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A robust fingerprint presentation attack detection method
against unseen attacks through adversarial learning
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Abstract: Fingerprint presentation attack detection (PAD) methods present a stunning performance
in current literature. However, the fingerprint PAD generalisation problem is still an open challenge
requiring the development of methods able to cope with sophisticated and unseen attacks as our
eventual intruders become more capable. This work addresses this problem by applying a regulari-
sation technique based on an adversarial training and representation learning specifically designed
to to improve the PAD generalisation capacity of the model to an unseen attack. In the adopted ap-
proach, the model jointly learns the representation and the classifier from the data, while explicitly
imposing invariance in the high-level representations regarding the type of attacks for a robust PAD.
The application of the adversarial training methodology is evaluated in two different scenarios: i)
a handcrafted feature extraction method combined with a Multilayer Perceptron (MLP); and ii) an
end-to-end solution using a Convolutional Neural Network (CNN). The experimental results demon-
strated that the adopted regularisation strategies equipped the neural networks with increased PAD
robustness. The adversarial approach particularly improved the CNN models’ capacity for attacks
detection in the unseen-attack scenario, showing remarkable improved APCER error rates when
compared to state-of-the-art methods in similar conditions.
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1 Introduction
Biometric recognition is nowadays a mature technology used in many government and
civilian applications such as e-passports, ID cards, border control and in most of unlock/au-
thentication systems present in handheld devices. Fingerprint recognition systems (FRS)
in particular are widely used probably having been this the first biometric trait used to
identify people. Fingerprint presentation attack detection (FPAD) methods have been de-
veloped as an attempt to overcome the vulnerability of FRS to spoofing. However, most
of the traditional approaches have been quite optimistic about the behavior of the intruder,
assuming the use of a previously known type of attack sample. This assumption has led to
the overestimation of the performance of the methods, using both live and spoof samples
to train the predictive models and evaluate each type of fake samples individually [SC15].

The presentation attack detection (PAD) generalisation capacity of a model to unseen at-
tacks, has been addressed before regarding iris, fingerprint and face. However, it still re-
mains a challenging topic. Whether in research or deployment of PAD systems in commer-
cial applications, if the classification models are designed and evaluated using bona fide
presentations and presentation attack instruments (PAI) belonging only to specific species
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(PAISp), then the case when the model is confronted with a PAISp which is significantly
different from the ones used for training is overlooked. In the worst case scenario, such
sample may have higher probability to circumvent the system than the ones drawn from
the original training dataset and the model may fail to generalise robustly and detect the
threat. To solve this research question is necessary to develop robust methods to cope
with sophisticated and unseen attacks as our eventual intruders become more capable and
successfully develop new spoofing techniques.

The pioneer work in the evaluation of PAD methods across different types and unseen
PAISp appeared in the fingerprint domain with the work of Marasco and Sansone [MS11].
The works of Rattani & Ross [RSR15] and Sequeira & Cardoso [SC15], despite using dif-
ferent approaches, both relied on the idea of enforcing the knowledge of the bona fide (BF)
presentations over the presentation attack (PA) to better deal with unseen PAISp. With the
rise of deep learning (DL) techniques, PAD methods based on deep representations were
proposed using the binary approach [Me15, Pi18]. Followed by works tackling DL finger-
print PAD methods robustness to unseen PAISp. In [To18], was proposed a highly accurate
method based on CNNs and own multi-spectral short wave infrared imaging. The LivDet
competition series in 2015 [Mu15] included evaluation with unseen attacks, however un-
fortunately this scenario was not tested in following editions. The PAD generalisation
problem has been addressed regarding other biometric traits. Regarding iris, Sequeira et
al [Se16] stated that whenever a new PAISp is presented in the test step, the performance
of the classifier drops and improvement can be obtained using BF one-class classification;
and in [Fe19a] a successful adversarial strategy is proposed. Nevertheless, most of the
recent approaches, either make overly optimistic assumptions about the attacker - binary
classification approaches - or only use part of the data (and therefore, of the knowledge)
available at training time to design the models - one-class approaches. Alternatively, the
approach evaluated in this work uses the information of both BF and known PA and is
robust to unseen PAI species.

In this work, the FPAD generalisation problem is addressed by means of a regularisation
technique applied to artificial neural networks combining adversarial training with rep-
resentation learning. In this approach, designed to improve the generalisation capacity to
unseen attacks, the proposed model jointly learns the representation and the classifier from
the data, while explicitly imposing ‘PAI-species’-invariance in the high-level representa-
tions for a robust PAD method. The algorithm applied here was presented by Ferreira et
al [Fe19b] in the context of sign language recognition, with a later application to iris
PAD [Fe19a]. This approach builds on those initially introduced by Ganin et al [GL15],
for domain adaptation, and Feutry et al [Fe18], to learn anonymized representations.

