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Model-Based Generation of Software Configurations in
Mechatronic Systems

Martin Paczona1, Heinrich C. Mayr2, Guenter Prochart3

Abstract: An essential part of the mechatronic system is the software, which is responsible to
bring functionality into the system consisting of mechanical, electronic and electrical parts. The
software must be tailored to the specific hardware to fulfill tasks (e.g. control, monitoring) according
to the system requirements. In today‘s industrial practice, the design is mainly done manually. First
the entire architecture is drawn using drawing tools. Based on this software developers derive the
low-level specification using their low-level development environments. This is error prone and
time-consuming due to the fact, that a large number of hardware parameters have to be taken in
account and the informal specification does not allow to derive these parameters. To improve this
we present here an approach where the overall architecture of the mechatronic system is described
using a Domain-Specific Conceptual Modeling Language (DSML) using the example of Electric
Vehicle Testbeds. Based on this model the low-level software configurations are generated rule-based.
In this paper we present the concepts of the DSML, explain the transformation rules and show the
functionality of the generator by introducing a practical example.
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1 Introduction

Tuning the software for a mechatronic system is a tough job. This includes setting up
the communication structure, finding the optimal control parameters, configure the IOs
and implement the user interface. To develop this software and to setup the parameters
cooperation of hardware developers, electrical designers and electronic designers is needed
[To07]. Although comprehensive process models have been proposed for this purpose,
they are hardly used in daily practice [SP09]. The reasons given include: too complicated,
no time for processes, lack of tool support, lack of visible benefit, academic exercise.
Furthermore, general-purpose modeling languages such as SysML and UML are only
moderately accepted in the mechatronic domain because they do not provide the domain
vocabulary and have a level of abstraction that discourages practitioners from using it.
Instead of this process model still informal descriptions are used. Systems are described in
drawing tools; based on this representation engineers collect the requirements and derive
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the low-level software implementation. Now we will have an look on Electric Vehicle
Testbeds (EVTs). EVTs are customized solutions for testing electric vehicles and electric
vehicle components like batteries. The design of such testbeds is done by drawing the entire
architecture in collaboration with the customer using a tool such as MS Visio. From this
“specification“, software developers, circuit plan designers and hardware developers derive
detailed specifications and designs using their specific low-level design and development
environments (e.g. EPLAN[EP19], Automation Studio[Bu19], SolidWorks[So19]). A further
problem is that the software of a mechatronic system has a strong hardware connection,
which is little considered in software development environments. Therefore, software and
hardware are usually developed separately. Resulting inconsistencies often lead to system
integration problems when the software is installed on the prototype system.

In addition, there is a high time pressure in the development of mechatronic systems.
This applies in particular to EVTs caused by the E-Car boom [Fo18, KSK18]. Delivery
times of 3-12 months, however, are common for EVT components [Ve19, Ro17, ec19]. The
development therefore begins here with the specification of the hardware and its components,
in particular, the long leads. Software design and development begin when the hardware
has already been specified and is in production.

In order to accelerate and increase the efficiency of software development, the industry
relies on the reuse of customizable software components. Software development for EVTs
therefore essentially consists of configuration i.e., the selection of suitable modules, their
parameterization and integration. In this paper, we propose an approach to automatically
generating software configurations using EVT development as an example. This approach
is based on a domain-specific conceptual modeling language (DSML) for the integrated
description of hardware and software. A DSML is a language which target is a specific
domain, therefore it has fewer more specific concepts rather than many generic concepts
compared to a general-purpose language. The first step in the development of a DSML is the
definition of the metamodel, which defines the domain concepts and the relation between
the concepts. The approach is based on the “single source of truth paradigm“ and avoids
the inconsistencies previously mentioned as a problem. The conception of our DSML is
such that the engineers can easily and intuitively understand it: to achieve this, we have
conducted a series of surveys and practice workshops with stakeholders and domain experts.
First experiences show a good acceptance, which is also due to the fact that our modeling
language allows a very efficient and effective modeling due to its domain orientation. The
further structure of the paper is as follows: Section 2 focuses on the conceptual aspects by
introducing the metamodel, the DSML and the modeling tool developed. In chapter 3 we
sketch the process of generator development followed by a detailed discussion of the rules for
generating configurations from a model in chapter 4. Chapter 5 outlines the implementation
of our approach using the metamodeling platform ADOxx. We also will show how our
solution integrates into the overall development process. As a proof of concept, in chapter 6
(Evaluation) we compare the generator output with a set of manually developed artefacts.
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After a short discussion of related work in chapter 7, the paper closes with a conclusion and
an outlook on further work.

