
Supporting Differentiated Services
With Configurable Business Processes

Aries Tao Tao & Jian Yang
Department of Computing, Macquarie University,

Sydney, NSW 2109, Australia
{tao, jian} @ics.mq.edu.au

Abstract: In order to support business service flexible and reusable, it is desirable to
provide users or applications the same service but with different service quality, dif-
ferent interaction paths, or different outcomes. We call this design principle as Service
Differentiation. In this paper we present a fully working service design method where
variability is externalized as business policies so that the business process(es) does
not need to be altered for any anticipated changes. Service differentiation is realized
by configured business processes and interfaces, and the dynamic ’binding’ between
user/application with a specific interface is determined by policy during service invo-
cation time.

1 Introduction

Supported by Web Service technology, Service Oriented Computing (SOC) allows re-
sources on a network to be made available as services that can be accessed without the
knowledge of their underlying platform implementation[CHT03]. To better understand
how services are designed and developed, it is important to understand the relationship
among three core concepts in SOC: service, service interface, and business process:

• A service is a business concept that should be specified with an application or users
of the service in mind[PY02].

• Service interface is the specification for user (or program) to interact with the ser-
vice. It is supported by business process(es). It consists of a list of directed messages
that allow the users to interact with the corresponding business process(es).

• The business process(es) implements the functionality of service. It consists of ac-
tivities that perform service functions.

Now days, the main aim of a business is to provide better, and more flexible services to its
customers. Quite often we find that different users (client programs) may need different
ways to interact with the same service, or may expect different outcomes from the same
service. These differences can be either hidden from the user, for example, the outcomes
are dependant on the user profile; or presented to the user so that different interfaces for the

194



same service should be provided. Therefore from business process design point of view,
two types of supports are required:

• operational support - business process variability needs to be provided for differ-
ent users and usages. Take Online Pharmacy Service (OPS) as an example, OPS
provides different discount rates depending on customers’ profiles:

– offers 10% discount for VIP customers.
– offers no discount for normal customers.

• interface support - users with different behavior semantics need to access the same
service through different interfaces. Continuing with the same OPS example, differ-
ent approval procedures are required for different types of medicines that customers
intend to purchase:

– requires doctor’s prescription from the customers who purchase prescribed
medicine.

– does not require any approval from the customers who purchase un-prescribed
medicine such as Panadol.

Given the fact that different users or applications often have different (but overlapping)
requirements, they may require different quality levels, interaction patterns or outcomes
from the same service. As a result, it is more desirable to provide a single service with
variations than several unrelated services. We refer this design principle as service differ-
entiation. The way we want to realize service differentiation, i.e., single service with dif-
ferent interaction patterns for different users/applications presents an interesting analogy to
object orientation in terms of overloading and polymorphism. The service differentiation
rules for ”binding” a specific service interface and outcome with user behavior or profile
are governed by business policies, e.g., binding ’10% discount’ with ’VIP customers’.

Now let us have a close look at current service design approaches in relation to internal
business process and service interface design. In the past, Business policies or rules are
hard coded in the business process as different activity execution conditions. As a result,
service is supported by a fixed business process which provides the same functionalities to
all the users through the same service interface. Recently, there is a common understanding
that the business rules or policies should be separated from the business application in or-
der to achieve flexibility and manageability ([AN04], [BBC06], [TPP05]), but these work
focus on solving problem in security domain rather than service differentiation. However,
there is no work that has been done on describing how differentiated service is developed
by externalizing policies so that different users/applications can be ’treated’ differently by
the same service in terms of different interfaces or functionalities.

The basic design philosophy of ours, and one that distinguishes us from others, is that an
Abstract Business Process is developed for all users in all circumstances with different
policy configured business processes generated for different users and different interaction
patterns. This requires a new service design approach that separates the generic business
activities that are applicable to all the circumstances from those only applicable to partic-
ular group of people or under specific conditions. Thus we propose a new service design

195



approach that supports single service with multiple business processes which supports ser-
vice differentiation. Our design is based on the following ideas:

• Use Abstract Business Process (ABP) to support the generic functionalities that are
required by all the users.

• Use Policy to specify how the service should be differentiated for different users.

