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Abstract: Biometric verification is gaining popularity particularly for personal security
during internet and mobile device usage. A novel approach for verification of individuals
is proposed to measure mechanical cardiovascular activity through an accelerometer
sensor placed on the surface of the chest above the sternum. Time frequency analysis
methods are employed to evaluate biometric performance. Accelerometer measurements
were acquired on two different sessions from ten subjects after delays ranging from 1 to 2
weeks. For individual subject verification, Gaussian mixture models were built per each
individual and a background model was created for the remaining impostors. A likelihood
ratio test with background model was employed for testing. In this study we found
preliminary evidence for the use of the cardiovascular signal measured with an
accelerometer placed on the sternum as a biometric sensor to verify individuals.
Verification testing using this approach obtained a mean EER rate of 0.06 for inter-session
testing.

1 Introduction

Human authentication technologies are commanding more attention recently mainly due
to the increased need for personal security in hand-held devices. Biometric systems are
used to identify or verify the identity of a person based on biological, physiological or
behavioral characteristics. Fingerprints, iris scans, face images are examples of primary
physiological characteristics that have been proposed as biometrics [LWJ98][n99]. Gait
and keystroke are two biometric signatures that have primarily behavioral characteristics
[MR99][DHS06]. Any biometric measure should have universality, uniqueness
(discriminability), permanence (stability), measurability, resistance to circumvention and
acceptability properties. Circumvention is a type of biometric forgery where spoof
signals are being used to gain access to a system [s02]. The heart signal can be more
robust to circumvention attacks as it is hard to mimic a person’s heart signature. In this
paper we propose a new physiological biometric measurement that senses cardiac chest
movements using an accelerometer. Our focus here is to assess the permanence and
uniqueness traits of this biometric signal.

Conventional computer systems authenticate users only at the initial login stage.
Continuous authentication has gained importance during recent years. In continuous
authentication users are not only identified during initial login but are continuously
monitored and verified for their identity. Keystroke biometrics and video of face are
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some examples of a continuous authentication system [FR99][NUJ10]. Cardiac-based
authentication can also be of use as a biometric signal for continuous authentication as
the signal is present and can be readily measured continuously. Moreover, cardiac-based
authentication has some advantages over other aforementioned biometric authentication
systems as the heart is always beating whereas face may be obscured or users may stop

typing.

Heart-based verification measurements can be summarized under three main techniques:
The first group of techniques uses the mechanical activity of the heart, the second group
of techniques measures the electrical activity of the heart and finally the third group of
techniques measure the sound of the heart (phonocardiogram) for verification.

Mechanical activity of the heart in the literature is measured using displacement
cardiograph techniques such as Ballistocardiogram (BCG) [Gul2], seismocardiogram
(SCG) [Za90][Ca07], and finally Laser Doppler Vibrometry (LDV) [Ch10]. Sullivan et
al developed a novel method to remotely sense mechanical activity related to the carotid
pulse with Laser Doppler Vibrometry (LDV) [c09]. In SCG & BCG the minute
movements caused by the beating heart are translated by a transducer into electric
potential. In Guo et al’s work BCG is recorded using a BCG chair [Gul2].

Most of the cardiac identification research to date focus on electrical measurements of
the heart using an electrocardiogram (ECG). For example Kyoso et al has used ECG
waveform features extracted from fiducial points of the ECG signal to identify subjects
[KAO1]. ECG verification and identification systems may require the use of electrodes
to be attached to the surface of the body.

Beritelli et al examined the biometric characteristics of phonocardiogram (PCG) [BS07].
Phonocardiograph requires a high sampling rate. Using an accelerometer for measuring
biometric cardiac signal has advantages in that accelerometers can be found cheaply and
a single point of contact is needed for the measurement. LDV needs a large expensive
laser which would not be appropriate for most applications.

Here we present a detailed examination of the accelerometer as a candidate biometric
sensor measuring cardiorespiratory signal by measuring the chest movements over the
sternum. The outline of the paper is as follows. First we describe the accelerometer data
collection and signal properties. Next the application of time frequency analysis and
feature selection is described. We then present how models are built for person
verification. Finally results are reported and discussed.

2 Methods

2.1 Data Acquisition

Signals are recorded using a 3 axis MEMS accelerometer with a 256 Hz sampling rate.
The accelerometer is coupled to the chest and placed on the center of the sternum. (See
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Figure 1). In addition, a recording of the conventional ECG is obtained. Signal to noise
ratio for ECG signal is approximately 17 dB. All data is digitized with a rate of 256 Hz
and synchronized. Data is obtained during a continuous 4-min recording period, during
which individuals were instructed to sit quietly and avoid voluntary movements. 10
individuals participated and subjects have an average of 304 heart beats per session. The
ages of the individuals varies between 18 to 25 years. In order to assess the stability trait,
these individuals are tested on two sessions (referred to as Sessions 1 and 2) with a one
to two week interval in between the sessions.

