
Towards Trie-Based Query Caching in Mobile DBS∗

Hagen Höpfner and Kai-Uwe Sattler

Otto-von-Guericke-University of Magdeburg
Department of Computer Science

Institute of Technical and Business Information Systems
P.O. Box 4120, 39016 Magdeburg, Germany
{hoepfner | kus}@iti.cs.uni-magdeburg.de

Abstract: The usage of mobile equipment like PDAs, mobile phones, Tablet PCs
or laptops is already common in our current information society. Typically, mobile
information systems work in a context dependent (e.g. location dependent) manner
which means that queries differ mostly only in some context-related predicates on the
same set of relations. Considering this characteristics, query processing on mobile
devices can take benefit from results of previously performed queries by using a query
cache. In this paper, we describe such a caching approach based on a trie structure
and organized by the query predicates which are associated with the corresponding
result sets. We present the cache structure and the process of query rewriting as well
as discuss implementation issues.

1 Introduction and Motivation

On stationary computers managing large and complex data sets is often done by database
management systems. Due to the increasing complexity of mobile information systems,
DBMS-techniques on mobile devices become more important. Though mobile devices are
quite powerful, compared to stationary computers they are called “lightweight”. Nearly
all available enterprise databases (e.g. Oracle, DB2) are offered as functionally limited lite
versions usable on lightweight devices [IBM02, Ora02b, iAn03, IBM03].

Today’s mobile radio technologies are still slow and expensive. Therefore, time based
payment models are counterproductive considering a permanent connection. But also vol-
ume based payment models associated with large data sets cause high costs. Furthermore,
technical problems (net overload, electrostatic shield, etc.) can result in disconnections.
Thus, there is the need for storing necessary data directly on the mobile hosts.

In mobile information systems such data sets (replica sets) are requested by the user via the
mobile device from a database server [Gol03] and afterwards locally stored at the mobile
device. Therefore, locally available replica sets can be considered as cache. New queries

∗This research is supported by the DFG under grant SA 782/3-2.

106



should reuse the cached data in order to minimize wireless (expensive and slow) com-
munication. Only locally unavailable data should be requested from the database server.
Designing such a cache comprises two central tasks:

Query Rewriting: Queries, which are executed on the mobile system, have to be rewrit-
ten in order to use the cache. If a query is not completely answerable by the cache, it
has to be decomposed into sub-queries in such a manner that only a minimal subset
of the complete result must be requested from the database server.

Cache Replacement: If there is no more available memory on the mobile device, no more
replica sets can be cached. Therefore, parts of the cache contents have to be deleted.
The decision to remove a subset of the cached data must consider possible future
queries. That means, the remaining state of the cache must fit upcoming queries as
good as possible.

In this paper we present first ideas of a cache which uses a trie1 indexing schema to provide
an efficient access to the cached replica sets. We take advantage of the special characteris-
tics of mobile database systems:

• In mobile environments queries are mostly executed in a context dependent2 manner.
That means that queries in mobile information systems reflect the elements of the
context (e.g. location, time). For example, a person, who is visiting London and is
using a mobile information system offering information about cultural events, will,
in all likelihood, query current (time dependency) information of events performed
in London (location dependency). Such systems are often called “location depen-
dent services”. But the context of a user contains a lot of other elements [LH01]
(e.g. used hardware, group membership, task to handle).

• Mobile information systems consider the high cost of wireless data transmission.
Therefore, a lot of “small” queries are used, which can be answered by a “small”
but exact result set. If the user needs more detailed information, additional refined
queries are issued.

We use these special characteristics of queries in mobile informations systems for indexing
the cache on a mobile device but consider only queries which must not include aggregate
functions or joins. In addition, we do not consider here cache replacement and cache
coherency. Cache coherency is a big problem especially in mobile environments but we
postpone this aspect to future work. In the face of replacing cache entries with new data
our approach is compatible with know techniques like LFU (least frequently used) or LRU
(least recent used). Therefore, the cache entries have to be enhanced by reference counters
or timestamps, respectively. But, having regard to an extended query language as presented
in [HS03b] we can denote support for context dependent techniques here.