The contributions of this work are then two-fold: 1) the application of the adversarial
training concept to the generalisation to unseen attacks problem in fingerprint PAD; and
2) the evaluation of the adversarial training methodology in two different scenarios: i) a
handcrafted feature extraction method combined with a Multilayer Perceptron (MLP); ii)
an end-to-end solution using a Convolutional Neural Network (CNN).
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The main definitions related to PAD concepts used throughout this paper are the ones
stated in the International Standard ISO/IEC 30107-3 Information Technology — Biomet-
ric presentation attack detection — Part 3: Testing and reporting [IS17].

This paper is organised as follows. This section summarises the related and proposed work
and how it addresses the research question posed. In section 2 the methodology used is
detailed. Section 3 describes the experimental setup including the results and discussion.
Section 4 concludes the work with the final remarks.

2 Methodology
This section summarises the methodology from Ferreira et al [Fe19a], which is adopted
here with the appropriate adjustments. The underlying idea behind this approach is that, in
order to generalise well to unseen attacks, the model should not specialize in discriminat-
ing any of the PAI species (PAISp) presented at training time and, therefore, the learned
internal representations should be invariant to the PAISp. For this purpose, the model
combines an adversarial approach with a species-transfer training objective, which are
described in the remaining of the section. The high-level architecture of the model is sum-
marized in Figure 1. Throughout this section, it should be assumed that one has access to a
labeled dataset X= {XXX i,yi,si}N

i=1 of N samples, where XXX i represents the i-th input sample,
and yi and si denote the corresponding class label (bona fide or attack) and the PAI species
(only defined for attack samples), respectively. Let Xb f and Xa be these partitions of X for
bona-fide and attack samples, respectively, and Nb f and Na their respective cardinality.
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Fig. 1: The architecture of the proposed species-invariant neural network (from [Fe19a]).

2.1 Adversarial learning
The model comprises three main sub-networks: (i) an encoder network h(···;θh) that re-
ceives input samples and maps them to a latent space; (ii) a task-classifier network f (···;θ f )
which aims to distinguish attack and bona fide samples, mapping latent representations to
the corresponding class probabilities; and (iii) a species-classifier network g(···;θg) that re-
ceives latent representations from attack samples and aims to predict the corresponding



4 J. Pereira, A.F. Sequeira, D. Pernes, J.S. Cardoso

PAI species. In order to learn ‘PAI-species’-invariant latent representations, an adversarial
learning scheme is adopted. The species-classifier is trained to minimize the classification
loss of the PAI-species:

min
θg

Lspecies(θh,θg) = min
θg

{
− 1

Na

Na

∑
i=1

log p(si|h(XXX i;θh);θg)

}
, XXX i ∈ Xa. (1)

Simultaneously, the task-classifier and the encoder are jointly trained to minimize the clas-
sification loss between attacks and bona fide samples, while trying to keep the PAI-species
classification close to random guessing (i.e., close to a uniform distribution):

min
θh,θ f

L (θh,θ f ,θg) = min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)

}
, (2)

where

Ltask(θh,θ f ) =−
1
N

N

∑
i=1

log p(yi|h(XXX i;θh);θ f ), (3)

Ladv(θh,θg) =
1

Na

Na

∑
i=1

DKL(US(s)||p(s|h(XXX i;θh);θg), XXX i ∈ Xa. (4)

Here, US denotes a uniform distribution over the set of PAI-species present in the training
set.

2.2 Species-transfer objective

In addition to the adversarial training, a species-transfer objective is employed to further
encourage the latent representations to be species-invariant. This objective enforces the
means of the latent representations of different species to coincide. Therefore, this is a
weaker constraint than the one imposed by the adversarial objective, but it has a beneficial
effect by speeding up the convergence to invariant representations.

Specifically, a layer-wise loss D (m) between the hidden representations h(m)(···;θh) of two
species s and t at the output of the m-th layer of the encoder is defined as:

D (m)(s, t;θh) =
∣∣∣∣∣∣ 1

Ns
∑

i: si=s
h(m)(XXX i;θh)−

1
Nt

∑
j: s j=t

h(m)(XXX j;θh)
∣∣∣∣∣∣2

2
, (5)

where || ··· ||2 is the `2-norm, and Ns and Nt denote the number of training examples of
species s and t, respectively. The overall species-transfer loss Ltransfer is then a weighted
sum of the losses computed at each layer of the encoder network:

Ltransfer(θh) =
M

∑
m=1

β
(m) L

(m)
transfer(θh) =

M

∑
m=1

β
(m)

∑
s∈S

∑
t∈S,
t 6=s

D (m)(s, t;θh), (6)
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where β (m) ≥ 0 is a hyperparameter that controls the relative importance of the loss ob-
tained at the m-th layer and the species-transfer loss at the m-th layer is the sum of the
pairwise distances between all PAISp.

The overall objective function of the encoder and task classifier is then the combination of
equations (2) and (6):

min
θh,θ f

L (θh,θ f ,θg) = min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)+ γLtransfer(θh)

}
, (7)

where γ ≥ 0 is the weight that controls the relative importance of the species-transfer term.
The objective for the species-classifier remains unchanged, i.e. as in equation (1).

