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Abstract: Security remains a key discussion point for industrial networks within critical infrastructure
and Industry ».0 (I».0)/Smart Manufacturing infrastructures. While availability remains the chief
security requirement for highest safety, integrity protection has become somewhat equal to availability
in industry. Common integrity protection mechanisms, however, are not practical for the time-sensitive
networks (TSNs) characteristic of I».0 and critical infrastructures, where the time-critical and mission-
critical transmissions cannot be negatively affected by the security overhead. To sufficiently protect
and support TSNs, it is necessary to design an integrity protection scheme that provides lightweight
security particularly at the OSI MAC-layer where the TSN protocols are defined. The development
and testing of lightweight cryptographic algorithms provide one mean by which to achieve such an
integrity protection, however, additional steps are needed to design and prove a suitable scheme.
TSN-MIC is proposed as a viable scheme for MAC-layer security for TSNs in critical infrastructure
and I».0/Smart Manufacturing.
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1 Introduction

Time-Sensitive Networks (TSNs) are those specifications that deploy services such as
time synchronization, traffic categorization and traffic shaping, to support time-critical
and mission-critical transmissions. For future infrastructures (I».0/Smart Manufacturing),
the Time-Sensitive Networking (TSNg) IEEE 802.1 sub-standards are earmarked as the
protocols to provide these listed services. Specifically, OPC UA/TSNg is proposed, where
OPC UA is a communication protocol to support interoperability between the interconnected
systems – OPC UA is defined in IEC 62»51. Similar TSN specifications include ARINC
66» Part 7 - Avionics Full-Duplex Switched Ethernet (AFDX), the IEEE 1722-2016 defined
Audio-Video Transport Protocol (AVTP), which like OPC UA/TSNg uses the IEEE 802.1
TSNg sub-standards, and SAE AS6802 Time-Triggered Ethernet (TTE) from TTTech.
PROFINET, which is a popularly used industrial protocol, also supports time-sensitive
services. These TSNs are compared in [WS18]. Even though these specifications implement
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their time-sensitive services in different ways, they share one key similarity. That is,
all their time-sensitive services are implemented at the OSI MAC-layer. As such, it is
critical to implement dedicated security at the MAC-layer. Traditional security mechanisms
implemented at higher OSI layers offer limited to no protection at the lower OSI layers
– in that, the design of the OSI model means that protocols at one layer are unaware
of issues at another layer, and security at higher layers will not benefit the MAC layer.
Additionally, traditional security mechanisms are considered too resource intensive for
time- and mission-critical transmissions, especially in safety-critical infrastructures, such
as nuclear power plants. With the introduction of lightweight cryptography algorithms,
however, the opportunity is presented to develop viable security schemes for TSNs.

Time-Sensitive Network – Message Integrity Code (TSN-MIC) is one such security scheme
that offers lightweight integrity protection designed specifically for MAC layer TSN services.
Where TSN-MIC further differs from other MAC-layer security schemes (for example, IEEE
802.1X Port-Based Network Access Control, IEEE 802.1AE MAC Security (MACsec) and
IEEE 802.10 Standard for Interoperable LAN/MAN Security (SILS)) is in the additional
mechanisms that are included for improved security while still observing the performance
requirements of time-critical transmissions. TSN-MIC is designed with an online key
management and key change-over mechanism, with feedback mechanisms to detect and
restrict the propagation of error related to intention and unintentional actions. This scheme
is described further in the subsequent sections as followsȷ Section 2 discusses the TSN-MIC
parameters; Section « describes how the parameters come together in the overall TSN-MIC
concept; Section » provides a demonstration of the TSN-MIC scheme; and Section 5
provides a summary.

2 Security Scheme Parameters

The key parameters of the Time-Sensitive Network – Message Integrity Code (TSN-MIC)
scheme are the lightweight cryptography algorithms for the generation of the MIC (also
Message Authentication Code) and the key management protocol for the key lifecycle
processes (key generation, key deactivation, key update and key change-over). For these
parameters, only ISO/IEC standards are considered to ensure that non-proprietary, peer-
reviewed algorithms from a trusted source are used.