1A trie [Fre59] is a tree for storing strings in which there is one node for every common prefix. The strings
are stored in extra leaf nodes (see also [Bla98]). In our case, we replace string prefixes by query prefixes (con-
junctions of predicates).

2based on the context of the user and/or the context of the mobile device

107



There are several publications (e.g. [DFJ+96], [GG99]) demonstrating that semantic
caches are more effcient than time or reference based caching approaches. In mobile
database systems the most important approach of semantic caching is the LDD-cache
[RD00] (based on [DK98]). In [RD99] a cluster extension of the LDD-cache is presented
which increases its performance. In contrast to this approach we provide an index structure
that allows to access cached information more efficient.

The remainder of this paper is structured as follows: After presenting the index and cache
structure in Section 2, we discuss our query processing and query rewriting approach in
Section 3. We also compare our trie-based query-cache to the LDD-cache in Section 3.
Finally, we discuss different implementation variants in Section 4. Because of the given
space limitations we do not discuss any cache replacement strategy in this paper.

2 Query Cache Structure

The main issue of a query cache is the granularity of the cache entries. In contrast to normal
database management system caches, which store logical pages, query caches store query
results (relation or fragments of relations respectively). Therefore, the queries are used as
access keys. Now it is possible to check new queries, whether they can be answered from
the cache. At this, we distinguish between the following four cases:

1. The same query has been performed already and its result is still stored in the cache.

2. A query, which results in a superset of the requested result, has been performed
already and its result is still stored in the cache. Therefore, the new query can be
locally answered by using additional operations (e.g. selection). Case (1) can be
considered as a special case of this case.

3. A cached query and a new query overlap, i.e., a subset of the result can be answered
by the cache. Only the non-overlapping subset must be requested from the database
server.

4. There is no compatible query in the cache.

Furthermore, we have to take into account, that a new query may be answered by a combi-
nation of cache entries. Regarding to these requirements our cache structure has to support
an efficient search for appropriate entries.

Based on this and on the special characteristics of mobile information systems we chose
the following cache structure: A cache entry always corresponds to a fragment of a re-
lation – thus to a set of tuples. The entries are indexed by a trie structure which repre-
sents the query. For that purpose we represent queries in a standardized calculus nota-
tion, i.e. in conjunctive normal form. Predicates are ordered in a lexicographic manner:
at first relation predicates ri, then the selection predicates pj (also lexicographically or-
dered). Relation predicates describe the considered schema of a relation. For example,
buildings(name) corresponds to SELECT name FROM buildings. Selection

108



predicates corresponds to a WHERE-clause, respectively (e.g. buildings.x>200 is a
predicate representation of WHERE buildings.x>200).

A query Q = {r1 ∧ r2 ∧ · · ·∧ rm ∧p1 ∧p2 ∧ · · ·∧pn} can be represented as a sequence of
predicates 〈r1, r2, . . . , rm, p1, p2, . . . , pn〉, where ∀i, j ∈ 1 . . . n, i < j ⇒ pi / pj as well
as ∀i, j ∈ 1 . . .m, i < j ⇒ ri/rj (/ means “lexicographically smaller”) holds. Obviously,
this query language is not strong relational complete, but is restricted to a subset of calculi
which is sufficient for the realization of context based, mobile information systems.

For a trie that means, that edges represent predicates and nodes represent links to the
caches fragments. A path P = r1r2 · · · rmp1p2 · · · pn in the trie (from the root to any
node) corresponds to the query QP = {r1 ∧ r2 ∧ · · · ∧ rm ∧ p1 ∧ p2 ∧ · · · ∧ pn}. Thus,
the result of a query QP represented by the path P can be found in the cache as the entry
addressed by P .

This cache approach is not limited to exact query matches. We support also the other two
cases (see above) by following a path in the trie predicate by predicate. If a node linking
a fragment is reached and if there are more predicates in the new query, the new query
can be answered by running it on the linked fragment. Otherwise, if no node linking a
fragment is reached so far but all predicates of the new query were used, this new query
can be partially answered by combining all fragments linked by child nodes of the current
one. Therefore, the query processor must generate a compensation query which request
the missing sub result and combines it with the cached sub result.

