most likely arrives at the backend using the Internet
as communication medium. Still, there is no restriction on the type of data ingested. This
Web Service receives data and covers extraction into the Data Lake. In addition,
communication is bi-directional such that the Web Service can also retrieve data from the
Data Lake.

Similar to the backend in the extended big data reference architecture, in the presented
architecture Analytics refers to data processing in terms of both data preparation and data
analysis. Presentation covers steps to create content that can be presented to the outside.
Additionally, the data flow is extended such that both Analytics and Presentation are able
to add data, i.e. analytics results, to the Data Lake. This is necessary, since Applications
are not bound to the backend but are loosely coupled to it through the Internet and the Web
Service. This way, results can be retrieved from any Application without coupling it to the
Presentation element, enabling mobility as required in Reality Mining applications. To
add more precision on possible data origins, the Reality Mining Application Architecture
states personal mobile sensors carried by individuals as well as static environmental
sensors, which are placed on pre-defined locations.



Reality Mining in Sensor-based Mobile-driven Environments 195

Utilizing the proposed architecture, a Reality Mining application would collect data
through a Sea of Sensors (1) and transmit it (2) to a server (3), from where it is ingested
(4) into the backend (5). In case processing in the backend leads to output, this data can
be retrieved (6) by the server and sent (7) via Internet (8) to an application displaying it
(9). These are the components required for a Reality Mining application and their relation
and dependency to each other, answering the second research question. How this
architecture applies to a real use case is shown in Section 6.

6 Proof of Concept

After developing the Reality Mining Application Architecture presented in Section 5, the
next step is to test it by applying it to a practical example application meeting the Reality
Mining criteria identified in Section 4.

The use case for the proof of concept (or prototype) in this research study is a carpooling
recommendation system. The idea is to provide meaningful advice on who to carpool with
while requiring as little manual interaction from the ("carpoolees") as possible. To this
end, the proposed solution is to track the trip history of the end user automatically in the
background on a personal smartphone and match trips from all users for potential overlaps
in the backend. These overlaps will be calculated and presented to the user as
recommendations, without the need for user interaction until the recommendation is
presented and may be acted upon. Trips in the sense of this use case are user locations in
known regular intervals over a given amount of time between two locations — essentially
a regular time-location mapping table between two geographical points.

6.1  Reality Mining Classification and Technological Feasibility

Section 4 introduced four common dimension criteria to measure Reality Mining
applications by their User Benefit, Privacy, Social Value and Goal Support. The proposed
carpooling application measures against the identified criteria as follows:

The most important criteria for a Reality Mining application is the eventual added Benefit
for the end user. Carpooling allows the user to take trips without accommodating for
schedule changes — maximizing efficiency while reducing stress and costs for the both
parties. The added user benefit usually comes with an impact to Privacy, which needs to
be measured and kept to a minimum. In the carpooling use case this means only enabling
the collection of data if absolutely necessary and making sure that the captured data is
handled as anonymously and securely as possible. For this, the prototype determines the
performed activity of the user without storing this information and only enables location
tracking when the user is in a vehicle, i.e. the user is driving. Additionally, to accommodate
for false positives, the user will get the possibility to optionally verify detected trips, with
denied trips not getting stored. The application also ensures that user data will not be
exposed to other users with the only exception of the time and place to carpool in addition
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to user-managed contact data for this purpose. The dimension Social Value can be
evaluated by the promotion of carpooling and the resulting environment-friendly cost and
emission savings. As an added social component, carpooling allows to meet people with
similar routines and trips and thus promotes social interactions. Goal Support is another
important measure for Reality Mining applications. For the presented use case it means
that the user will not be burdened with the additional time and effort requirements that
come with finding a person to carpool with. The application automatically determines
overlaps in trips and recommends them to the user — optionally without any user
interaction up to the decision to accept a carpooling recommendation.

Using Table 1 of Section 3, the following paragraph will be dedicated to determining the
feasibility of implementing the use case with the sensors available in today's personal
mobile devices. Touchscreens are readily available in smartphones nowadays. These will
allow for intuitive interaction with the end user (accepting/declining recommendations,
approving trips). Wi-Fi and radios supporting new generations of GSM fulfill the
prerequisite for exchanging location and recommendation data. The location data is
determined with Wi-Fi, GPS/GLONASS/BeiDou as well as cell tower triangulation. In
conjunction with the aforementioned technologies accelerometer, gyroscope and
proximity sensors can provide data to more accurately determine activity performed by
the user. Therefore, the variety of sensors available enables the collection of data needed
to calculate accurate carpooling recommendations.

6.2  Using the Reality Mining Application Architecture
After determining the Reality Mining aspects and technical feasibility of the proof of
concept, the next step is to adapt the Reality Mining Application Architecture introduced

in Section 5. Figure 5 shows the frontend implementation architecture while Figure 6
details the backend architecture.

