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Abstract: Biometric verification is gaining popularity particularly for personal security

during internet and mobile device usage. A novel approach for verification of individuals

is proposed to measure mechanical cardiovascular activity through an accelerometer

sensor placed on the surface of the chest above the sternum. Time frequency analysis

methods are employed to evaluate biometric performance. Accelerometer measurements

were acquired on two different sessions from ten subjects after delays ranging from 1 to 2

weeks. For individual subject verification, Gaussian mixture models were built per each

individual and a background model was created for the remaining impostors. A likelihood

ratio test with background model was employed for testing. In this study we found

preliminary evidence for the use of the cardiovascular signal measured with an

accelerometer placed on the sternum as a biometric sensor to verify individuals.

Verification testing using this approach obtained a mean EER rate of 0.06 for inter-session

testing.

1 Introduction

Human authentication technologies are commanding more attention recently mainly due

to the increased need for personal security in hand-held devices. Biometric systems are

used to identify or verify the identity of a person based on biological, physiological or

behavioral characteristics. Fingerprints, iris scans, face images are examples of primary

physiological characteristics that have been proposed as biometrics [LWJ98][n99]. Gait

and keystroke are two biometric signatures that have primarily behavioral characteristics

[MR99][DHS06]. Any biometric measure should have universality, uniqueness

(discriminability), permanence (stability), measurability, resistance to circumvention and

acceptability properties. Circumvention is a type of biometric forgery where spoof

signals are being used to gain access to a system [s02]. The heart signal can be more

robust to circumvention attacks as it is hard to mimic a person’s heart signature. In this

paper we propose a new physiological biometric measurement that senses cardiac chest

movements using an accelerometer. Our focus here is to assess the permanence and

uniqueness traits of this biometric signal.

Conventional computer systems authenticate users only at the initial login stage.

Continuous authentication has gained importance during recent years. In continuous

authentication users are not only identified during initial login but are continuously

monitored and verified for their identity. Keystroke biometrics and video of face are
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some examples of a continuous authentication system [FR99][NUJ10]. Cardiac-based

authentication can also be of use as a biometric signal for continuous authentication as

the signal is present and can be readily measured continuously. Moreover, cardiac-based

authentication has some advantages over other aforementioned biometric authentication

systems as the heart is always beating whereas face may be obscured or users may stop

typing.

Heart-based verification measurements can be summarized under three main techniques:

The first group of techniques uses the mechanical activity of the heart, the second group

of techniques measures the electrical activity of the heart and finally the third group of

techniques measure the sound of the heart (phonocardiogram) for verification.

Mechanical activity of the heart in the literature is measured using displacement

cardiograph techniques such as Ballistocardiogram (BCG) [Gu12], seismocardiogram

(SCG) [Za90][Ca07], and finally Laser Doppler Vibrometry (LDV) [Ch10]. Sullivan et

al developed a novel method to remotely sense mechanical activity related to the carotid

pulse with Laser Doppler Vibrometry (LDV) [c09]. In SCG & BCG the minute

movements caused by the beating heart are translated by a transducer into electric

potential. In Guo et al’s work BCG is recorded using a BCG chair [Gu12].

Most of the cardiac identification research to date focus on electrical measurements of

the heart using an electrocardiogram (ECG). For example Kyoso et al has used ECG

waveform features extracted from fiducial points of the ECG signal to identify subjects

[KA01]. ECG verification and identification systems may require the use of electrodes

to be attached to the surface of the body.

Beritelli et al examined the biometric characteristics of phonocardiogram (PCG) [BS07].

Phonocardiograph requires a high sampling rate. Using an accelerometer for measuring

biometric cardiac signal has advantages in that accelerometers can be found cheaply and

a single point of contact is needed for the measurement. LDV needs a large expensive

laser which would not be appropriate for most applications.

Here we present a detailed examination of the accelerometer as a candidate biometric

sensor measuring cardiorespiratory signal by measuring the chest movements over the

sternum. The outline of the paper is as follows. First we describe the accelerometer data

collection and signal properties. Next the application of time frequency analysis and

feature selection is described. We then present how models are built for person

verification. Finally results are reported and discussed.

2 Methods

2.1 Data Acquisition

Signals are recorded using a 3 axis MEMS accelerometer with a 256 Hz sampling rate.