2 Software Configuration Model

Developing a Domain-Specific Modeling Method is a multi-stage and iterative process
[MM15] comprising the development of an appropriate metamodel, the definition of one
or, when required, more notations (representation languages on the model and data level
according to the OMG Meta object Facility MOF [OM02]), the grounding of the metamodel
concepts in an ontology, tool development, evaluation etc. [Ma18].

Since the overall metamodel and the notation principles are subject of another papers
[PMP19, PM19], we limit ourselves here to the introduction of the concepts for software
system and configuration modeling, as sketched in Fig. 1 Clearly, each concept comes with
a set of meta-attributes that are not depicted in the figure but exemplarily mentioned in the
modeling tool description below (e.g. Fig. 3). The concepts in the metamodel are connected
with the generalization-relation.

Fig. 1: Software Configuration Metamodel (excerpt).

Each of the concepts in the meta-model needs a proper representation. We refine here the
basic notation by more specific elements for Configuration, Firmware and Application
Software. To visualize the relationship between configuration concepts and other software-
related concepts rectangle with tab), these elements use a rounded rectangle with a yellow
color. Inside the shape a symbol indicates the type of Configuration. These Symbols
correspond to the usual representations in automation and software. To make the meaning
clearer as in the base representation, also a textual description is used [Mo09]. Fig. 2 shows
the notation elements.

A modeling language without tool support has little chance of widespread use. Moreover, the
automatic generation of software configurations needs a lot of attribute specifications which
can only be handled efficiently by an appropriate modeling tool. An investigation of the
requirements of non-software experts like Electrical Engineers, Managers, and Hardware
Developers revealed that they require a clear and navigable overview over an EVT software
configuration supporting intuitive understandability (see [PMP19]). Another important
requirement of the domain experts is the availability of consistency checks. Based on the
software configuration model (SCM), which is defined using the concepts of the metamodel
(e.g. Control), the generator performs the transformations depending on the model structure
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and model-element-attributes. Fig. 3 and Fig. 4 show excerpts of the attributes of the Control
and Transformer elements based on the findings made during generator development (see
chapter 3).

Fig. 2: Notation of the software-related concepts.
Fig. 3: Control Parameter Definition in the
Circuit Plan Model.

Grounding a metamodel in an ontology strengthens it’s semantic soundness. Domain
ontologies are conceptualizations of aspects of a given domain shared by the respective
user group [Ro11]. In a “sound “metamodeling language every modeling construct has a
corresponding concept in the ontology [ES13]. Fig. 5 sketches the structure of an ontology
draft which we have compiled for the domain of EVT software configuration.

Fig. 4: Transformer Control Parameter
Definition in the Circuit Plan Model.

Fig. 5: EVT Software Configuration On-
tology.

3 Generator Development

Since DSMLs provide conceptualizations of domain aspects, transformation rules can
be directly linked to the concepts. This is an advantage over general-purpose modeling
languages, for which common solutions are more difficult to find. In addition, the use of
already available components can lead to faster results than building something from scratch
[SK03]. If generators already have been implemented in the domain, they should be docked
to the existing solution, for example by one generator generating the input for another. Before
going into details, we will briefly explain the most important terms of code generation as
well as the overall structure of the generator development process. The generator input,
called source, is processed using transformation rules to produce the target. The generated
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target is the code (or program) executed on the target platform. In our case the source is
the EVT-Model (EVTM) including the circuit plan (CPM) and the SCM submodels; the
target are the software configurations of the EVT components. Fig. 6 shows this process
according to [Ku11]. The generator thus bridges the gap between the platform independent
models and the platform model by adding platform specific information.