3 Cache-supported Query Processing

After the presentation of cache and index structures in the previous section we discuss the
cache-supported query processing in the following. The central point is the query rewriting
phase: the problem of splitting a query into two sub-queries in such a manner, that a local
sub query can be performed on the cache and a remote query (compensation query) can be
sent to the database server and performed there. The main focus is the minimization of the
amount of data retrieved from the database server and thus the minimization of transfer
costs.

Query rewriting is based on correspondence relations between queries. Following the four
cases presented in the previous section we can distinguish correspondence relations of a
query P and another query Q as follows. For simplification we assume for now, that P

and Q contain the same relation predicates, i.e. only the selection predicates are taken into
account.

(A) P ≡ Q means, that the query can3 be directly performed on the cache. Therefore,
obviously equivalence of all predicates must hold:

〈p1, . . . , pn〉 ≡ 〈q1, . . . , qn〉 ⇔ ∀i = 1 . . . n : pi ≡ qi

3granted that all attributes used by the filter condition are included into the cached result

109



(B) P @ Q means, that Q can be answered by the cache, but an additional filter condition
filter(P, Q) is required. This case can be distinguished into the following sub cases:

(a) Q consist of more predicates: 〈p1, . . . , pm〉 @ 〈q1, . . . , qn〉 ⇔ m ≤ n ∧ ∀i =

1 . . .m : pi ≡ qi. The corresponding filter condition is:

filter(P, Q) = 〈qm+1, . . . , qn〉.

(b) Q consist of more restrictive predicates than P . A predicate q is more restrictive
than a predicate p (both defined on an attribute A) if q holds for less tuples than
q whereas a domain wide equipartition of the attribute values is assumed. For
instance, a > 50 is more restrictive than a > 10, written as a > 50 ≺ a >

10. Operators used for comparison strongly depend on the involved attribute
types (coordinates, time, date, integer, etc.). In [HS03a] we have presented an
approach, that uses type dependent “distance” functions (so called ξ-functions).
These functions can also be used in order to compare the restrictivity of selection
predicates.

〈p1, . . . , pm〉 @ 〈q1, . . . , qn〉 ⇔ ∀i = 1 . . . k < n :

pi = qi ∧ ∀j = k + 1 . . . n : qj ≺ pj

Thus, the filter condition is the combination of the more restrictive predicates:

filter(P, Q) = 〈qk+1, . . . , qn〉

(C) P A Q means, that Q consists of less predicates or Q is less restrictive than P . As
a result Q can be partially answered by the cache. For getting the whole result, a
compensation compensation(P, Q) must be performed on the database server. This
case can be distinguished into two sub-cases, too:

(1) 〈p1, . . . pn〉 A 〈q1, . . . qm〉 ⇔ m < n ∧ ∀i = 1 . . .m : pi = qi Therefore, the
result of a compensation query has to contain all tuples that are not included in
the result of P but belong to the result of Q:

compensation(P, Q) = 〈q1, . . . qm,¬pm+1, . . .¬pn〉

(2) 〈p1, . . . , pn〉 A 〈q1, . . . , qn〉 ⇔ ∀i = 1 . . . k < n : pi = qi ∧ ∀j = k + 1 . . . n :

pj ≺ qj Thus, the compensation query is:

compensation(P, Q) = 〈q1, . . . qn,¬pk+1, . . .¬pn〉

(D) P 6≡ Q means, that there are no consensuses between the predicates of the queries.

∀i = 1 . . . k < n : pi 6≡ qi

Thus, the cache entries belonging to P are not usable for answering Q.

110



P Q

P

Q
Q

P Q

P P

Q

P

Q

P Q

P

Q

P

Q

P Q

relation predicates

selection predicates

cached tuples

caption:

new querycached query

DB on server

Figure 1: Relations between a cached query Q an a new query P

Considering this correspondence relations (see also Figure 1) we are able to modify a given
query in order to use the cache now. The idea is to collect the nodes, that link appropriate
cache entries, while passing the trie. The result of this procedure are candidate sets of
nodes corresponding to the cases mentioned above. Because we can consider case (A)
as case (B) with an empty filter condition, Algorithm 1 uses only two sets CSAB and
CSC . If both sets are empty, case (D) is given. The trie is traversed by using the recursive
procedure find candidate nodes shown as algorithm 2. The generation of the candidate
sets is followed by handling the cases. The function path used in the algorithm returns the
query which corresponds to the path from root of the trie to a given node.