• Multiple Policy Configured Business Processes (PCBPs) and related service inter-
faces can be derived based on ABP and Policies to support different users/applications.

Ultimately, our priorities and the focus of the paper are:

• to separately maintain business policies,

• to dynamically generate business processes if necessary,

• to present different service interfaces to the users/applications based on business
policies, and

• to have minimal impact on business service when policies are modified.

This paper is organized as follows: Section 2 discusses the related work. The case study is
introduced in Section 3. Service design are discussed in Section 4. We finally concludes
our work in Section 5.

2 Related Work

In this section we will discuss related work from three aspects. Firstly we review the re-
search work that has been done on differentiated services. Secondly we review the current
service description techniques, arguing that they can not effectively describe differentiated
services. Finally we analyze the related Web Service[WS] Standards which can be used
for our work.

The idea of service differentiation (DiffServ) [RFC2475] was firstly proposed in the area of
networking to manage traffic streams in networking applications. For example, some traf-
fic is treated better than the others (faster handling, more average bandwidth, and lower av-
erage loss rate). Richard Veryard in [VE00] argued that the differentiated services should
be used as a design pattern in SOC area. However, no methodology has been proposed for
service differentiation. In this paper we will demonstrate a differentiated service design
specification based on the framework that presented in our previous work[TY07].

Work has been done in the area of specifying public interface for business processes. Chiu
et al [CCK02] presented a meta-model for Service Interface as Workflow Views, which
provided a novel approach to derive Service Interface (as Workflow View) from a Service
(as workflow). By abstracting Service Interface as a certain subset of a Service, it allows
internal information to be hidden from external users. To support different user groups,

196



Zhao, Liu and Yang[ZLY05] proposed the concept of relative workflow view by explicitly
extracting visibility constraints (Invisible, Traceable, Contactable) on activities of work-
flow. Based on different visibility constraint for different users over the same workflow,
multiple relative workflow views could be derived for different users with different rela-
tionship with the service. However, the service provider has to manually set constraints for
every new service user, the system does not scale well. Using a completely different strat-
egy, our work allows service interface to be generated from configured business processes,
which are derived automatically based on business policies. As a result, the maintenance
effort is shifted from managing business processes to managing policies.

Now let us have a close look at current relevant web service standards. WSCI[AAF02]
allows the service to be described as a sequence of Web Service calls binding to WSDL
[CCM01]. In advance, BPEL[ACD03] allows the service interface to be described as an
abstract business process, which is a subset of BPEL process. BPEL allows several ab-
stract business processes to be derived for a service. However, BPEL specification does
not provide any mechanism or standard to generate multiple service interfaces, which
is often required by business as illustrated later in our example. Several Semantic Web
Service Description standards such as OWL-S[MBD04], WSMO[RLK04] have been pro-
posed. Comparing with WSDL and BPEL, Semantic Web Service provides better support
in common understanding of policy semantics and reasoning on complex relations between
policy concepts[MFN05]. However, service is designed to have only one Service Process
Model. Such design limits the service flexibility to support different user interactions. Our
work can be used to extend current Semantic Web Services by allowing multiple service
Process Model to be derived for a single service, and hence allow users to access the same
service in different ways.

In order to relate the policy with Web Services, Web Services Policy Framework (WS-
Policy)[BBC06] was proposed by the World Wide Web Consortium (W3C). It is a gen-
eral framework for specifying various Web service properties in a way that complements
WSDL and BPEL. On the other hand, Web Services Policy Language (WSPL) [AN04]
was proposed by the Organization for the Advancement of Structured Information Stan-
dards (OASIS). It is suitable for specifying a wide rage of policies, e.g., acceptable and
supported encryption algorithms or privacy guarantees. Both WS-Policy and WSPL focus
on supporting security domain only. Vladimir et al[TPP05] extends the WS-Policy for
monitoring and adaptation of Web services and their composition. However, their work
also does not support service differentiation. Our work complements their work by pro-
viding a service design which allows policy based service differentiation.

3 Motivating Example

In order to understand the rational behind the proposed approach and the concept of dif-
ferentiated service, we use Online Pharmacy Service (OPS) as a case study. The aim is to
develop multiple policy configured business processes which provide different functional-
ities to different customers (e.g. further discount for VIP customer) via multiple service
interface(s). For space limitation, we only use the Checkout process of OPS as an example.

