H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 173

Chain-detection for DBSCAN

Janis Held ! Anna Beer 2 Thomas Seidl 2

Abstract:

Chains connecting two or more different clusters are a well known problem of the probably most
famous density-based clustering algorithm DBSCAN. Since already a small number of points resulting
from, e.g., noise can form such a chain and build a bridge between different clusters, it can happen that
the results of DBSCAN are distorted: several disparate clusters get merged into one. This single-link
effect is rather known but to the best of our knowledge there are no satisfying solutions which extract
those chains, yet. We present a new algorithm detecting not only straight chains between clusters,
but also bent and noisy ones. Users are able to choose between eliminating one dimensional and
higher dimensional chains connecting clusters to receive the underlying cluster structure by DBSCAN.
Also, the desired straightness can be set by the user. We tested our efficient algorithm on a dataset
containing traffic accidents in Great Britain and were able to detect chains emerging from streets
between cities and villages, which led to clusters composed of diverse villages.

Keywords: DBSCAN, clustering, chain-detection, single link effect

1 Introduction

The human eye can easily detect areas of high den-
sity within a set of points. Derived from this human
intuitive clustering method the basic idea behind
density-based clustering is finding clusters by detect-
ing areas of high density. The famous density-based
algorithm DBSCAN [Es96] builds clusters around
points with high density, so-called seed points, and
expands them taking all density-connected points
into account as described in Section 2. As long as the
clusters are clearly separated, this procedure works
very well but if there are e.g. some density-connected
noise points creating a chain between clusters, DB-
SCAN expands the cluster along these chains resulting in a single huge cluster instead of
the intuitive ones.

Fig. 1: The red points cause a density-
connection between the intentional two
clusters and thus form a chain.

! Ludwig- Maximilians- Universitdt Miinchen, Institut fiir Informatik, Oettingenstr. 67, 80538 Miinchen, Germany,
J.Held@campus.lmu.de

2 Ludwig-Maximilians-Universitidt Miinchen, Institut fiir Informatik, Oettingenstr. 67, 80538 Miinchen, Germany,
{beer, seidl } @dbs.ifi.Imu.de

@@®®@ doi:10.18420/btw2019-ws-18

174 Janis Held, Anna Beer, Thomas Seidl

While keeping the requirements of DBSCAN, like minimal domain knowledge to determine
the input parameters, discovering clusters of arbitrary shape and good efficiency on large
databases, we developed an algorithm which detects such chains in clusters found by
DBSCAN. For that we use PCA (Principal Component Analysis) assuming that a chain
has a lower dimensionality than the clusters it connects. Figure 1 shows an example where
two 3D clusters are connected by a red chain with only little expansion in two of the three
dimensions. Our algorithm is adaptable, users can choose which type of chains they want to
connect: straight chains or bent ones, noisy or thin ones. Through recognizing those chains
and eliminating them from the clustering the underlying individual clusters can be revealed
by DBSCAN.

The paper is structured as follows: First, we introduce shortly the related work and basics
we use in Section 2. In Sections 3 we explain our novel method to find chains in detail,
giving an overview over the whole algorithm in Section 3.6. We analyze the complexity in
Section 4 and prove its effectiveness in Section 5 with some experiments. In Section 6 we
conclude and give a brief idea of some future work.

2 Related Work and Basics

There are already many extensions of DBSCAN, e.g. ST-DBSCAN, an extension for
clustering spatial-temporal data [BK07], MR-DBSCAN, which is an efficient parallel
density-based clustering algorithm using map-reduce [Hell], or C-DBSCAN: Density-
based clustering with constraints [RSMO7]. To the best of our knowledge, there is yet no
extension of DBSCAN to circumvent the disadvantages of the single-link effect or chains
connecting clusters. In this section, we give the basics needed for the following sections,
namely some details of DBSCAN and the Principal Component Analysis (PCA).