Algorithm 1: trie-based Rewriting

given:
query Q

trie with root node

CSAB := {}
CSC := {}

find candidate nodes (0, root)
if CSAB = {} ∧ CSC = {} then

perform Q remotely
else if CSAB 6= {} then

111



Node n ∈ CSAB

P := path(n)

Q′ := filter(P, Q)

perform Q′ on the cache-entry associated with n

else if CSC 6= {} then
n := min cost(CSC)

P := path(n)

Q′ := compensation(P, Q)

do Q′∪ cache-entry associated with n

fi

Because there may exist more than one candidate node which could be used for answering
a query, the best node have to be detected (see below). Afterwards the filter and the
compensation query is computed and performed.

Algorithm 2 implements the traversing of the trie. Starting at the root node all edges, i.e.
all predicates, will be checked. If a predicate p in the trie is equal to or less restrictive than
the corresponding predicate of the new query, all child nodes childp(n) are tested. But if
both predicates are contradictorily, the search will stop. If none of these alternatives hold4

then the predicate is ignored and the search continues with all child nodes.

If a checked node contains a link to a cache entry, the path and thus the query is recon-
structed first. Afterwards the correspondence relation between the query and the given new
query is computed incrementally. This is possible because the predicate has been checked
already while running the algorithm. For the simplification of the presentation we skip a
more detailed discussion of this aspect here. If a consensus is found, the actual node is
added to one of the two candidate sets CSAB or CSC , respectively. If P ≡ Q holds, the
search stops immediately.

Algorithm 2: Traversing the trie

find candidate nodes (level, node)
if cache-entry associated with node available then

P := path (node)
if P ≡ Q then

CSAB := { node }
return

else if P @ Q then
CSAB := { node }

else if P A Q then
CSC := CSC ∪ { node }

fi

4this case corresponds to P A Q

112



forall p ∈ predicates(n) do
if p ≡ qlevel ∨ qlevel � p then

find candidate nodes (level+1, childp(node))
else if ¬(p ∧ qlevel) then

/* unaccomplished condition */
return

else
/* ignore predicate p */
find candidate nodes (level+1, childp(node))

fi
od

A path is chosen cost dependently from the set of alternative paths. A complete estima-
tion of all costs (e.g. based on cardinalities or histograms) causes an essential additional
expense. Because of the light-weighty of mobile devices only the maximal size of cached
fragments is taken into account.

So far we have assumed that P = {r1 ∧ r2 ∧ · · · ∧ rm ∧ p1 ∧ p2 ∧ · · · ∧ pn} and Q =

{k1 ∧ k2 ∧ · · · ∧ ku ∧ q1 ∧ q2 ∧ · · · ∧ qv} differ only in selection predicates, i.e. m = u;
∀i ∈ 1 . . .m, ri = ki.

Based on the previous ideas, now we discuss shortly the consequences of allowing dif-
ferences between relation predicates. That means that queries can contain joins, too. We
assume that R is the set of relation predicates used by P and K is the set of relation
predicates used by Q. Thus, there exist four cases:

(E) R ∩ K = ∅, means, that both queries use different relations. Q must be sent to the
database server.

(F) R = K, means, that both queries use the same relations. Q could be answered
locally by the cache but a detailed check of the selection predicates is required (see
above).

(G) R ⊂ K, means, that the new query uses Q additional relations. A compensation
query must be generated in order to query the missed tuples from the database server.
The join can be computed on the mobile device.

(H) K ⊂ R, means, that the new query Q uses some of the relations used by R. Q could
be answered locally by the cache but a detailed check of the selection predicates is
required (see above).

For definitely extending the presented approach by allowing differences between relation
predicates we have to modify algorithm 1 accordingly.