197



Figure 1: Current Service Design For Checkout Process

198



As showed in Figure 1, the current design of Checkout business process consists of fol-
lowing activities, some of which may not be available for all users:

• Login - receives the user name and password in order to identify the customer.

• Display Goods Selection - displays a list of goods selected by the customer.

• Display Total Price - displays the total price the customer needs to pay for the goods.

• Display discounted price - provides different discount rates depending on the cus-
tomer profile:

– For normal customer - there is no discount available.

– For silver VIP customer - 10% discount is offered.

– For golden VIP customer - 15% discount is offered.

• Approval - may require extra approval depending on the type of purchasing medicine:

– For prescribed medicine - prescription from a doctor is required.

– For daily(un-prescribed) medicine - no approval is required.

• Receive Payment - receives payment from customer and return invoice.

• Product Delivery - contacts delivery company to deliver the product to customers.

The Checkout process provides the functionalities that is required by all customers, how-
ever its interface description is not specific, and can be irrelevant to some user group:

• The interface does not provide enough information for different user group. For ex-
ample, different users may receive different discount rates depending on their pro-
file: for silver VIP customers and golden VIP customers, they can receive 10%/15%
discount of the total amount; and there is no discount for non-VIP users. However,
the discount information is not presented in the service interface.

• Some information supported by the interface is unnecessary for certain users. For
example, the Approval activity in interface is required for prescribed medicine pur-
chase only. It is unnecessary for un-prescribed medicine purchase. However, the
users who purchase the un-prescribed medicine still have to go through the Approval
activity.

Instead of hard-coding all the information into one checkout business process as most
current service developments do, we separate the policy from the business process in order
to describe different interfaces for different groups of users. Each interface provides richer
information to help users to access the service, for example: specify different discount
rates for different users, remove the Approval activity from the interface for non-prescribed
medicine purchase. Each service interface is supported by one Policy Configured Business
Process. In the next section we will show how Policy Configured Business Processes are
determined to support different users.

199



4 Differentiated Service Design

Instead of supporting a service with one flat and monolithic business process, our design
philosophy is to separate the specific functionalities only available for certain users from
the generic functionalities that are available for all users. The design consists of four
components:

• Abstract Business Process (ABP) that implements the generic functionalities by a
set of activities which are provided to all users.

• Business policies that provides different functionalities for different users based on:

– User profile which is determined prior to the user-service interaction. Take
the Online Pharmacy Service (OPS) as an example, OPS provides different
discount rates depending on customers’ profiles which is determined before
user login.

∗ offers 10% discount for silver VIP customers.
∗ offers 15% discount for golden VIP customers.
∗ offers no discount for normal customers.

– User behavior which is determined during the user-service interaction at run-
time. Continuing with the OPS example, different approval procedures are
required for different types of purchasing medicine which is determined dur-
ing the Checkout process:

∗ requires doctor’s prescription from people who purchase prescribed medicine.
∗ does not require any approval from people who purchase un-prescribed

medicine.

As showed in Figure 2, depends on the user needs, the policies could support two
different kinds of service differentiation:

– Service Differentiation With Single Interface that supports different function-
alities to users through the same service interface. It is realized by deriving
multiple Policy Configured Business Processes (PCBPs) which share a single
service interface.

– Service Differentiation With Multiple Interfaces that supports different func-
tionalities to users through multiple service interfaces. It is realized by gener-
ating multiple Policy Configured Business Processes (PCBPs) to support dif-
ferent service interfaces to users.

Note that Business policies should be independent from the Abstract Business Pro-
cess (ABP) to achieve higher manageability and reusability.

• Policy Process Connector that plugs the Business policies into the Abstract Business
Process, hence derive Policy Configured Business Process (PCBP).

• Policy Configured Business Process (PCBP) consists of two kinds of elements:

200



Figure 2: Service Differentiation With Single Interface & Service Differentiation With Multiple
Interfaces

201



– Activity which delivers the common functionalities required by all users.

– Policy which delivers different functionalities or interaction patterns to meet
different user needs.

We organize the rest of this section as follows:

• introduce Checkout process for OPS as the Abstract Business Process.