For the MIC generation, ISO/IEC 29192-6 Chaskey-12 [IS17] is used. The Chaskey
algorithm that takes an arbitrary-length message (m) that it processes in 128-bit blocks using
an n-bit (128-bit) key to create a MAC (𝜏) of 128 bits or less. The efficiency of the Chaskey
algorithm is observed in [Mo15], where the results indicate that Chaskey-8 (Chaskey with 8
rounds) is between 7 to 15 times faster than AES-128-CMAC on the microcontrollers used,
while Chaskey-12 (Chaskey with 12 rounds) is 15% slower than Chaskey-8 on the same
microcontrollers. TSN-MIC can be implemented with any selected algorithm, however,
Chaskey is highlighted here as a viable lightweight cryptography with provable efficiency
and security. In [MM1»], additional advantages of Chaskey are givenȷ
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• Cross-Platform Versatility – all microcontrollers do not support variable-length bit
rotations and bit shifts, by selecting some rotation constants to be multiples of 8 (i.e.
Chaskey-8, Chaskey-16), this limitation is overcome.

• Dedicated Design – Chaskey is designed for «2-bit microcontroller architectures.

• Key Agility – By generating subkeys into state through simple XOR operation,
Chaskey is more efficient than if using a key schedule.

• Nonces are optional – an algorithm is susceptible to an attack if the nonce is reused,
Chaskey does not require a nonce, therefore avoiding the security issue.

• Patent-Free – Chaskey has no known patents or patent applications.

• Provably Secure – Chaskey is designed based on an Even-Mansour block cipher
based on the permutation operation. The minimum data complexity is D = 264 for
Chaskey. A data complexity D below 2n/2 avoids chosen plaintext attacks (internal
collisions). A time complexity T below 2n/D avoids attacks with a practical time
complexity. By restricting the total number of blocks to be processed under one key
to 2»8 blocks, this makes the Chaskey implementation resistant to known plaintext
attacks.

• Resistance Against Timing Attacks – Chaskey is inherently secure against timing
attacks, as the message length determines the total number of cycles.

• Tag Truncation – the best attack on Chaskey with short tags is tag guessing, but the
algorithm is otherwise robust under tag truncation. The recommended tag size is |𝜏 |
≥ 64 for typical applications.

For the key management, the schemes in ISO/IEC 11770 are considered. The ISO/IEC
11770-2 mechanism 6 for key establishment is eventually selected, as it supports key
authentication, replay detection, key confirmation, key compromise impersonation and
entity authentication [IS16]. ISO/IEC 11770-2 mechanism 6 describes a key generation
mechanism between an initiating system and a responding system, with parameters (keying
material, identifier and random number) critical to generating matching key pairs and for
assuring the integrity of the messages exchanged between these two systems. Analysis
of this scheme suggests that the parameters could be vulnerable to manipulations that
could disrupt the key generation process and go undetected. As such, the ISO/IEC 11770-2
mechanism 6 is expanded to design a more robust key lifecycle management protocol. Fig.
1 and Fig. 2 illustrate the changes between the original ISO/IEC 11770-2 mechanism 6 and
the TSN-MIC mechanism based on the former. In the TSN-MIC mechanism, the major
changes includeȷ

• Use of the Random number parameters as message tags to assure message integrity
(steps 2 and «).
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• Use of a challenge-response mechanism to ensure that the matching key pairs are
generated (steps » to 7).

• Online key update and key change-over which monitor key usage and triggers the
initiating system to first checks for (and, where necessary triggers the generation of)
a successor session key (next session key to replace the current session key), and the
swaps the session keys (steps 8 and 9).

• A threshold for monitoring successive mis-matched MIC in the MIC verification
process (step 10).

• Key revocation for expired and/or unusable key pairs (step 11).

• Integrity check for messages transmitted between the initiating system and the
responding system (step 12)

Fig. 1ȷ ISO/IEC 11770-2 mechanism 6

Fig. 2ȷ TSN-MIC-based ISO/IEC 11770-2 mechanism 6
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Both the use of Chaskey-12 and the TSN-MIC-based key management mechanism serve to
ensure the efficiency and security of the overall TSN-MIC scheme. In the following section,
the TSN-MIC is further described to illustrate how the given parameters are leveraged.