The accelerometer is coupled to the chest and placed on the center of the sternum. (See
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Figure 1). In addition, a recording of the conventional ECG is obtained. Signal to noise

ratio for ECG signal is approximately 17 dB. All data is digitized with a rate of 256 Hz

and synchronized. Data is obtained during a continuous 4-min recording period, during

which individuals were instructed to sit quietly and avoid voluntary movements. 10

individuals participated and subjects have an average of 304 heart beats per session. The

ages of the individuals varies between 18 to 25 years. In order to assess the stability trait,

these individuals are tested on two sessions (referred to as Sessions 1 and 2) with a one

to two week interval in between the sessions.

Here the Richter vibrations are due to mechanical energy transmitted to the chest from

various cardiac, respiratory, and other physiological sources. We focus here on the

cardiac pulse sequence, which is referred to as accelerometer pulse signal.

Figure 1: Experimental Setup

2.2 Signal Basics

ECG arises from the electrical activity in the heart whereas the accelerometer signal

carries mechanical activity. In the heart cycle electrical activity precedes mechanical

activity. This is reflected in Figure 2 where QRS wave in the ECG precedes the

dominant accelerometer wave, likely the contraction of the ventricle. Figure displays a

12 second segment of the continuously recorded data drawn from a 4 minute recording.

Figure 2: (a) ECG Signal (Blue) and Accelerometer Signal (Red) are displayed in time. (Right

figure is zoomed version of the left figure). The Accelerometer Signal also carries the slow

varying movements of the respiration signal.
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2.3 Time Frequency Decomposition Based Analysis

In this experiment 900-ms windows were extracted for the analysis of each heart beat

signal. The 900-ms epoch begins 300 milliseconds prior to the location of the detected

ECG R peak point. Detection of R peak points can deterioate under involuntary

movements and on average 1 out of 300 beats were missed due to involuntary

movements. Time frequency analysis based approach was used similar to techniques

used in speech recognition and Laser Doppler Vibrometry [Ch10]. Time frequency

analysis of accelerometer pulse signal was performed separately for the two peak regions

(See Figure 3). The first peak region is from 270 to 470 milliseconds and the second

peak region is 580 to 780 milliseconds. The accelerometer pulse signal around the peaks

is normalized by subtracting the mean and dividing by the standard deviation of the

signal patch. A Short Time Fourier Transform with a Hamming window of 96

milliseconds and a moving step size of 16 milliseconds is computed. The resultant

spectrogram is a 7 (time) x 13 (frequency) matrix. Figure 3 displays the spectrograms of

the accelerometer pulse signal obtained around the two peaks using these parameters.

Later these two spectrogram matrices are combined into one matrix for feature selection.

Figure 3: Spectrograms around the two peaks of the signal is displayed above.

2.4 Selection of Important Spectral Bins / Statistical Model for Spectrogram with

Informative Components Extraction

Chen et al developed an approach for identification of individuals from the vibration on

the carotid artery measured using a Laser Doppler Vibrometry (LDV) [Ch10]. In their

approach relative entropy of the spectrogram bins is estimated to select bins that carry

significant information in identifying individuals. Freedman et al proved that the Fourier

coefficients for stationary or asymptotically stationary random processes are independent

complex Gaussian random variables [f80]. Chen et al used this theorem and stated that

the magnitude of the Fourier coefficients is exponentially distributed [Ch10]. Chen et al

calculates the relative entropy as in equation 1 where � , (�) is the training data in the

�’th time frequency bin of the �’th spectrogram for the �’th individual. � (�) is the �’th

component of the background model, and � is the number of training spectrograms.
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Here we employ Chen’s approach for selecting significant spectrogram bins for

verification using equation 1. The Relative Entropy for each bin is estimated with the

assumption that the spectrogram bins are exponentially distributed. In equation 1, � (�)

is estimated by calculating the overall mean spectrogram of the first session subjects

excluding the individual test subject. The top 50 highest entropy bins of an individual

were selected as features for use in verification.

2.4 Person Verification

Background models have been used in biometric verification and in particular speaker

detection [MR99]. Reynolds et al. used a single speaker–independent background model

trained to represent speaker independent distribution of features for speaker detection.

Their system used a likelihood ratio test for verification [MR99]. In this paper we

employ likelihood ratio test for verification of individuals where the numerator denotes

the probability of the signal patch coming from the hypothesized individual (individual

model) and the denominator denotes the probability of it coming from the background

model. Both models are built using Gaussian Mixture Model (GMM) distributions with

diagonal covariance matrices.