DBSCAN Density-based spatial clustering of applications with noise [Es96] is a density
based clustering algorithm that clusters points based on their density and marks outliers
lying in low-density regions. A point with at least minPts points in its e-range is called a
core point. All points in the e-range of a core point ¢ belong to the same cluster as ¢ and are
called density-reachable from c. All reachable points are assigned to the cluster from which
they are reachable, while points which are neither reachable nor core points are declared
noise. Like that, it is possible that a small chain of density-reachable points connects two
clusters as Figure 2 shows.

PCA (Principal Component Analysis) [JC16] transforms given data points to a new
coordinate system where the greatest variance by any projection of the data lies along
the first coordinate (the first principal component), the second greatest variance along the
second coordinate, and so on. PCA is a good indicator of how well some data fits into a
lower dimensional subspace.

Chain-detection for DBSCAN 175

PCA regards the eigenvalue decomposition of the data covariance matrix, usually after mean
centering the data matrix for each dimension. Then the eigenvectors of the covariance matrix
form an orthogonal basis and each eigenvalue describes how much variance is explained by
its corresponding eigenvector [JC16].

Let d be the dimensionality of the data space Q and N = {ny,...,n,,} the € range of some
point p € Q. The data matrix is defined as (ny, ...n,)" . Let m; be the mean of column j.
One can now calculate the covariance matrix ® with
m_ n — m. n ¢ — m .
@y = 2 T T (1)

m

Note that the covariance matrix is symmetric and positive semi-definite, thus its eigenvalues
are non negative. Finally the eigenvalues are normalized by dividing them by the sum of all
eigenvalues, such that the sum of all normalized eigenvalues equals to 1.

3 The Approach

Let DBSCANe minp:s(X) be the clustering of DBSCAN with parameters € and minPts
of some data X and C be a cluster found by DBSCAN in the data space 2. We want to
find a set of candidates that may form chains in C. With the assumption of chains having
a subdimensional shape we can utilize the definition of neighborhood from DBSCAN
and look for an algorithm that decides for each point if it lies within a subdimensional
neighborhood. Additionally the algorithm has to fulfill some restraints: first of all it has to be
rotation invariant as the direction of the chains does not matter. Secondly it has to be error
resistant, as we want to be able to allow some bending of chains and apply it on a application
with noise. The idea is to use the distribution of all points in the e-range of each point as an
indicator for its likelihood do be part of a chain. Therefore, a point in C is considered a
shape-based chain-point candidate if there exists a subspace with a lower dimensionality
than Q, such that all points of the € range of p lie close to it. Note that "lower dimensionality”
and the word “close” will become parameters for the chain-detection algorithm. Clustering
all remaining points may result in some noise points. We call the union of shape-based
chain-point candidates with all those noise points chain-point candidates. Now we can
cluster the chain-point candidates and each cluster is called a chain-candidate. Note that
all chain-point candidates which were marked as noise are not part of a chain-candidate,
because we want a chain to be at least big and dense enough to form a cluster itself. The last
step will be to validate if the chain-candidate indeed connects two clusters of the remaining
points and is not some kind of tail.

176 Janis Held, Anna Beer, Thomas Seidl

3.1 Chains

................................

Fig. 2: The red dots connect Fig. 3: Since the chain-like S

two clusters and thus form a looking red dots do not con-

chain. nect any clusters, they are not
considered a chain.

Fig. 4: The red dots may or
may not be a chain, depending
on the user. The red circle is
one of the € ranges.

Assume the user wants to detect one-dimensional chains in a two-dimensional data space
and DBSCAN would not label the red dots in the following figures as noise, then Figure 2
shows a simple example of a chain. The red dots in Figure 3 are not considered a chain,
because they do not form a connection between two clusters. The red dots in Figure 4 are
not perfectly linear, because the € range of each red point (the red circle is one of the €
ranges) does not perfectly fit inside a one dimensional subspace, and thus it depends on the
user if he wants to detect those as a chain.

3.2 Chain-Point candidates

For each point in a cluster C the objective is to determine if this point is a chain-point
candidate. To achieve this, for each point p € C the technique behind principal component
analysis (PCA) is utilized to calculate how good the € range of p fits inside a subspace with
a dimensionality lower than the dimensionality of the data space 2. To be more precise,
PCA is utilized to find this subspace and then to calculate the explained variation of those
e-neighbors of p which do not fit inside this subspace.