113



h id name phone fax address

1 St. Maria Hospital 3920811 4433276 P.O. Box 1100
2 University Hospital 1237654 9912347 18 Avenue of The Stars
3 Dr. Koch Hospital 8877365 1253432 5 Third Avenue

Table 1: The Relation hospitals

s id name form phone address

1 Ada Lovelace School Grammar School 234555366 12 Kent Street
2 1st Primary School Primary School 355355534 35 East Avenue
3 Ascaneum Grammar School 234234234 141 11st Street
4 ECOLE Primary School 445613334 45 Church Place
5 Gustav-Nitsche School Secondary School 464663698 1 Nitsche Street

Table 2: The Relation schools

b id name x y

1 Ada Lovelace School 1343 2345
2 1st Primary School 442 1234
3 Ascaneum 5453 11
4 ECOLE 166 23
5 Gustav-Nitsche School 46667 98883
6 St. Maria Hospital 811 4476
7 University Hospital 7654 99147
8 Dr. Koch Hospital 8365 1342

Table 3: The relation buildings: Location of the Buildings

114



An Example for Illustration

We now illustrate our approach (without an explicit usage of join predicates) with a small
example. We assume the following infrastructure database consisting of two relations:

1. hospitals (h id, name, phone, fax, address)

2. schools (s id, form, name, phone, address)

In the following we use fictive example data for an fictive example city (cf. Table 1 and
Table 2). Furthermore we know that the location of each building is stored in a third
relation buildings (b id, name, x, y) (cf. Table 3).

This database is queried via a mobile client. Therefore, we assume the following sequence
of – already lexicographically ordered – queries:

Q1: hospitals(address, name)

Q2: schools(address, phone) ∧ schools.name=’ECOLE’

Q3: buildings(name) ∧ buildings.x>200 ∧
buildings.x<8000 ∧ buildings.y>1000 ∧ buildings.y<3000

The resulting state of the cache, which depends on the execution of these queries is illus-
trated in Figure 2. For the sake of clearness we did not include the values of the attributes
used by the selection predicates into the result here. But these values are required for using
filter queries locally.

18 Avenue of The Stars

P.O. Box 1100

5 Third Avenue

St. Maria Hospital

University Hospital

Dr. Koch Hospital

44561333445 Church Place

schools.name=’ECOLE’

buildings(name)

buildings.y>1000

buildings.y<3000

buildings.x>200

Ada Lovelace School

1st Primary School

buildings.x<8000

schools(address,phone)

hospitals(address,name)

Figure 2: Example: Cache State after the Execution of Q1, Q2 and Q3

It is easy to understand how this trie was build. But now this cache can be used for
answering new queries. Lets assume the following new queries:

Q4: hospitals(address, name) ∧
hospitals.address=’5 Third Avenue’

115



Q5: buildings(name) ∧ buildings.x>200 ∧
buildings.x<8000 ∧ buildings.y>1000 ∧ buildings.y<2000

Q6: schools(address, phone)

Q7: buildings(name) ∧ buildings.x>200 ∧
buildings.x<8000 ∧ buildings.y>1000 ∧ buildings.y<5000

Obviously, we have the following relationships between the new queries and the already
cached queries:

• Q4 @ Q1: Q4 covers a subset of the result of Q1 because it consists of more
selection predicates

• Q5 @ Q3: Q5 covers a subset of the result of Q3 because a selection predicate is
more restrictive (buildings.y<2000≺ buildings.y<3000)

• Q6 A Q2: Q6 covers the results of Q2 but may cover additional tuples because Q6

consists of less selection predicates.

• Q7 A Q3: Q7 covers the results of Q2 but may cover additional tuples because a
selection predicate is less restrictive
(buildings.y<5000� buildings.y<3000)

So, the execution of Q4 and Q5 requires the usage of additional filter queries:

• filter(Q1, Q4)=hospitals.address=’5 Third Avenue’

• filter(Q3, Q5)=buildings.y<2000

On the other hand, the execution of Q6 and Q7 requires the usage of compensation queries
for completing the results:

• compensation(Q2, Q6) =schools(address, phone) ∧
schools.name<>’ECOLE’

• compensation(Q3, Q7) =buildings(name) ∧ buildings.x>200 ∧
buildings.x<8000 ∧ buildings.y>1000 ∧
buildings.y≥3000 ∧ buildings.y<5000

Figure 3 illustrates the effects of the usage of the filter respectively the compensation
queries during the execution of Q4, Q5, Q6 and Q7.