= s el Libraries

App 4—> Ingrmet «q—-— Web Service @ -«—— [ || Backend
230 Android \ o= REST{ul

Mock Mock
Data Simulator ) ) . Web Service
C# ) RESTiul

Fig. 5: Proof of Concept Frontend Architecture
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Within the frontend, the location tracking part of the prototype is implemented as a
smartphone app for the Android platform (1) [An16]. For this, the app heavily leverages
platform features, cloud services as well as several third party libraries (B). Using the
Internet as communication medium (2), trip data is send to a RESTful web service (3)
[RRO7] which will make the data accessible for the backend (4). The data mining and
calculation process is further discussed later in this chapter. The results of this process
(recommendations for carpooling) will then be available for the web service (5) to be
requested (poll mechanism) on-demand (7) — again using the Internet (6) as transport
medium.

As the proof of concept heavily relies on user-generated trip data and to enable parallel
development of the core two segments, frontend and backend, both a data simulation
application for mock trip data as well as a mock web service are implemented (A) and
used to test frontend and backend separately.

Mapping the components of the proof of concept to the core components of the Reality
Mining Application Architecture introduced in Section 5 and depicted in Figure 4, the
smartphone acts as both mobile sensor and presentation layer for the application. The
Internet and a RESTful web service are implemented as stated above and can be identified
directly as they are named analogously. The backend is implemented as shown in Figure
6.

/ JSON

Web Service Data Mining

JSON

Data Lake
HDFS

Fig. 6: Proof of Concept Backend Architecture

Data arriving at the web service (1) is ingested to the Data Lake and stored in semi-
structured JSON documents (2). Periodically, an ETL workflow (3) loads this data and
applies some data preparation, including enrichment through data from third party services
(A) [LK15]. As a result of the ETL process, data is now in a structured format (4) and
again stored in the Data Lake. Utilizing this structured and enriched data, a data mining
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algorithm (5) determines possible carpooling matches and creates recommendations that
are put into the Data Lake in JSON format (6). The web service can now retrieve carpool
recommendations on user request (7).

As shown in Figure 6, the backend is implemented with technologies from within the
Hadoop ecosystem, which provides a broad range of technologies to handle data that is
not necessarily structured, like JSON in this case [Krl4, Apl6a]. The web service is
leveraging the various functionality of NiFi, a tool to handle data flow in an effective
manner [Apl16b]. As data warehousing tool, Hive provides the possibilities to handle the
ETL processes efficiently in conjunction with the Hadoop Distributed File System HDFS
[Apl6a], which implements the Data Lake. In contrast to other data warehouses, Hive is
able to provide relational models directly on original data in HDFS — supporting the
concept of "schema later" where data can be stored first without knowing its schema
[Kr14]. Additionally, these software packages are working in highly scalable distributed
environments what makes them suitable for projects from small proof of concepts to large
applications in production [Kr14, Apl6a, Bil6]. This also holds for Spark, a tool for
distributed processing that implements the data mining functionality in this proof of
concept [Apl6c].

Reflecting the elements within the proposed Reality Mining Application Architecture on
this proof of concept, the ETL process serves as analytics implementation. The data
mining algorithm represents both the analytics and the presentation layer: Applying a
statistical model to derive patterns (4nalytics) before creating output that is to be passed
to the application and that happens to be the most valuable information in this particular
use case (Presentation).

This implementation of a Reality Mining application shows the possibilities that arise with
today's smartphones and their sensor technology. In addition, the proof of concept verifies
the applicability of the proposed Reality Mining Application Architecture.

7 Conclusion

This research paper covered Reality Mining in a sensor-based mobile-driven environment.
Initially defined research questions were consecutively answered. The concept of being
sensor-based is defined in Section 3 using the findings of a smartphone feature survey.
These findings also allowed for a refined Reality Mining approach, answering the first
research question by the introduction of some concepts to define modern Reality Mining
applications. Mobile-driven was reflected proposing an architecture approach to provide a
common ground for developing Reality Mining applications and hence answering the
second research question. This approach was then verified using a proof of concept, also
detailing advantages and restrictions of the proposed architecture.
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The architecture proposed in Section 5 and explored in Section 6 by implementing a proof
of concept proved to cover the requirements for Reality Mining applications. Advantages
covered by the architecture include modularity, loose coupling, scalability as well as
extensibility.

While the proof of concept implemented a solution for a more individual-driven use case,
the architecture allows to extend the input systems. In this way, it is possible to e.g.
incorporate static environmental systems or even complex systems comprised of sensors
and applications for data enrichment to drive implementations of use cases focusing on
group behavior.

Looking forward, future research may evaluate software that is available to implement the
individual parts of the proposed architecture. Similar to what Pddkkonen and Pakkala
presented for big data in particular [PP15], this could lead to a selection of software that
is suited to tackle the different parts of the Reality Mining Application Architecture.
Additionally, the evolution of smartphones probably will continue to make new kinds of
sensors available. To enable Reality Mining to exploit all features of smartphones, this
evolution needs to be accompanied by research in the field to maintain a state of the art.
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