Theorem 1 Let d be the dimensionality of the data space Q and N = {ny,....,ny,} C
Q be the € range of some point p € €. Furthermore let 11 > ... > Ag be
the sorted normalized eigenvalues of the covariance matrix ® derived from N.

1. If 15 = 0, then N lies inside a hyperplane.
2. If Aqg = 1/d, then N is perfectly distributed across all dimensions.

3. ifdi =0and 1 <i < d, then N lies inside a subspace with dimension i — 1.

Chain-detection for DBSCAN 177

Proof 1 1. If 145 = 0, then the corresponding eigenvector evy describes O variance. Since

the eigenvectors form a orthogonal basis N lies entirely in the hyperplane
orthogonal to evg.

2. Since the sum of all eigenvalues equals to 1 and there are d eigenvalues and
all are non negative, each eigenvalues must be equal to 1/d. That means
each eigenvector describes the same variance, thus N is perfectly distributed
across all dimensions.

3. Since the eigenvalues are sorted, non negative and A; = 0 it follows
that A; = 0,Yj € {i,...,d}. That means the corresponding eigenvectors
ev;,j € {i,...,d} of the orthogonal basis describe 0 variance. Thus, N lies
entirely in the subspace spanned by evj,j € {1,...,i — 1}.

3.3 Parameters

With theorem 1 one can now define two parameters

1. chainDim € {1,...,d — 1}, which describes the dimensionality of chains the user
wants to detect.

2. allowedVariation € [0, 1], which allows variation beyond the allowed dimensionality
of the chain.

Like in Section 3.2, let N = {ny, ..., n,;, } be the € range of some point p € C and A4, ..., A4 the
descending sorted normalized eigenvalues of the covariance matrix ® corresponding to N.
To calculate how good N lies within a chainDim dimensional subspace, one calculates the
accumulated error e := Zfl: chainDim+1 Ai- The sum starts with chainDim + 1, because only
the d — chainDim least significant principal components explain the variation beyond the
wanted chain dimensionality. It holds that 1; € [0, 1/d], because the sum of all eigenvalues
equals to 1, there are d eigenvalues and A is the smallest one. If 1; < 1/d then 41 > 1/d,
otherwise A; would not be the largest normalized eigenvalue. That means the sum of the
i smallest normalized eigenvalues is at most i/d, that is if all eigenvalues are 1/d. Thus
e € [0,(d — chainDim)/d] To make the user-input independent of the dimensionality of Q

and chainDim, one normalizes the error by

d
¢ 1= 0,1]. 2
c=er d — chainDim €l0.1] @

Now, p is a chain-point candidate if ¢ < allowedVariation.

178 Janis Held, Anna Beer, Thomas Seidl

3.4 Fuzziness of Chains

In Figure 5 examples for various values of normed errors are given for a two dimensional
data space with chainDim = 1. e describes the variation beyond a linear subspace. The
closer the points get to a linear subspace the lower the error gets and vice versa. In Figure
Sc the error is close to 1 since the points are almost perfectly distributed in all directions.

(a) e = 0.0002 (b) e = 0.1563 (c) e = 0.9997

Fig. 5: Various degrees of fuzziness dependent on the normed error &

Let us have a look at some synthetic example data. In Figure 6 the points are colored by its
normed error values with chainDim set to 1. Some points are clearly marked red, because
they have a low normed error, indicating that they might be part of a chain. On the other hand
most of the points inside those clouds have a high normed error because their € range hardly
fits into a one-dimensional subspace. Setting allowedV ariation to some value determines
for each point if it is a chain-point candidate. Setting allowedVariation to 0.2 on the data
of Figure 6 results in the shape-based chain-point candidates seen in Figure 7.

.,..._\.. \

Fig. 6: Example data: Each point is colored by Fig. 7 Example data: With

the normed error ¢ derived from its € range. allowedVariation = 0.2 the red points
Yellow means the error is close to 1 and red are selected as shape-based chain-point
means it is close to 0. candidates. The arrow highlights an outlier.