Comparative Discussion:

In the following we compare our trie-based query cache to the classical online approach
without client-side caching and to a semantic caching approach for mobile environments.

116



18 Avenue of The Stars

P.O. Box 1100

5 Third Avenue

St. Maria Hospital

University Hospital

Dr. Koch Hospital

44561333445 Church Place

schools.name=’ECOLE’

buildings.y>1000

buildings.y<3000

buildings.x>200

Ada Lovelace School

1st Primary School

buildings.x<8000

filter(Q1,Q4)

filter(Q3,Q5)

buildings(name)

1st Primary School

Ascaneum

ECOLE

Gustav−Nitsche School

...

...

...

...

...

phone address

...

...

...

...

...

...

...

...

...

...

formnames_id

Ada Lovelace School1

2

3

4

5

compensation(Q2,Q6)

b_id name

1

2

Ada Lovelace School

1st Primary School

...

...

St. Maria Hospital

x y

... ...

... ...

... ...

... ...

... ...

...

...

6
compensation(Q3,Q7)

caption:

result of the query new query Q4 new query Q7new query Q6new query Q5
Q4, Q5, Q6 Q7

schools(addres, phone)

hospitals(address,name)

Figure 3: Example: Using Filter and Compensation Queries

Without caching all queries are submitted to the database server where they are performed.
Afterwards the results are sent back to the mobile device. For the comparison to semantic
caching we fall back on the LDD cache [RD00] that uses a location based and time based
indexing of data which is stored as logical pages. Every index entry consist of the name of
the used relation5, the names of the queried attributes, the appropriate location from which
the query was started and a timestamp.

Algorithms for caching and retrieving data require additional computation power. Because
light-weighty is the central characteristic of mobile devices, the size of the cache is strictly
limited. Thus, we do not discuss an explicit derivation of all individual complexities.

A more important point is the efficiency of the cache. A cache which prevents the ex-
pensive and slow wireless data submission is more efficient than a cache which sends a
lot of queries to the database server. In the online approach without a cache obviously all
queries must be send to the database. Thus, it is inefficient. The LDD cache as well as our

5The approach can only use single-relation-queries

117



trie-based query cache are more efficient. The differences between these two approaches
are the cache structure and the index structure and how they can be used. The LDD cache
stores one separate segment per query. Our trie-based approach does it in the same way but
allows, based on its special index structure, an easy merging of semantically neighboring
or overlapping cache entries. Furthermore, we facilitate the splitting of join operations in
order to handle relation spanning queries at least partially local. Thus, our approach is
more efficient considering the need for wireless communication.

Another advantage of our approach is the flexibility considering the context elements. The
LDD cache is restricted to location dependency and can handle timestamps. Because of
using a trie for indexing cache entries we are able to reflect each context element directly
in our index and use it for retrieving adequate fragments in the cache.

Obviously, this is only a vague and preliminary comparison but it shows that it makes
sense to follow up the ideas presented in this paper. A detailed cost model for caching in
mobile environments would go beyond the scope of this paper, but it is currently under
work.

4 Implementation Issues

Indexes on the cache of mobile devices are used to minimize the amount of data to be
transferred and the memory required. These targets can be derived directly from the spe-
cific requirements of mobile information systems, i.e. slow and expensive data transfer
and limited resources of the mobile devices.

Especially, to handle the case described in Section 2, where the cache already contains a
superset of the results of a new query, the client has to be able to process a query from
previously cached results. Therefore, the fragments are stored using a local DBMS. On
the leaf level the index structure links to the fragments providing an efficient access as
shown in Figure 1. In principal, the proposed approach can be realized in three different
ways: (1) Each fragment is stored as a separate relation, that is accessed using standard
interfaces like ODBC, JDBC etc. (2) All fragments are stored in one relation and are
accessed using the previously mentioned interfaces. (3) Alternatively, the Oracle Object
Kernel API [Ora02a] can be used, allowing the storage of structured objects in an Oracle
9i lite DBMS.