Fig. 6: Terminology of Code Generation (modified) [Ku11].

A relationship between the software and hardware elements is called cross reference [Ga10].
In Detail, a system element satisfies a requirement, if this requirement is implemented by a
function which is realized by this system element. In chapter 4 we will present how this
is implemented for the different EVTM transformation cases. The implementation of this
cross-references and the code generation based on software and hardware models is one of
the main challenges. The goal of the generation process is to increase the productivity and
to increase the quality of the EVT-solution.

The generator development process can be divided into the following 7 steps:

1. Domain Analysis: Identifying the target (configuration files) to be generated and the
information to be provided for these files (see Tab. 1).

2. Structure Information: dividing the information into “recurring“ information that
may be compiled in templates (see step 5), and information requiring user
parameterization.[SK03] propose the “piecemeal generator approach“. This means
that initially most information is fixed in a template and then stepwise inserted into
the models. Clearly, the number of possible generator outputs rises with the number
of parameters and must represent valid configurations [Vo13].

3. Check completeness: Identifying information that has no correspondence in the models
(source). This can be done by mapping each information unit to the corresponding
model component. If an information cannot be mapped the model has to be extended
accordingly (step 4).

4. Update models: Completing the models to cover the previously detected gaps, to
ensure that complete configurations may be generated. In the EVT case, the decision,
which model to complement, is basically driven by the user’s skills. For instance, if a
new parameter is added to the CPM than circuit plan designers should know them.

5. Templates: Platform information which need not to be changed by the user is transferred
into template files, the template files have to be created.

6. Transformation rules: The generator development starts by defining the source to
target mapping (see Chapter 4).
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7. Evaluation: In the last step the generator functionality is checked using a set of
test-cases e.g. comparing with manual generated artefacts (see Chapter 6).

Description Type Format
Control Param., Calibration Data, Cabinet and Network Settings Text CSV
Version Information (Build, Package...) Text custom
PLC Hardware Configuration Text XML
Automation System Files Script PUMA/LYNX
Source Code Class-Definitions, Header-Files, Error Codes Source C++
Variable Definitions Source C++, ST

Tab. 1: Generator Output Overview (PUMA/LYNX are Test Autom. Systems from AVL List GmbH).

4 Transformation Rules

Transformation rules typically apply to a certain subset of model components [SK03].
In our case, we start from the EVTM, the CPM and the SCM which are defined by the
domain-experts. Note that these “application models“ [Ga10] together form the EVT-Model.
The EVTM defines the overall structure of the EVT, the CPM the electrical part and the
SCM specifies the software. The relevant components for which targets have to be produced
then are Source-Code, Error-Codes, Network-Settings, Control Parameters, Automation
System Files, and Calibration Parameters. Consequently, we define the transformation
rules for these aspects including their scope and limitations. Fig. 7 gives an overview of
the proposed transformation process. Based on the EVTM (and its submodels) a Raw
Software Configuration is generated (RSC) using again the SCM notation. I.e., the RSC is an
intermediate model, which the software developer may complement and refine, for example
by individual code. After that the Software Configuration Generator (SCG) produces the
final software configurations.

Fig. 7: Generator Process Structure Overview.

In the following we introduce the transformations for the different target types. For each type
a short overview including the transformation rule and an excerpt of the generated output is
given. The rules have been figured out by analysing the target artefacts in detail. A generic
process for defining the rules, a formal definition of the rules and the development of generic
rules for the mechatronic domain is part of future work. In the Rule definition Output (O)
represents the result of the transformation, Source (S) the input of the transformation, f() a
function and + connects two information sources. The rule definition is shown below.