Given a set of training vectors, GMM maximum likelihood model parameters are

estimated using the iterative expectation-maximization (EM) algorithm. Individual

subject model is trained from the 1
st
session of the individual subject data . The

background model is trained using 1
st
session data of all the subjects excluding the

hypothesized subject (from a set of 9 subjects). Background GMM model for each

individual is trained with 10, 20, 30, 40 mixtures and the model with the minimum

Akaike Information criterion (AIC) is selected and stored. Similarly individual GMM

models are trained with 1,2,3 and 4 mixtures and the model with the minimum AIC is

selected. Testing is performed on the 2
nd
session data using individual equal error rate

thresholds (See Table 1). The EER threshold selection method and the results are

reported in the next section.

3 Results

False acceptance and false rejection rates (FAR & FRR) are employed as a performance

measure. The FAR and FRR is computed using a preselected threshold where the

threshold is determined from the first session of the data as follows. For each individual

subject the first session data is randomly partitioned into two where first half of the data

is used in building models and the rest of the data is used for selecting the threshold as

displayed in Table 1 (left table). Each subject’s individual and background models are

built with the first half of the data. The second half of the data is used in testing the

models and determining the value of the equal error rate thresholds which are stored for
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the inter-session performance estimation. Table 1 right displays the inter-session training

and testing for an individual using the stored thresholds.

EER threshold determinaton for an individual

Impostor Model Training

Half of randomly selected first session data

9 subjects x ~300 instances/2 ~ 1350 training instances

Individual Model Training

Half of randomly selected first session data

1 subject x ~300 instances /2 ~ 150 training instances

EER threshold determination

Rest of first session data

~150 authentic instances, ~1350 impostor instances

Inter-Session training and testing for an individual

Impostor Model Training

9 subject’s combined first session data

9 x ~300 ~ 2700 instances

Individual Model Training

First session of the subject data

~ 300 instances

Testing

Second session of the data

~2700 impostor instances, ~300 authentic instances

Table 1: Data partitioning for EER threshold determination for an individual is displayed on the

left. Right table displays partitioning of the data for intersession training and testing for an
individual.

Table 2: Inter-Session FAR and FRR single beat and sum FAR and FRR rates using 5 and 10

heart beats are displayed

The results for the intra-session comparisons are not shown here to conserve space.

Average inter-session FAR and FRR performance numbers for single beats and using the

sum over 5 and 10 heart beats are reported in Table 2. A mean of 0.14 FAR and a mean

of 0.15 FRR was achieved for inter-session person verification with a single heart beat.

Moreover when the sum over 10 heart beats is employed our error rates decreased to a

mean of 0.08 FAR and 0.13 FRR. Summation over more than 10 heart beats did not lead

to a significant increase in performance.

Subject # FAR FRR FAR sum 5 FRR sum 5 FAR sum 10 FRR sum 10

Subject 1 0.04 0.03 0.01 0.04 0.01 0.07

Subject 2 0.00 0.08 0.00 0.00 0.00 0.00

Subject 3 0.03 0.01 0.00 0.01 0.00 0.02

Subject 4 0.15 0.15 0.07 0.01 0.05 0.00

Subject 5 0.02 0.53 0.02 0.62 0.00 0.67

Subject 6 0.27 0.22 0.16 0.11 0.13 0.10

Subject 7 0.24 0.04 0.16 0.07 0.13 0.04

Subject 8 0.02 0.29 0.00 0.24 0.00 0.24

Subject 9 0.29 0.03 0.29 0.03 0.28 0.01

Subject 10 0.32 0.16 0.26 0.09 0.25 0.08

Mean 0.14 0.15 0.09 0.12 0.08 0.13

Std. Dev. 0.12 0.15 0.11 0.18 0.10 0.19
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Figure 4 displays the equal error rates for each individual by using single beat EER and

10 heart beat EER measures. The mean EER for 10 heart beats obtained a rate 0.06. This

suggests a preliminary evidence for uniqueness in the heart signal measured with the

accelerometer placed on the sternum using frequency spectrogram measures.

Figure 4: Equal error rate performance results are displayed for single beat and 10 heart beat

results

4 Conclusion

Using an accelerometer for measuring biometric cardiac signal has advantages in that

accelerometers can be found cheaply and a single point of contact is needed. Moreover,

accelerometer data is computationally inexpensive in comparison to methods that require

a high sampling rate such as phonocardiogram. Cardiac measurements using an

accelerometer does not require an expensive setup as opposed to Laser Doppler

Vibrometry. Our studies confirm that the accelerometer is promising as a biometric

sensor to measure cardiac pulse signal and has verification strength for individuals. More

subjects are needed to evaluate this approach in larger populations. The signal may be

affected by factors such as physical exercise and mental stress, hence, we plan future

experiments to investigate this.
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