For implementation purposes Oracle 9i lite is used as a DBMS on the mobile devices, as
it is available for all operating systems of mobile devices [Ora02b]. Unfortunately, JDBC
is not supported on all platforms, so it could not be used.

The following description of the implementation of the trie and the corresponding algo-
rithms focuses on the linkage of cache entries in the tree, and advantages and disadvantages
of the mentioned implementation alternatives.

The major advantage of the two ODBC approaches is that an already specified and stan-
dardized query language (SQL) can be used. As shown in Figure 4, the access to the cache
entries is possible through the relation name. Hence, the trie node referencing a cache en-

118



entry 1
entry 2
entry 3

entry 2entry 3 entry 1

SQL
obj1

cache

cache:

Access via OKAPI Access via ODBC

obj2

obj3

Figure 4: Cache entry referencing using OKAPI and ODBC

try contains a SQL query on the cached results. Unfortunately, this implies a performance
loss. All queries, even those that can be answered from the cache, have to be performed
via the ODBC interface. Furthermore, a separate transformation of the query given in cal-
culus notation to SQL is required. Though this can easily be implemented, and is required
for sending compensation queries to the server anyway, it implies an extra effort for local
filter queries or if the result is included as such in the cache. If in this case the fragment is
stored as a separate relation, the semantic context of the contained tuples is retained. If the
results are all stored in one single relation, additional concepts for the identification have
to be implemented to allow a fast filtering and retrieval of (partial) results6.

The third implementation alternative using the Object Kernel API of Oracle 9i lite works
on a level below the SQL interpreter. Tables known in SQL are addressed as a group
of objects in OKAPI. The function okFindGroup provides access to a group using its
name. Accordingly, a trie node referencing a cached object, contains the path to the cache
entry, as shown in Figure 4. The actual access to the cached results is implemented using
an iterator object containing the search criteria. If the current query is equal to the cached
query no search criteria is necessary. Otherwise, the search criteria is used as a filter over
the cache fragment. The disadvantage of this approach is that the described additional
query functionally has to be implemented.

A combination of the OKAPI and ODBC access is possible, according to [Ora02a], but in
this application not necessary. The combination would become interesting, if there were
further applications accessing the cache, requiring the SQL support of Oracle 9i.

5 Conclusion and Outlook

In this paper we presented an approach for local caching in a mobile database system
environment. By providing trie-based indexing on the cache entries it is well suited for
context based queries, which are typical in mobile information systems. We thoroughly
discussed the trie index structure, and how new queries are “moved through” the trie to

6A trivial inefficient case is for instance the processing of an already cached query on the cache.

119



retrieve previously stored query results. In addition to these theoretical considerations and
a comparison to related work, implementation alternatives based on Oracle 9i lite were
described and compared.

Based on the presented work and the described implementation of the LDD cache the
caching strategies introduced in Section 3 have to be evaluated and compared. Further-
more, the influence of certain query predicates has to be analyzed. Especially, the usage of
cached data in join operations requires a more detailed specification and analysis. Based
on the results the mobile cache will be integrated in the server infrastructure for context-
based information systems presented in [HS03a]. Additional open issues are, for example:

• Ordering of predicates (cost-based)

• Splitting and merging of nodes

• Context-based cache replacement

Moreover, we currently adapt this data caching approach in order to handle a great number
of mobile clients on a mobility support server. The idea is, that the cache index is used for
indexing mobile clients. That means, that the indexed values represent the IDs of mobile
clients and the index structure represents the queries which where given from these mobile
clients. A first presentation of this idea can be found in [HS03b].

References

[Bla98] Paul E. Black. NIST Dictionary of Algorithms and Data Structures. Web page, 1998.
http://www.nist.gov/dads/.