Source: Source Model Source Component (Rule Notation)
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Output: SCM Attribute= Source.Attribute + Platform Properties

4.1 Source-Code

The transformation rule for source-code generation assumes that the Hardware_Component
including the Hardware_Connections contains most of the information needed for source
code generation. During generator development it was found out, that only Hard-
ware_Components need to be considered for the source-code generation which are directly
connected to IOs of automation systems. This approach is inspired by the work presented
in [Ba08] where each modeling element has a template file assigned. However, we do not
use a template for each element but instead slightly different transformation rules for each
modeling element. A pseudo-code version of the general rule is given below. This rule is
refined for the particular elements. As an example consider a voltage sensor, which has
the function to measure a voltage, and which is connected to an input channel of a control
unit. The information produced by such a sensor differs from other types of elements. Since
we use domain-specific models, the transformation rules can be tailored to such elements.
This is a considerable advantage over the use of general-purpose modeling languages,
where functions are defined based on requirements, and hardware elements based on these
functions [Ga10]. In our approach, this relationship is exploited the other way round (see
chapter 3). In case a sensor is connected to an analog input we can assume that the class
of this sensor has a function get_AI(). Since the circuit model also defines the connection
between the sensor and the IO we can derive the function get_AI_+SensorName. This
makes the generated code easier to understand. We exploit this hardware relation also for
generating the class and the variables. The abstract definition of the transformation shows
R1 and R2. In both rules the source (S) is the HW_Component of the CPM and the Target is
the generated code.

S: CPM HW_Comp (R1)
O: Class.Name= HW_Comp.Name + Platform_Info
S: CPM HW_Comp (R2)
O: Class.Prop= prefix + HW_Comp.Prop + connected HW_Comp.Prop,
Platform_Info

4.2 Error-Codes

The transformation rule for error generation is based on the hypothesis that the CPM already
contains most of the information needed for generating the error texts of a mechatronic
system. To allow for customizing the error information of each Hardware_Component a
string value was added to the component. Fig. 8 shows the example of the PLC. Errors
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related to software are specified in the SCM element properties. An example is shown in
chapter 6. The string values are than used to generated the Error-Codes for each System.

S: CPM HW_Comp (R3)
O: Errortxt=Error-Type + HW_Comp inside System + HW_Comp.Prop

4.3 Network Settings

The network setting of a testbed depends on the structure of the EVT elements, by parsing
the testbed structure directly, the IDs can be calculated (R4). To keep the approach flexible
the SCM Network element also provides the possibility to set the ID manually. An example
is given in chapter 6.

S: EVTM Network (R4)
O: ID= f(Distribution_Box_cnt,Switch_Box_cnt) + System.Name + Platform_Info

4.4 Control Parameters

The control parameter can be divided into parameters depending on the hardware (hardware
parameters) and into parameters depending on the user input (user parameters). The hardware
depending parameter are calculated based on the hardware properties and hardware structure
(Inside, Assembly_Connection) see (R5). The user dependent parameters are mapped from
the user input in the SCM (R6).

S: EVTM HW_Comp Assembly_Connection (R5)
O: Para=f(HW_Comp.Prop, f(System elements Inside EVTM, System element
Assembly_Connection)) + Platform_Info
S: SCM Control (R6)
O: Para=Control.Para+ Platform_Info

4.5 Automation System Files

The automation system controls all the systems of the EVT. The generator input are
the Application_Software elements: Monitoring, Parameters, Testrun, User_Interface,
Channels and Formulas. Each of this element provides the possibility to set properties and
to define customized scripts. Fig. 9 shows a channel definition example. The raw software
configuration generator (RSCG) accesses the EVTM to generate the RSC, this are than
enhanced by the user. The SCG generates the target configuration out of this by performing
a horizontal transformation. (R7) shows this relation channel definitions are generated based
on the Supply properties and platform info.
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S: SCM Channels, EVTM Supply (R7)
O: Channels.Prop= f(Supply.Prop) + Platform_Info

Fig. 8: PLC Component error settings. Fig. 9: Automation System, Channels.