• demonstrate the example of service differentiation with single interface by differen-
tiating Checkout process with the discount policy. Three PCBPs will be derived that
provide different discount rates for different users through the same interface.

• demonstrate the example of service differentiation with multiple interfaces by dif-
ferentiating Checkout process with the approval policy. Two PCBPs will be derived,
two service interfaces will be derived correspondingly to apply different approving
procedures on different users: one interface requires additional doctor confirmation
for prescribed medicine purchase; the other one does not require anything for un-
prescribed medicine purchase.

4.1 Abstract Business Process

As the Checkout Process showed in Figure 3, the Abstract Business Process consists of
three elements:

• A series of activities that perform well-defined business functions for Abstract Busi-
ness Process. Each activity reads message(s) as input and returns message(s) as
output.

– The Activities in Checkout process are: loginAct, displayGoodSelectionAct,
displayTotalPriceAct, receivePaymentAct, and deliveryAct.

• Control flow specifies how the set of activities is executed in terms of sequence,
parallel, conditions, and coordination actions.

– The Control flow in Checkout process executes the following activities in se-
quential order: loginAct, displayGoodSelectionAct, displayTotalPriceAct, re-
ceivePaymentAct, and deliveryAct.

• Message, on the other hand, describes the data been used in activities. The public
messages are visible to external users in the service interface, while the private
messages will be hidden from the users.

– The Message in Checkout process sets all messages to public except the userDe-
tailsMsg which is used by the loginAct.

202



AbstractBusinessProcess CheckoutProcess{

Activities:
Public:
loginAct(userMsg, passwordMsg)

return userDetailsMsg ;
displayGoodSelectionAct()

return goodListMsg ;
displayTotalPriceAct(selectedGoodListMsg)

return priceMsg ;
receivePaymentAct(paymentMsg);

Private:
deliveryAct();

ControlFlow:
T1 = Sequential(loginAct, displayGoodSelectionAct);
T2 = Sequential(displayGoodSelectionAct, displayTotalPriceAct)
T3 = Sequential(displayTotalPriceAct, receivePaymenAct);
T4 = Sequential(receivePaymentAct, deliveryAct);

Message:
Public:
userMsg, passwordMsg, goodListMsg,
selectedGoodListMsg, priceMsg, paymentMsg;

Private:
userDetailsMsg;

}

Figure 3: The Checkout Process

203



4.2 Service Differentiation With Single Interface

As showed at the top of Figure 2, the Service Differentiation With Single Interface sup-
ports users with different functionalities through a single service interface. It is achieved
by developing multiple Policy Configured Business Processes which share the same ser-
vice interface. The advantage of Service Differentiation With Single Interface is that allows
users to access the differentiated service through a single service interface, in this way the
user development cost can be saved. On the other hand, Service Differentiation With Mul-
tiple Service Interfaces (bottom of Figure 2) requires users to access differentiated service
through multiple service interfaces, thus increases extra user development cost. As a result,
the Service Differentiation With Single Interface is always preferred than Service Differen-
tiation With Multiple Service Interfaces. In this section, we will demonstrate an example
of Service Differentiation With Single Interface by configuring the Checkout Process with
Discount Policy(Figure 4).

4.2.1 Policy

The Policy is separately and independently managed from the Abstract Business Process.
Note that since policy is independent from the Abstract Business Process, the same policy
can be plugged into different Abstract Business Processes through different Policy Process
Connectors (Section 4.2.2). In this way the reusability and maintainability of both Policies
and Abstract Business Processes can be achieved.

The policies design needs to be bounded with a set of activities that provide different func-
tionalities to users. Depending on user data at runtime, the policy would be instantiated to
be one of those activities to support user specific functionalities. As the Discount Policy
showed in Figure 5, each policy consists of the following elements:

• User data that represents the user profile or behavior. A policy performs differently
depending on the user data.

– The Discount Policy performs different activities depending on the loyaltyData
in order to differentiate the service.

• Activities that defines different functionalities could be performed by the policy. At
runtime, policy would be instantiated as one of these activities depending on the
user data. Note that the activities could connect with external business processes in
order to perform complex functionalities. We only demonstrate the activities that
perform simple functionalities in our example for illustration purpose.