Here the Richter vibrations are due to mechanical energy transmitted to the chest from
various cardiac, respiratory, and other physiological sources. We focus here on the
cardiac pulse sequence, which is referred to as accelerometer pulse signal.

Figure 1: Experimental Setup

2.2 Signal Basics

ECG arises from the electrical activity in the heart whereas the accelerometer signal
carries mechanical activity. In the heart cycle electrical activity precedes mechanical
activity. This is reflected in Figure 2 where QRS wave in the ECG precedes the
dominant accelerometer wave, likely the contraction of the ventricle. Figure displays a
12 second segment of the continuously recorded data drawn from a 4 minute recording.

Accelerometer
——ECG

Normalized Voltage/g
Normalized Voltage/g

Accelerometer

0 0.5 1 15 2
time in seconds time in seconds

Figure 2: (a) ECG Signal (Blue) and Accelerometer Signal (Red) are displayed in time. (Right
figure is zoomed version of the left figure). The Accelerometer Signal also carries the slow
varying movements of the respiration signal.
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2.3 Time Frequency Decomposition Based Analysis

In this experiment 900-ms windows were extracted for the analysis of each heart beat
signal. The 900-ms epoch begins 300 milliseconds prior to the location of the detected
ECG R peak point. Detection of R peak points can deterioate under involuntary
movements and on average 1 out of 300 beats were missed due to involuntary
movements. Time frequency analysis based approach was used similar to techniques
used in speech recognition and Laser Doppler Vibrometry [Ch10]. Time frequency
analysis of accelerometer pulse signal was performed separately for the two peak regions
(See Figure 3). The first peak region is from 270 to 470 milliseconds and the second
peak region is 580 to 780 milliseconds. The accelerometer pulse signal around the peaks
is normalized by subtracting the mean and dividing by the standard deviation of the
signal patch. A Short Time Fourier Transform with a Hamming window of 96
milliseconds and a moving step size of 16 milliseconds is computed. The resultant
spectrogram is a 7 (time) x 13 (frequency) matrix. Figure 3 displays the spectrograms of
the accelerometer pulse signal obtained around the two peaks using these parameters.
Later these two spectrogram matrices are combined into one matrix for feature selection.
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Figure 3: Spectrograms around the two peaks of the signal is displayed above.

2.4 Selection of Important Spectral Bins / Statistical Model for Spectrogram with
Informative Components Extraction

Chen et al developed an approach for identification of individuals from the vibration on
the carotid artery measured using a Laser Doppler Vibrometry (LDV) [Ch10]. In their
approach relative entropy of the spectrogram bins is estimated to select bins that carry
significant information in identifying individuals. Freedman et al proved that the Fourier
coefficients for stationary or asymptotically stationary random processes are independent
complex Gaussian random variables [f80]. Chen et al used this theorem and stated that
the magnitude of the Fourier coefficients is exponentially distributed [Ch10]. Chen et al
calculates the relative entropy as in equation 1 where X;,,, (1) is the training data in the
I’th time frequency bin of the n’th spectrogram for the i’th individual. M, (1) is the [’th
component of the background model, and N is the number of training spectrograms.
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Here we employ Chen’s approach for selecting significant spectrogram bins for
verification using equation 1. The Relative Entropy for each bin is estimated with the
assumption that the spectrogram bins are exponentially distributed. In equation 1, M, (1)
is estimated by calculating the overall mean spectrogram of the first session subjects
excluding the individual test subject. The top 50 highest entropy bins of an individual
were selected as features for use in verification

2.4 Person Verification

Background models have been used in biometric verification and in particular speaker
detection [MR99]. Reynolds et al. used a single speaker—independent background model
trained to represent speaker independent distribution of features for speaker detection.
Their system used a likelihood ratio test for verification [MR99]. In this paper we
employ likelihood ratio test for verification of individuals where the numerator denotes
the probability of the signal patch coming from the hypothesized individual (individual
model) and the denominator denotes the probability of it coming from the background
model. Both models are built using Gaussian Mixture Model (GMM) distributions with
diagonal covariance matrices.