4.6 Calibration Parameters

Each sensor of a physical system needs calibration data. This calibration data must
be defined during a calibration process. Therefore, the modeling language provides a
corresponding concept. The calibration data cannot be calculated, as it directly relies on
the performed measurement during calibration. The main part of the generator is here a
horizontal transformation which adds the platform specific content of the target-domain. The
calibration data is linked to a hardware (sensor) on the CPM (using a model INTERREF).
This connection is used to perform constrain checks on the calibration data and to extract
further information e.g. gain values for the sensor.

S: SCM Calibration, CPM HW_Comp (R8)
O: Calibration=f(Calibration.Prop + HW_Comp.Prop) + Platform_Info

5 Tool

The complete modeling solution including metamodel, modeling tool and transformations
has been developed using the metamodeling framework ADOxx. We opted for this platform
because it has been intensively tested in many different research projects in science
and industry [FK13]. Since the metamodel development, notation and modeling tool
development are published elsewhere [PMP19, PM19] our focus in this paper is on the
generation process of the software configurations for EVTs. ADOxx includes the scripting
language AdoScript to perform model transformation and model-queries (transformation
language support [SK03]). Consequently, there is no need to develop the model parsers
manually. The transformation rules presented in chapter 4 were implemented in AdoScript
like the example shown below which drives the transformation of a SW_Assembly based on
the HW_Assembly.The EVTM is publicly available on the OMiLAB repository. OMiLAB is
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a dedicated research and experimentation space for modeling method engineering [OM19].
We decided to make the EVTM tool there publicly available to collect further user feedback.
Since the EVTM tool is developed in close cooperation with a company, not all functions
are released in the public version to protect company rights. For integrating our approach
into the development process of the company, we created a set of guidelines and linked the
domain-specific modeling process with the existing solution so that the users can understand
the difference. A starting point for this was a comparison as shown in Tab. 2.

Transformation definition in AdoScript:

SETL sClSource:("HW_Assembly")

SETL sClTarget:("SW_Assembly")

CC"Core"GET_CLASS_ID classname:(sClSource)

CC"Core"GET_ALL_NB_ATTRS classid:(classid)

CC"Core"GET_ATTR_VAL objid:(VAL sObject) attrname:"Name" SETL sNa:(val)

CC"Core"GET_CLASS_ID classname:(sClTarget) SETL idClTarg:(classid)

CC"Core"CREATE_OBJ modelid: (idTargetM) classid: (idClTarg) objname:(sNa)

CC"Modeling"SET_OBJ_POS objid: (objid) x: 5cm y: 8cm

Traditional Domain-Specific Model Example
Source-Code (Eclipse) CPM, SCM Class Definition
Document (MS Visio), Network Settings (Files) EVTM IDs Netw. Nodes
Controller Parameter (Text File / MS Excel) EVTM, CPM, SCM Controller gain
Error Codes (Code, MS Excel) CPM Error enum

Tab. 2: Comparison Table (EVT Domain Example)

6 Evaluation

To validate the correct functioning of our generator and the plausibility of the overall
approach, we have taken the usual route of comparing generator outputs with manually
developed artefacts from previous EVT projects. The evaluation covered the outputs:
Source-Code, Error-Codes, Network Settings and Control Parameters. These outputs have
been compared regarding the criteria: Completeness, Correctness, Productivity (time to
produce the solution), Understandability (to the users), and Re-Usability.

Evaluation Example for a particular testbed project:
The batteries under test may have 48-1100V, max. 1700A, 550kW. The E-Motors under test
may have 200-1000V, max. 900A, 250kW. The company norm requires additional safety
features included in the testbed system which are: voltage display, a door contact on the
supply, and a customer specific IO that becomes active when the output voltage reaches a
certain level. This level should be configurable via the Automation_System. Further, the
company norm requires to have an US safety monitor system integrated into the supply
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which replaces the default device. The current rise (t90 time) should be within 1ms and the
Power Distribution Unit (PDU) capacitance is increased to 1mF. In order to allow stable
operation. The systems are connected to the industrial 690V/60 Hz grid. The artefacts
created for this example evaluation are shown below. Fig. 10 shows the EVTM. Each of the
System elements (blue rectangle) has a corresponding CPM, Fig. 11 shows the CPM for
Supply1. For each SW_Assembly in the EVTM a SCM model is generated Fig. 12 shows
SW_Assembly1 and Fig. 13 shows SW_Assembly2. Artefact 1-4 shows the generated output
based on the EVTM, CPM and SCM models shown before. The graphical models are
transformed into textual representations by using the transformation rules shown in chapter
4.