3.5 Finding and validating chain candidates

Let C; be the set of shape-based chain-point candidates. First of all each shape-based
chain-point candidate is added to the set of chain-point candidates. After clustering the
remaining points C \ Cz by DBSCAN,ps minp:s all points marked as noise are not part

Chain-detection for DBSCAN 179

of a cluster of non-candidates, indicating that they also might be part of a chain, see the
highlighted black dot on the left of Figure 7. These points are now added to the set of
chain-point candidates.

Clustering the set of chain-point candidates by DBSCAN, s minp:s results in clusters of
chain-point candidates, which are the desired chain-candidates and noise.

Let C.;,i € I be those chain-candidates, R := C \ U;¢;C.; be the set of the remaining points
and DBgr be DBSCAN,ps minpts(R). Note that R contains those chain-point candidates,
which were marked as noise by clustering all chain-point candidates. To validate C,; check
for each point p € C,;, if their € range contains points r € R and note the cluster of r
found in the clustering DBg. As soon as two clusters are noted the chain is validated and
considered a chain. If all points are checked but no two clusters are noted the chain-candidate
C.; could not be validated and is not considered a chain.

Finally we receive a set of chains - which can now be considered clusters themselves or
simply marked as chains - and a set of remaining points, which remain to be clustered to get
the final clustering without chains.

3.6 The complete algorithm

Let C be the cluster found by DBSCAN with metric dist(-,-) and parameters e
and minPts. chainDim and allowedVariation are the parameters of chain detection.
RangeQuery(C,dist, p, €) returns the set {g € C|dist(p,q) < €}. For the sake of simplicity
assume the result of DBSCAN contains the property "Noise", which is the set of points
marked as noise and the property "Clusters", which is the set of clusters. Algorithm 1
recapitulates our complete approach. For a full implementation with example code see
https://github.com/Quesstor/DBSCAN-with-density-based-connection-detection.

4 Runtime complexity

Let n be the number of points in the cluster, on which the chain-detection algorithm is
applied, in a d dimensional data space. For each point a range query with linear complexity
is calculated. Calculating the covariance matrix of the e-neighborhood, which in the worst
case consists of all z points, is O(n * d?). Then the eigenvalues of the d x d covariance matrix
is calculated, which has runtime complexity of O(d?>). So the total runtime complexity for
the for loop is O(n(n + n * d*> + d°)). The DBSCANS on a subset of the cluster each have
the worst case run time complexity of O(n?). The validation step calculates for less than
points a range query resulting in a worst case run time complexity of O(n?). So the for loop
is causing the largest performance hit with a runtime complexity of O(n(n + n * d* + d%)).
Assuming d << n one can simplify the runtime complexity to O(n?).

180 Janis Held, Anna Beer, Thomas Seidl

Algorithm 1 Chain-detection

procedure VALIDATECHAINCANDIDATE(Chain, R, DBR, dist, €)
cluster Found <« null
for ¢ € Chain do
for p € RangeQuery(R,dist,c,€) do
if cluster Found == null then
cluster Found < DBRg labelFor(p)
else
if cluster Found # DBp.labelFor(p) then
return True
return False
procedure CHAIN-DETECTION(C, dist, e, minPts,chainDim,allowedVariation)

d — dim(C) > The dimensionality of the data
Ce —{} > The set of chain-points
for p e Cdo > Find all chain-point candidates

N < RangeQuery(C,dist,p,€)
EV «— EigenValues(CovarianceMatrix(N))