Given a set of training vectors, GMM maximum likelihood model parameters are
estimated using the iterative expectation-maximization (EM) algorithm. Individual
subject model is trained from the 1% session of the individual subject data . The
background model is trained using 1% session data of all the subjects excluding the
hypothesized subject (from a set of 9 subjects). Background GMM model for each
individual is trained with 10, 20, 30, 40 mixtures and the model with the minimum
Akaike Information criterion (AIC) is selected and stored. Similarly individual GMM
models are trained with 1,2,3 and 4 mixtures and the model with the minimum AIC is
selected. Testing is performed on the 2™ session data using individual equal error rate
thresholds (See Table 1). The EER threshold selection method and the results are
reported in the next section.

3 Results

False acceptance and false rejection rates (FAR & FRR) are employed as a performance
measure. The FAR and FRR is computed using a preselected threshold where the
threshold is determined from the first session of the data as follows. For each individual
subject the first session data is randomly partitioned into two where first half of the data
is used in building models and the rest of the data is used for selecting the threshold as
displayed in Table 1 (left table). Each subject’s individual and background models are
built with the first half of the data. The second half of the data is used in testing the
models and determining the value of the equal error rate thresholds which are stored for
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the inter-session performance estimation. Table 1 right displays the inter-session training
and testing for an individual using the stored thresholds.

EER threshold determinaton for an individual

Inter-Session training and testing for an individual

Impostor Model Training
Half of randomly selected first session data

9 subjects x ~300 instances/2 ~ 1350 training instances

Impostor Model Training
9 subject’s combined first session data
9 x ~300 ~ 2700 instances

Individual Model Training

Half of randomly selected first session data

1 subject x ~300 instances /2 ~ 150 training instances

Individual Model Training
First session of the subject data

~ 300 instances

EER threshold determination

Rest of first session data

~150 authentic instances, ~1350 impostor instances

Testing

Second session of the data
~2700 impostor instances, ~300 authentic instances

Table 1: Data partitioning for EER threshold determination for an individual is displayed on the
left. Right table displays partitioning of the data for intersession training and testing for an

individual.
Subject # FAR FRR FAR sum 5 FRR sum 5 FAR sum 10 | FRR sum 10
Subject 1 0.04 0.03 0.01 0.04 0.01 0.07
Subject 2 0.00 0.08 0.00 0.00 0.00 0.00
Subject 3 0.03 0.01 0.00 0.01 0.00 0.02
Subject 4 0.15 0.15 0.07 0.01 0.05 0.00
Subject 5 0.02 0.53 0.02 0.62 0.00 0.67
Subject 6 0.27 0.22 0.16 0.11 0.13 0.10
Subject 7 0.24 0.04 0.16 0.07 0.13 0.04
Subject 8 0.02 0.29 0.00 0.24 0.00 0.24
Subject 9 0.29 0.03 0.29 0.03 0.28 0.01
Subject 10 0.32 0.16 0.26 0.09 0.25 0.08
Mean 0.14 0.15 0.09 0.12 0.08 0.13
Std. Dev. 0.12 0.15 0.11 0.18 0.10 0.19

Table 2: Inter-Session FAR and FRR single beat and sum FAR and FRR rates using 5 and 10

heart beats are displayed

The results for the intra-session comparisons are not shown here to conserve space.
Average inter-session FAR and FRR performance numbers for single beats and using the
sum over 5 and 10 heart beats are reported in Table 2. A mean of 0.14 FAR and a mean
of 0.15 FRR was achieved for inter-session person verification with a single heart beat.
Moreover when the sum over 10 heart beats is employed our error rates decreased to a
mean of 0.08 FAR and 0.13 FRR. Summation over more than 10 heart beats did not lead
to a significant increase in performance.
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Figure 4 displays the equal error rates for each individual by using single beat EER and
10 heart beat EER measures. The mean EER for 10 heart beats obtained a rate 0.06. This
suggests a preliminary evidence for uniqueness in the heart signal measured with the
accelerometer placed on the sternum using frequency spectrogram measures.
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Figure 4: Equal error rate performance results are displayed for single beat and 10 heart beat
results

4 Conclusion

Using an accelerometer for measuring biometric cardiac signal has advantages in that
accelerometers can be found cheaply and a single point of contact is needed. Moreover,
accelerometer data is computationally inexpensive in comparison to methods that require
a high sampling rate such as phonocardiogram. Cardiac measurements using an
accelerometer does not require an expensive setup as opposed to Laser Doppler
Vibrometry. Our studies confirm that the accelerometer is promising as a biometric
sensor to measure cardiac pulse signal and has verification strength for individuals. More
subjects are needed to evaluate this approach in larger populations. The signal may be
affected by factors such as physical exercise and mental stress, hence, we plan future
experiments to investigate this.
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