3 Security Scheme Concept

As noted, the TSN-MIC scheme is implemented at the OSI MAC-layer, just below the
services/operations of the selected TSN protocol (e.g. AFDX, AVTP, TTE, etc.). Fig. «
gives a depiction of this placement of the TSN-MIC operations (TSN-MIC_OP) below
the TSN operations (TSN_OP). This design means that messages are first processed by
the TSN-MIC operations before the messages are handled by the TSN operations- in that,
for example, TSN-MIC operations for MIC verification is determined and non-compliant
messages are dropped before the effort of the TSN operations are wasted. A more detailed
description of the TSN-MIC operations is given below.

Fig. «ȷ TSN-MIC protocol stack

The TSN-MIC operations across a simple network (a Source End System, a TSN Switch
and a Destination End System), there are seven (7) calculations. Namely, there are two main
calculations that are repeated – that is three («) Long Hash Calculations (LHCs) and four
(») Short Hash Calculations (SHCs). The LHCs are so-called as the hash (unkeyed) output
of this calculation is always calculated over the payload of the frame, which is normally
between »6 to 1500 bytes. The SHCs are so-called as the MIC (keyed) output is always
calculated over the hash output of the LHCs, which is set at 16 bytes in this description of
TSN-MIC but can be larger (recommended) or smaller. Across the simple network, these
seven (7) calculations are as follows and illustrated in Fig. »ȷ

• MIC Generation at Source End System

The ES generates frames that is processed by the TSN-MIC operation - one LHC
followed by a SHCȷ
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Fig. »ȷ TSN-MIC operations across a simple network

1. LHCȷ Generate an unkeyed hash over the data to output the hash H1

2. SHCȷ Generate a keyed hash using the session key (Key1) over the hash H1 to
output the MIC H2

• MIC Verification and Re-Generation at the Switch

At the TSN Switch, there is both a verification operation and a re-generation operation,
involving one (1) LHC and two (2)ȷ

«. LHCȷ Generate an unkeyed hash over the data to output hash H1’
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». SHCȷ Generate a keyed hash using the session key (Key1) over hash H1’ to
output MIC H2’

5. If MIC H2’ == MIC H2”, perform calculation (6), otherwise, drop the frame

6. SHCȷ Generate a keyed hash using the session key (Key2) over hash H1’ to
generate MIC H«

• MIC Verification at Destination End System

The TSN-MIC calculations at the Destination ES mirror that at the Source ES, but
with the inclusion of a verification stepȷ

7. LHCȷ Generate an unkeyed hash over the data to output hash H1”

8. SHCȷ Generate a keyed hash using the session key (Key2) over hash H1” to
generate MIC H«’

9. If MIC H«’ == MIC H«”, transmit data to upper protocol layers, otherwise,
drop data

The initial session keys used to generate the MIC between the communicating systems
are manually included, with subsequent keys being generated through the TSN-MIC key
management mechanism. Each End System and TSN Switch is configured with two initial
session keys (one for incoming messages and one for outgoing messages) that are used for
calculating the MIC over the frame payload. Further, each End System and TSN Switch is
configured with a master key that is used for the key establishment procedures to provide
confidentiality for the keying material that is shared between the negotiating systems. The
MIC calculations are done on a per link basis so that incoming messages and outgoing
messages are respectively processed with the link-specific session keys. This means that the
session keys and master keys can be distributed in a way to avoid the n2 key distribution
problem. For instance, a single session key or master key is not used for the entire end-to-end
transmission of a message. At each traversing system, a different key is used. Therefore,
each system does not need to have a copy of every key currently in use across the network,
which eliminates the n2 key distribution problem. Fig. 5 gives an illustration of how session
keys and master keys are distributed in a TSN-MIC system.

With the parameters and concept determined, the next step is to implement and test the
TSN-MIC scheme to assess its viability. This is discussed in the next section.

4 Security Scheme Implementation and Simulation

To test the concept, a software implementation was completed on a Banana Pi, while the
efficiency of the TSN-MIC scheme was demonstrated using the OMNeT++ simulator. For
the former, the Banana Pi was configured as a TSN Switch, modelled after the AFDX
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Fig. 5ȷ Example TSN-MIC key distribution

specification. A laptop was then configured as an AFDX End System (ES), serving as
both the source ES and the destination ES. Both devices were then configured to conduct
the TSN-MIC operations as described earlier where the long hash calculations (LHCs)
and short hash calculations (SHCs) are featured, as well as the key management protocol
messages. This simple network is then activated to exchange the messages and to process
them with the TSN-MIC operations (where appropriate, for example, key establishment
messages are not processed by the TSN-MIC LHCs and SHCs). Outputs of this simple
network in operation are given below. Fig. 6 gives a Wireshark® screenshot these messages
being exchanged between the Banana Pi TSN Switch and the End Systems (laptop). Fig. 7
to Fig. 8 are example outputs of the key establishment process, while Fig. 9 shows messages
that demonstrate the key update and key change-over process. In the former, the toggle bit is
a reserved portion of the SHC MIC output that is flipped between “0” and “1” to indicate a
session key update and change-over at the initiating system and to trigger the same at the
responding system.