EV «— EV/EV.sum() > Norm eigenvalues
EV « EV .sorted(descending=TRUE) > Sort eigenvalues descending
e «— EV.sum(start=d — chaindim + 1) > Calculate error
e «— ex*(d/(d — chainDim)) > Norm error
if e < allowedVariation then > Compare error with parameter
Ce «— CoU{p} > Add p to the set of chain-points

if |Cc| == O then return {}
R—C\C¢ > The set of remaining points
DBR < DBSCAN(R,dist,e,minPts) > Cluster the remaining points
C. « C. UDBRg.Noise > Add noise to the set of chain-points
DBc, < DBSCAN(Cq,dist,e,minPts) > Cluster chain-points
if |[DBc .clusters| == 0 then return {} > No chain-candidate found
R « C\ UDBc,. .Clusters > Update the set of remaining points
DBRr «— DBSCAN(R,dist,e,minPts) > Cluster the remaining points
if | DBR .clusters| < 1 then return {} > No chain-candidate can be validated
Chains « [] > The list of validated chains
for V € DB, .Clusters do > Validate each chain-candidate

if ValidateChaincandidate(V, R, DBR, dist, €) then
Chains.append(V)

return Chains

Chain-detection for DBSCAN 181

To improve performance the range queries should be executed on a tree structure and
calculating the normed error for each point, which causes the largest performance hit, can
easily be parallelized.

S Experiments

The dataset on which the experiments are performed consists of all reported traffic accident
locations in Great Britain from the years 2014 - 2016. It was downloaded on February
the 27th 2018 from https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-
england-scotland-wales/data and clustered by DBSCAN with parameters € := 0.01 and
minPts := 15. These parameters were obtained by trial and error while clustering the area
of roughly 100km in each direction around London’s center with the goal to obtain a cluster
which contains chains of traffic accidents.

Traffic accidents in London The chain-detection will be demonstrated on the cluster
found at London city, see Figure 8. The results obtained by DBSCAN are not a satisfying
clustering, because the highways, on which a lot of accidents happen, connect the suburban
areas outside London to a single cluster. So let us apply the chain-detection algorithm. To
detect these highways, which are basically one-dimensional chains, one sets the chainDim
parameter to 1. Since the highways are not perfectly linear and surrounded by noise, one
wants to allow some error and set the allowedV ariation parameter to 0.2. Figure 9 shows
the resulting clustering after applying the chain-detection algorithm. Most of the suburban
areas are now separated from the main cluster of London city and almost all chains are
found on highways.

=] L]

Fig. 8: The cluster around London found by Fig. 9: Chain-detection applied on the cluster

DBSCAN clustering of traffic accidents in Great around London found by DBSCAN clustering
Britain. The dots are stretched to fit the underly- of traffic accidents in Great Britain. Chains are

ing map. marked red.

182 Janis Held, Anna Beer, Thomas Seidl

Traffic accidents in Liverpool and Manchester Another example is the cluster found
at Liverpool and Manchester. As there are a lot of accidents between those cities both
end up in the same cluster, see Figure 10. Let us apply the chain-detection algorithm with
parameters chainDim := 1 and allowedV ariation := 0.2, for the same reasons as in the
previous example. In Figure 11 we can see how the traffic accident clusters are now well
divided, one cluster in Liverpool and one in Manchester.

Fig. 11: Result of the chain-detection algorithm
applied on the traffic accidents in Liverpool and
Manchester.

Fig. 10: The cluster of traffic accidents at Liver-
pool and Manchester.

6 Conclusion

In conclusion we developed the first algorithm which solves the problem that DBSCAN
unintentionally detects only one cluster where several are connected by a chain or several
noise points. We achieved that by recognizing chain points by analyzing the eigenvalues of
the covariance matrix of their neighborhood. In our experiments we applied the algorithm
on a real world dataset containing traffic accidents, where it found the intentional chains and
enabled DBSCAN to find the original, smaller clusters in the dataset, instead of aggregated
ones. Our approach is not limited to DBSCAN, but could also be of use after executing other
clustering algorithms which tend to aggregate clusters connected by chains. Nevertheless,
the & parameter which determines in which range of each point the distribution of points is
regarded, would have to be determined. We plan to examine further areas of application and
experiments in future work.

References

[BKO7] Birant, D.; Kut, A.: ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data
& Knowledge Engineering 60/1, pp. 208-221, 2007.

[Es96] Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise, 1996, URL: https://ocs.aaai.org/
Papers/KDD/1996/KDD96-037.pdf, visited on: 01/11/2019.