– The Discount Policy can be instantiated into one of these three activities based
on loyaltyData: 10PercentDiscountAct, 15PercentDicountAct or noDiscoun-
tAct.

• Conditions which instantiates the Policy into different activities according to user
data value at runtime, and in this way differentiated service can be achieved by
performing different activities for different users.

204



Figure 4: Configured Checkout Process & Service Interface by Discount Policy

205



Policy DisountPolicy
UserData loyaltyData

{
Activities:
10PercentDiscountAct(priceMsg)

return discountedPriceMsg;
15PercentDicountAct(priceMsg)

return discountedPriceMsg;
noDiscountAct(priceMsg)

return discountedPriceMsg;

Conditions:
If(loyaltyData = silverVip) 10PercentDiscountAct;
Else if (loyaltyData = goldenVip) 15PercentDicountAct;
Else noDiscountAct;

}

Figure 5: Discount Policy

– In Discount Policy, if the loyaltyData equals to silverVIP, then the policy will
be instantiated as the activity 10PercentDiscountAct which outputs discount-
edPriceMsg as 10% off from the priceMsg received; else if the loyaltyData
equals to the goldenVIP then the policy will be instantiated as the activity
15PercentDiscountAct which outputs discountedPriceMsg as 15% off from the
priceMsg received; otherwise no discount is provided to normal customers.

4.2.2 Policy Process Connector

Because policies are independent from the Abstract Business Process, for each Policy, a
Policy Process Connector is required to plug the policy into a specific Abstract Business
Process. As showed in Figure 6, the Policy Process Connector consists of six elements:

• Policy and Abstract Business Process that represent the Policy Process Connector is
associated with.

– DiscountCheckoutConnector is associated with DiscountPolicy and Checkout-
Process.

• Policy Dependant User Data which extracts the data that the policy depends on from
the messages in Abstract Business Processes.

– The loyaltyData can be extracted from the userDetailMsg in Checkout Process.

• Policy Process Message Connection handles the message flows between the Policy
and Abstract Business Process.

206



PolicyProcessConnector DiscountCheckoutConnector{
Policy:
DiscountPolicy as dp;

Process
CheckoutProcess as cp;

Policy Dependant User Data
dp.loyaltyData = extractLoyalty(cp.userDetailMsg);

Policy Pocess Message Connection
dp.priceMsg = cp.priceMsg;

ControlFlow:
TP1: Sequential(cp.displayTotalPriceAct, dp);
TP2: Sequential(dp, cp.receivePaymenAct);
T3: Sequential(TP1, TP2);

Message:
Public:
dp.discountedPriceMsg;

Private:
dp.priceMsg;
cp.priceMsg;

}

Figure 6: Discount Policy & Checkout Process Connector

207



PolicyConfiguredBusinessProcess DiscountCheckoutProcess =
CoreBusinessProcess CheckoutProcess
configuredBy PolicyProcessConnector DiscountCheckoutConnector

Figure 7: Discount Checkout Process

– DiscountCheckoutConnector assigns the value of the priceMsg in Checkout
Process into the priceMsg which is required in the Discount Policy.

• ControlFlow that determines the position in the Abstract Business Process which
the Policy should be plugged into.

– As showed in Figure 4, DiscountCheckoutConnector places the Discount Pol-
icy between the displayTotalPriceAct and receivePaymenAct in the Checkout
Process by replacing the original T3 in Checkout Process with TP1 and TP2.
TP1 and TP2 connect the Discount Policy with displayTotalPriceAct and re-
ceivePaymenAct.

• Message sets the message visibilities in the Policy and re-sets the message visibilities
in the Abstract Business Process if necessary.

– As showed in Figure 4, the Message sets the discountPriceMsg in the Discount
Policy to public in order to display the discounted price to users, meanwhile
re-sets the priceMsg in the Checkout Process to private in order to hide the
original price from users.

In this section, we can see that policy process connector is fairly important because it
does not only plug the Policy into the Abstract Business Process, but also controls service
interface of the configured business process.

4.2.3 Policy Configured Business Processes (PCBPs)

The PCBPs are determined by configuring the Abstract Business Process with Policies.
The service interface derived from each PCBP is a directed sequence of message ex-
change. It can be determined by only showing the public messages and related control
flow from the PCBP.