Fig. 6ȷ TSN-MIC message transmission between TSN Switch and End Systems

Fig. 7ȷ TSN-MIC key establishment message (1)
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Fig. 8ȷ TSN-MIC key establishment message (2) - unencrypted

Fig. 9ȷ TSN-MIC Key Update and Key Change-over with Toggle bit update

An OMNeT++ AFDX simulation was taken from [VH12] and modified to model the
TSN-MIC design – in that, modules were added to represent the TSN-MIC LHCs and SHCs.
Initially, theoretical values are derived to demonstrate the network efficiency and used as
a benchmark to assess the efficiency of the TSN-MIC scheme in the OMNeT++ model.
For this, the results for the performance of Chaskey-12 is taken from [MM1»] and used
as a reference point for the theoretical values. [MM1»] demonstrates that the performance
of Chaskey-12 is 10.5 cycles/byte (speed) and 8»x106 cycles/second (processor speed)
on the ARM Cortex-M«/M»; and at 25.» cycles/byte (speed) and »8x106 cycles/second
(processor speed) on the ARM Cortex-M0. In bytes per second, these performance values
are respectively 8.0x106 on ARM Cortex-M«/M» and 1.9x106 on ARM Cortex M0. In
the TSN-MIC LHC, frames between »6 bytes and 1500 bytes are processed, while the
TSN-MIC SHC will only ever process 16 bytes (maximum Chaskey MIC output). Based
on [MM1»], Chaskey-12 would then process »6 bytes in 5.98 𝜇s to 2».«8 𝜇s, and between
195 𝜇s to 795 𝜇s for 1500 bytes. Tab. 1 gives the theoretical performance of TSN-MIC
based on these values. Based on the theoretical calculations, on the ARM Cortex-M«/M»,
the expected TSN-MIC delay is 8.06 𝜇s to 197.08 𝜇s for messages between »6 bytes to
1500 bytes, while on an ARM Cortext-M0, the TSN-MIC delay is «2.86 𝜇s to 80«.»8 𝜇s.
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From this, it can be deduced that there is an overall expected increase of 1% to «5% in the
transmission time when a message is processed by a combination of the TSN-MIC LHC and
SHC as compared to a message of the same size being processed by a single Chaskey-12
calculation (Tab. 2).

Tab. 1ȷ Theoretical performance of TSN-MIC calculations

Platform Time per byte TSN-MIC delay for
»6-byte frame

TSN-MIC delay for
1500-byte frame

TSN-MIC Long Hash Calculations

ARM Cortex-M«/M» 0.1« 𝜇s 5.98 𝜇s 195 𝜇s

ARM Cortex-M0 0.5« 𝜇s 2».«8 𝜇s 795 𝜇s

TSN-MIC Short Hash Calculations

ARM Cortex-M«/M» 0.1« 𝜇s 2.08 𝜇s 2.08 𝜇s

ARM Cortex-M0 0.5« 𝜇s 8.»8 𝜇s 8.»8 𝜇s

Tab. 2ȷ Theoretical performance of TSN-MIC vs Single Chaskey-12 calculation

Platform Chaskey-12 delay TSN-MIC delay
(1 LHC + 1 SHC)