Fig. 10: EVTM Example. Fig. 11: Supply1 CPM.

Fig. 12: SW_Assembly1 SCM. Fig. 13: SW_Assembly2 SCM.

WARNING_DI_DOOR, //IO warning

WARNING_TRAFO690, //Transformer temperature warning

ERROR_IGBT_MODUL_RECTIFIER, //IGBT Modul error

Artefact 1 Error-Codes.

0x11;Supply1 0x12;Supply2 0x0;SwitchBox

0x31;Con.Box Battery 0x32;Con.Box Motor
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Artefact 2 Network Settings.

class Door_Contact{

public: bool get_IO_Door_Switch();

private: iDio* m_Door_Switch;};

class Custom_IO{

public: bool set_IO_Voltage_Lev();

private: iDio* m_Voltage_Lev;}

class Iso_Mon_UL{

public: Iso_Mon_UL(int16 *isoValue,

bool *enable);

virtual ~Iso_Monitor_US();

Uint16 getValue();

void setEnable(bool en);

bool isWarning();

bool isAlarm();

private: iDio* m_Enabl;

iDio* m_Iso_A;

iDio* m_Iso_W;

enum{

MAXVAL = 3000,MINVAL = 50};};

Artefact 3 Class definition.

59; 10 ; BE High Dynamic

76; 2.0E+00; REF_U_DELAY

77; 1.0E+03; SCALE_PWR

125; 2; PLANT_STRUCTURE

114; 0.00E+00; PLANT_RC1

117; 1.00E-03; PLANT_C2 (PDU)

50; 0.65; FEEDFORWARD IQ

8; 400; PWR_GRID_MX

7; -400; PWR_GRID_MN

36; 720; LIM_U_RMS_MX

94; 700 ; IT_MX

Artefact 4 Control parameters.

The comparison with manually developed artefacts led to the following results:

• The network settings of the generator output are easier to read because it features the
names of the systems/components as used in the EVT-Model.

• The generator output is more exact regarding control parameters, as in the manual
version these were not adapted to the testbed structure (e.g. cable length).

• The generator produced its output faster as only a small set of parameters had to be set
manually in the model, other parameters are derived from the CPM and while other
parameters were extracted from the template files. As we do not have the recorded
timing data from the manual development process, we can only assume the time for
defining redundant information can be saved, resulting in increased productivity.

• The generated errors are more meaningful compared to the manual developed
definition as (1) they contain additional error descriptions derived from the CPM and
(2) the generated names are consistent to the names used in the hardware domain.

• The generated class definition of the header file provides variable, function and
enumeration definitions. Again, the difference to the manual code is that the naming
is consistent and the generated artefact ensures that each hardware component has a
related definition in the code.
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• The connection between the model and the generated artefacts is not straightforward.

To sum up, our evaluation experiments proved that the model-based generator approach
increases productivity by reusing already defined information of the hardware domain.
Regarding understandability we found out that the generator has a more consistent naming
and adds additional comments to make the generated parts even better understandable. A
further improvement in terms of understandability would be adding information in the
generated artefacts how they are linked to the model elements.