As showed in Figure 7, by configuring the CheckoutProcess with DiscountCheckoutCon-
nector, we can see that three Discount Checkout Processes can be instantiated at run-
time(Figure 4). Each Discount Checkout Process provides different discount activities to
the users with different loyalty levels (e.g. normal, silver VIP and golden VIP). Further
more, all the Discount Checkout Processes support the same service interface, we regard
this as Service Differentiation With Single Interface that users do not need to aware of the
service differentiation, they can access different functionalities through the same applica-
tions.

208



4.3 Service Differentiation With Multiple Interfaces

As showed at the bottom of Figure 2, the Service Differentiation With Multiple Interfaces
supports users with different functionalities through multiple service interfaces. In this
section, we shall demonstrate an example of Service Differentiation With Multiple Inter-
faces by configuring the Checkout Process with Approval Policy (Figure 8).

4.3.1 Policy

As showed in Figure 9, we can see that the Medicine Approval Policy requires doctor con-
firmation from the medicine type which is prescribed. At runtime, depending on medicine-
TypeData, the Medicine Approval Policy can either be instantiated as checkConfirmation-
Act which requires doctorConfirmationMsg as input and approvalMsg as output, or be
instantiated as noConfirmAct which does not require any message. Hence such policy
results in two different interfaces (as showed in Figure 8):

• The top interface is for daily (un-prescribed) medicine purchase that does not require
any approval.

• The bottom interface is for prescribed medicine purchase that requires doctor con-
firmation.

4.3.2 Policy Process Connector

As showed in Figure 10, we can see that the policy process connector ApprovalPolicyCon-
nector consists of the following elements:

• Policy and Abstract Business Process that associate Approval Policy with Checkout
Process.

• Policy Dependant User Data that extracts medicineTypeData for Approval Policy
from the selectedGoodListMsg in Checkout process.

• ControlFlow that places the DiscountPolicy between diplayGoodSelectionAct and
displayTotalPriceAct in Checkout process (as showed in Figure 8).

• Messages that sets approvalMsg and doctorConfirmationMsg in the Approval Policy
to be public.

4.3.3 Policy Configured Business Processes

As showed in Figure 11, we can see that the ApprovalCheckoutProcess can be derived by
configuring the CheckoutProcess by ApprovalPolicyConnector. Note that, the Approval
Policy can be instantiated into different activities which have different input and output
messages at runtime: checkConfirmationAct which requires additional message as doctor

209



Figure 8: Configured Checkout Process & Service Interface by Approval Policy

210



Policy MedicineApprovalPolicy
UserData medicineTypeData

{
Activities:
checkConfirmationAct(doctorConfirmationMsg)

return approvalMsg;
noConfirmAct();

Conditions:
If(medicineTypeData.is(prescribed))
checkConfirmationAct(doctorConfirmationMsg);

Else noConfirmAct();
}

Figure 9: Approval Policy

PolicyProcessConnector ApprovalCheckoutConnector{

Policy:
ApprovalPolicy as ap;

Abstract Business Process:
CheckoutProcess as cp;

Policy Dependant User Data
ap.medicineTypeData

= checkMedicine(cp.selectedGoodListMsg);

ControlFlow:
TP1: Sequential(cp.diplayGoodSelectionAct, ap);
TP2: Sequential(ap,cp.displayTotalPriceAct);
T3: Sequential(TP1, TP2);

Message:
Public:
ap.approvalMsg, ap.doctorConfirmationMsg;

}

Figure 10: Approval Policy & Checkout Process Connector

PolicyConfiguredBusinessProcess ApprovalCheckoutProcess=
CoreBusinessProcess CheckoutProcess
configuredBy PolicyProcessConnector ApprovalPolicyConnector

Figure 11: Approval Checkout Process

211



confirmation for the prescribed medicine purchase, or noConfirmAct requires nothing for
daily medicine purchase. Because the checkConfirmationAct and noConfirmAct have dif-
ferent interaction patterns, two different Policy Configured Business Processes could be
generated at runtime which support users through different service interfaces (Figure 8).
We regard this as Service Differentiation With Multiple Interfaces that users need to aware
of the service differentiation, and develop different applications to access the differentiated
service through different service interfaces.