Percentage Change

Ethernet frame of 46 Bytes

ARM Cortex-M«/M» 5.98 𝜇s 8.06 𝜇s +«5%

ARM Cortex-M0 2».«8 𝜇s 2».«8 𝜇s +«5%

Ethernet frame of 1500 Bytes

ARM Cortex-M«/M» 195 𝜇s 197.08 𝜇s +1%

ARM Cortex-M0 795 𝜇s 80«.»8 𝜇s +1%

The efficiency of the TSN-MIC security scheme is then assessed using the OMNeT++ AFDX
model. First, the QueryPerformanceFrequency function is used to observe the average
processing times TSN-MIC LHC and TSN-MIC SHC with the underlying Chaskey-12
algorithm. The average time taken for a TSN-MIC LHC is observed to be 26.6 ms of
messages of 128 bytes, and 19.» ms for a TSN-MIC SHC for messages of 16 bytes. Next,
the OMNeT++ model was observed to determine the time taken for an end-to-end delivery,
which is given as 10.88x10-6 simsec (1 simsec ≈ ».867 seconds) or 5« ms in the real
world. Using the output of the QueryPerformanceFrequency function and the OMNeT++
end-to-end delivery duration, a theoretical efficiency of the TSN-MIC security scheme on
an AFDX network can be assumed. The theoretical performance considers the TSN-MIC
operations at each AFDX component. The assumed impact of the TSN-MIC security scheme
is given as 157.» ms (« · 26.6 ms (LHC) + » · 19.» ms (SHC)) over a simple network. This
theoretical delay is 0.0««9 simsec and represents a percentage in-crease of «12% above the
above 10.88x10-6 simsec baseline.
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The OMNeT++ model modified to create a TSN-MIC based model is then executed to
determine the overhead of the TSN-MIC calculations. The outputs from the QueryPerfor-
manceFrequency function are converted to simsecs and integrated into the SendDelay()
function of the OMNeT++ model to assess the added delay. The delay caused by the
verification step at the TSN Switch and destination ES is assumed to be negligible, and as
such, is not considered here. The execution of the OMNeT++ TSN-MIC simulation shows
that the actual end-to-end delay for a single message is 11.8»x10-6 simsec, an increase of
8.82% above the baseline of 10.88x10-6 simsec. To determine if and how this delay overhead
changes as the size of the messages also changes, additional averages were calculated for
messages of sizes ranging from »0 bytes to 1500 bytes as shown in Tab. «. It is observed
that the overall increase in the simulation time (simsec) is much greater (2,0«2%) than the
change in the TSN-MIC LHC processing time (111%). As the TSN-MIC SHC will always
operate over the same size data, there is no change expected in the processing time, and as
such, is not considered in this comparison.

Tab. «ȷ OMNeT++ efficiency versus TSN-MIC efficiency with increasing message size

Message Size (bytes) TSN-MIC LHC average
processing time (ms)

OMNeT++ processing
time (simsec)

»0 22.8 «.8» x 10-6

150 25.» 12.6» x 10-6

«00 29.7 26.6» x 10-6

»50 «1.« «6.6» x 10-6

600 ««.» »8.6» x 10-6

750 «6.« 60.6» x 10-6

900 «9.6 72.6» x 10-6

1150 »».« 92.6» x 10-6

1500 »8.1 119.«6 x 10-6

Percentage increase +111% +2,0«2%

Considering the actual 8.82% increase in transmission duration for an end-to-end trans-
mission (« LHCs and » SHCs) across a simple network, where it is assumed that the
seven (7) calculations are equal, then per pair of TSN-MIC calculations (1 SHC and 1
LHC), the percentage delay incurred is 2.52% on average, which falls within the lower
percentile of the theoretical range (1% to «5%) as given in Tab. 2. This indicates that the
TSN-MIC scheme functions within the theoretical range. However, the differences in the
testing environments (microcontroller versus laptop with OMNeT++) and implementation
(hardware versus software) means that a true 1ȷ1 comparison is not feasible. However, the
OMNeT++ performance does indicate that the overall impact of the TSN-MIC security
scheme on network performance is less significant than the impact of the frame payload
size. Therefore, the integration of the TSN-MIC scheme should not negatively impact the
time- and mission-critical services of the selected time-sensitive network (TSN).
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5 Conclusion

The TSN-MIC efficiency based on the OMNeT++ shows an increase in the transmission time
of 8.82% for each message from source End System to a destination End System, traversing
a single TSN Switch. This indicates a 2.52% delay per pair of TSN-MIC calculations (1
LHC and 1 SHC). However, with the limitations of the testing environment, where more
accurate solutions/environments are used, such as with comparable microcontrollers or with
an FPGA, an accurate representation of the efficiency TSN-MIC security scheme can be
obtained. Nevertheless, TSN-MIC demonstrates viability for I».0/Smart manufacturing and
critical infrastructure.
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