[DFJ+96] Shaul Dar, Michael J. Franklin, Björn THór Jónsson, Divesh Srivastava, and Michael
Tan. Semantic Data Caching and Replacement. In T. M. Vijayaraman, Alejandro P.
Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96, Proceedings of 22th
International Conference on Very Large Data Bases, pages 330–341, Mumbai (Bombay),
India, 3–6 September 1996. Morgan Kaufmann.

[DK98] Margaret H. Dunham and Vijay Kumar. Location dependent data and its management
in mobile databases. In Proceedings of the Ninth International Workshop on Database
and Expert Systems Applications, Vienna, Austria, August 24-28, 1998 / W07: Mobility
in Databases and Distributed Systems, pages 414–419. IEEE Computer Society, August
1998.

[Fre59] E. Fredkin. Trie memory. Information Memorandum, Bolt Beranek and NewMan Inc.,
Cambridge, MA, 1959.

[GG99] Parke Godfrey and Jarek Gryz. Answering Queries by Semantic Caches. In Database
and Expert Systems Applications, pages 485–498, 1999.

[Gol03] Christoph Gollmick. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Daten-
bankanwendungen. In Gerhard Weikum, Harald Schöning, and Erhard Rahm, editors,
Tagungsband der 10. Konferenz Datenbanksysteme für Business, Technologie und Web
(BTW03), 26.-28. Februar 2003, Leipzig, volume 26 of Lecture Notes in Informatics. GI,
2003.

[HS03a] Hagen Höpfner and Kai-Uwe Sattler. Semantic Replication in Mobile Federated Infor-
mation Systems. In Proceedings of the Fifth International Workshop on Engineering

120



Federated Information Systems (EFIS2003), Coventry, UK 17 - 18 July, 2003, pages 36–
41. Akademische Verlagsgesellschaft Aka GmbH, Berlin, July 2003.

[HS03b] Hagen Höpfner and Kai-Uwe Sattler. SMoS: A Scalable Mobility Server. In In Poster-
Proceedings of Twentieth British National Conference on Databases (BNCOD20),
Coventry, UK 15th - 17th July, 2003, pages 49–52. School of Mathematical and Informa-
tional Sciences; Coventry University, July 2003.

[iAn03] iAnywhere Solutions, Inc. SQL Anywhere R© Studio. Data sheet, Sybase, Inc., 2003.
http://www.sybase.com/content/1025129/SQL9Datasheet.pdf.

[IBM02] IBM. IBM DB2 Everyplace Version 8.1. Spec sheet, IBM Corporation, 2002.
http://www-3.ibm.com/software/data/pubs/pdfs/db2epv8ss.pdf.

[IBM03] IBM. IBM Cloudscape 5.1: A Technical Overview.
Whitepaper, International Business Maschines, March 2003.
http://www-3.ibm.com/software/data/cloudscape/pubs/\
whitepapers/cloudscape-techover.pdf.

[LH01] Astrid Lubinski and Andreas Heuer. Configured Replication for Mobile Applications.
In Janis Barzdins and Albertas Caplinskas, editors, Databases and Information Systems:
Fourth International Baltic Workshop, Baltic DB&IS 2000, Vilnius, Lithuania, May 1-5,
2000 Selected Papers. Kluwer Academic Publishers, 2001.

[Ora02a] Oracle. Oracle 9i lite Release 5.0.1: C and C++ Object Kernel Reference, 2002.
http://otn.oracle.com/docs/products/lite/doc library\
/release501/doc/okapi/html/toc.htm.

[Ora02b] Oracle. Oracle 9i lite: Release Notes - Release 5.0.1, 2002.
http://otn.oracle.com/docs/products/lite/doc library\
/release501/readme.htm.

[RD99] Qun Ren and Margaret H. Dunham. Using Clustering for Effective Management of a
Semantic Cache in Mobile Computing. In Proceedings of the ACM International Work-
shop on Data Engineering for Wireless and Mobile Access, August 20, 1999, Seattle, WA,
USA, pages 94–101. ACM Press, 1999.

[RD00] Qun Ren and Margaret H. Dunham. Using semantic caching to manage location de-
pendent data in mobile computing. In Proceedings of the sixth annual international
conference on Mobile computing and networking, pages 210–221. ACM Press, 2000.

121