5 Conclusion

Service users or applications often have different interaction or service outcome require-
ment from a business service. In this paper, we proposed and argued the need for service
differentiation. We believe multiple interface(s) supported by different underlying business
processes should be provided for the same service. The main contribution of the work lies
in the fact that policies are independently managed from the underlying business process
and are used to generate policy configured business processes from the abstract business
process. Therefore the maintenance efforts can be shifted from managing business process
to managing policy when business policy and rule change.

From our experience, if possible, service differentiation with single interface (e.g. Dis-
count Checkout Processes) is preferred than the service differentiation with multiple in-
terfaces (e.g. Approval Checkout Process), in this way users only need to develop single
application to access differentiated service through the same service interface rather than
develop several applications to access differentiated service through different service in-
terfaces.

Future work will be carried out in the following areas:

• service description: we are currently investigating a way to incorporate our ap-
proach into BPEL by extending BPEL with the Policy and Policy Process Connec-
tor. In this way differentiated service can be described properly.

• service interface binding: we also focus on the way to bind an interface with user
(application) behavior during service invocation time.

References

[AAF02] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David
Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-Nagy, Ivana
Trickovic, Sinisa Zimek. Web Service Choreography Interface (WSCI) 1.0.
http://www.w3.org/TR/wsci/

[ACD03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic,

212



Sanjiva Weerawarana. Business Process Execution Language for Web Services version
1.1 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

[AN04] A.H. Anderson, An introduction to the Web Services Policy Language (WSPL). in
Policy 2004, IEEE, P. 442

[BBC06] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, et al. Web Services
Policy (WS-Policy) 1.5, Nov. 2006. www.w3.org/TR/ws-policy

[CCK02] Dickson K. W. Chiu, Shing-Chi Cheung, Kamalakar Karlapalem, Qing Li, and Sven
Till. Workflow View Driven Cross-Organizational Interoperability in a Web-Service
Environment. WES 2002: 41-56

[CCM01] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl

[CHT03] Kishore Channabasavaiah, Kerrie Holley and Edward Tuggle. Migrating to a service-
oriented architecture, IBM DeveloperWorks, 16 Dec 2003

[MBD04] David Martin, Mark Burstein, Grit Denker, Jerry Hobbs, Lalana Kagal, Ora Lassila,
Drew McDermott, Sheila McIlraith, Massimo Paolucci, Bijan Parsia, Terry Payne,
Marta Sabou, Evren Sirin, Monika Solanki, Naveen Srinivasan, Katia Sycara. OWL-S:
Semantic Markup for Web Services. http://www.w3.org/Submission/-OWL-S/

[MFN05] Sonia Ben Mokhtar, Damien Fournier, Nikolaos Georgantas, Valrie Issarny. Context-
Aware Service Composition in Pervasive Computing Environments. RISE 2005: 129-
144

[PY02] Mike P. Papazoglou, Jian Yang. Design Methodology for Web Services and Business
Processes, TES 2002: 54-64.

[RFC2475] RFC247: An Architecture for Differentiated Services. http://rfc.net/rfc2475.html

[RLK04] Dumitru Roman, Holger Lausen, Uwe Keller, Eyal Oren, Christoph Bussler,
Michael Kifer, Dieter Fensel. Web Service Modeling Ontology (WSMO).
http://www.w3.org/Submission/-WSMO

[TPP05] Vladimir Tosic, Bernard Pagurek, Kruti Patel, Babak Esfandiari, Wei Ma Manage-
ment applications of the web service offerings language (WSOL) Information Systems,
Volume 30 , Issue 7 (November 2005), 564 - 586

[TY07] Aries Tao Tao, Jian Yang. Supporting Differentiated ServicesWith Configurable Busi-
ness Processes International Conference on Web Services (ICWS), 2007

[VE00] Richard Veryard Design Pattern: Differentiated Service (Fewer Interfaces than Com-
ponents) CBDI Journal, 1, Dec, 2000.

[WS] Web Service. http://www.w3.org/2002/ws/

[ZLY05] Xiaohui Zhao, Chengfei Liu, and Yun Yang. An Organisational Perspective on Collab-
orative Business Processes, Business Process Management 2005: 17-31.

213