7 Related Work

Related work addresses a variety of aspects regarding software design and generation
for mechatronic systems. [SP09] analyzed “successful“ industrial mechatronic system
development processes and observed quite a muddle: different notations are used, developers
do not have an overview over the complete system functionality, activities with the same
target are done several times using different procedures and tools. In several publications the
collaboration among specialists and stakeholders with different backgrounds is addressed,
by presenting a model-based approach [Ga10, Le08, Ba15, HRZ14]. In the following we
will give an overview about domain-specific approaches. MechatronicUML [Ho16] focuses
on Requirements Engineering and Model-Driven System Development for the control
software of mechatronic systems. Compared to the EVTM approach the MechatronicUML
is complex, as it addresses the whole domain of mechatronic systems, where the paper
focus on a special part of the mechatronic domain (EVTs). The EAST-ADL Architecture
Description Language for automotive embedded systems focus is on in-vehicle systems, as
it needs to be compatible with the AUTOSAR metamodel; it is not a “lightweight“ DSML
compared to our solution [EA13] . Easy lab [Ba08] is a model-based programming tool
which enables both the modeling of software and hardware functionality. The generator
uses templates for each primitive element to produce code. Now we will have a look
on the code generation literature, which is manly driven by the software engineering
community. [Ga10] addresses the following purposes of code generation: (1) separation of
application logic from platform details (2) improved productivity, (3) improvement in the
quality of the application, and (4) increased performance of the application by generating
efficient code. Well known transformation approaches are “Direct Model manipulation“
, “Intermediate representation“ and “Transformation language support“. For EVTs we
are using the “Intermediate representation“ technique where the intermediate artefact is
represented by the RSC. [BSM14] implements the intermediate artefact by generating an
XMI file. [Fe09] defines a code generation approach for railway systems and in [CGL17]
a tool to uncover model transformation problems is presented. Mechatronic systems and
especially EVTs need application software and firmware. The software development of
EVT systems is affected by the PLC manufacturers as they came up with powerful IDEs
[Bu19, SI19]. Well known automation systems for EVTs are, as example, PUMA, LYNX
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[AV19] and KS Tornado [KS19]. These systems have been analyzed, as basis for designing
the software configuration metamodel.

8 Conclusion

The analysis of the literature on mechatronic system design showed that one of the greatest
challenges is to deal with the complexity of the collaboration between the engineering
disciplines, including management [To07]. The common way to attack this challenge is
a model-based approach supporting the requirement management process which we also
apply here. The collaboration is enhanced by having an overview model (EVTM) that can
be understood across domains and this is further refined in the engineering disciplines.
With this solution domain experts can see the big-picture of the EVT and are not lost in
details. Another aspect is to ensure a smooth integration of software and hardware design by
providing proper tool support. Only few publications, however, address the issue of software
generation for mechatronic systems. Such systems consists of hardware components, which
interact with IOs that are connected to microcontrollers and PLCs. To program these devices
object-oriented programming languages like C++ and C# gain importance, in addition C
and other IEC languages are still used. Manufacturers of such hardware have a high impact
on the development, as they often deliver the corresponding development environments.
The seamless integration into these tools is one of the cornerstones that a generator solution
is accepted.

The approach presented here builds on the work cited in chapter 7, especially the trans-
formation approaches, the cross-references [Ga10] which define the software to hardware
relation and the state-of-the-art automation systems. We showed, how to generate software
configurations in the EVT domain out of hardware and software models that are represented
in a DSML. The EVT domain served as an example, and we are convinced that it is also
applicable in other mechatronic engineering disciplines. The work showed that it is really
worth to investigate in DSML development and generator development because it results in
increased productivity and quality. Compared to traditional approaches which use complex
languages our approach is lightweight, which all the resulting benefits. To gain further
feedback from the modeling community a version of the modeling tool has been made
public available on the OMiLAB [OM19] repository. But there is still some work to do.
As an example, the modeling language needs to be extended by concepts for formulating
constraints over attribute values in order to allow for more pinpoint transformations. In
addition the transformation rules have to be defined formal, including a definition of the
general process to define such rules for the mechatronic domain. Also, we plan to enhance
the tool to automatically generate circuit plans based on the developed CPM. In the end, the
modeling environment should cover all the software and hardware aspects of a mechatronic
system for a particular domain. Another interesting application would be to use the domain
specific models of the mechatronic system as digital twin to train engineers and to monitor
the state of the system.
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