3 Experimental setup
PAD Performance Evaluation Metrics: The Attack Presentation Classification Error
Rate (APCER) and the Bona-fide Presentation Classification Error Rate (BPCER) for
an APCER of 5% (BPCER@APCER=5%) as defined in the ISO/IEC 30107-3 [IS17]. The
Equal Error Rate (EER) analyses the distributions of the APCER and BPCER and corre-
sponds to the minimum value where both are equal.

Dataset: The Fingerprint Liveness Detection Competition 2015 (LivDet2015) [Mu15]
training dataset comprises a set of five subsets, each one corresponding to a specific fin-
gerprint sensor. For each sensor there are bona fide samples and different types of PAI.

Evaluation protocols: The adopted framework is denominated “unseen-attack”, as the
presentation attack instrument seen in the testing phase is unknown to the model. Thus,
the methods are evaluated by saving one type of attack - PAI species - for testing while the
training is done with the remaining presentation attack instruments and bona fide samples.

Handcrafted feature extraction method: The extracted features that served as input for
the MLP were the histogram of intensity, the histogram of the Local Binary Patterns (LBP)
[OPM02] and the histogram of the Local Phase Quantization [OH08].

Implementation details: The models were implemented in Python with the PyTorch li-
brary. The training phase was conducted with the Adam optimizer and a batch size of 16.
The learning rate and the `2 regularization weight were both set to 1e−04. The hyperparam-
eters λ and γ , specific to the adopted regularization, were optimized through a grid search
and cross-validation on the training dataset, varying on logaritmic scale in the interval
[1e−03,1]. The Ltransfer penalty is applied to the last layer of the encoder network. Regard-
ing the architecture of the MLP, the encoder corresponds to [ (FC(128) →ReLU) x 3 ] and
the classifiers also to [ (FC(128) →ReLU) x 3 ], where FC(n) notes a fully connected layer
with n neurons. For the CNN model, the encoder corresponds to [ (C(64) →ReLU) x 2
→MaxPool →(C(128) →ReLU) x 2 →MaxPool →(C(256) →ReLU) x 4 ], where C( f )
notes a convolutional layer with f filters, kernel 3x3, stride 1 and padding 1. The CNN’s
classifiers both correspond to [ (FC(4096) →ReLU) x 2 →(FC(1000) →ReLU) ].

Results and discussion: In Table 2, the results of the baseline methods (MLP and CNN)
and their respective regularised versions (MLPreg and CNNreg) are displayed. Comparing
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the performance of the baseline and regularised versions, it can be observed that: i) re-
garding the MLP, except for the Hi Scan sensor, in all the cases there is a significant
improvement in at least 2 out of the 3 presented metrics; and ii) regarding the CNN, there
is a significant improvement without exception in all error rates, with a particular sig-
nificant improvement of the APCER value from 4.12% to 0.81% (for the average of the
five sensors). From these observations, it can be stated with confidence that, overall, the
regularisation technique improves the PAD robustness of both the models.

Still, it is arguable that the performance of the MLP, even the baseline version, outper-
forms the CNN results. Nevertheless, it should be noted that: i) the first scenario is taking
advantage of rich handcrafted features; and ii) the data available for training is not enough
to take the best out of the CNN learning capabilities. Thus, on the one hand the end-to-end
solution provided by the CNN saves a considerable effort in the computation of the feature
extraction step and, on the other hand, increasing the amount of training data will certainly
increase the performance of these models, as there is a high potential for growth.

Tab. 1: Baseline and proposed regularised approaches - Cross Match, Digital Persona and Green Bit
sensors. (BPCER@APCER = 5% noted by BPCER@5.)

Method
PAD metrics (%)

Cross Match Digital Persona GreenBit
APCER BPCER@5 EER APCER BPCER@5 EER APCER BPCER@5 EER

MLP 0.07 7.57 4.33 0.00 0.53 0.45 0.70 0.20 1.10
MLPreg 0.13 4.30 3.70 0.00 0.00 0.30 0.70 0.63 0.93

CNN 5.00 6.25 8.70 5.60 10.80 7.28 3.03 14.13 7.05
CNNreg 1.07 4.65 2.82 0.60 3.85 2.45 0.60 2.93 1.63

Tab. 2: Baseline and proposed regularised approaches - Hi Scan and Time Series sensors, as well as
the average of the results for the 5 sensors. (BPCER@APCER = 5% noted by BPCER@5.)

Method
PAD metrics (%)

Hi Scan Time Series Average of the 5 sensors
APCER BPCER@5 EER APCER BPCER@5 EER APCER BPCER@5 EER

MLP 0.30 2.83 3.03 0.00 0.03 0.60 0.21 2.23 1.90
MLPreg 1.30 3.60 3.38 0.00 0.03 0.10 0.43 1.71 1.68

CNN 5.60 20.15 11.25 1.37 9.10 4.07 4.12 12.09 7.67
CNNreg 1.20 1.21 1.04 0.60 6.30 2.70 0.81 3.79 2.13

Despite the evidences showed in favour of the effectiveness of the regularisation technique,
it is crucial to compare the results obtained with the proposed approach against the current
state-of-the-art DL based PAD that tackle the unseen-attack scenario. This is not an easy
task as most works still opt for a more traditional approach, based on binary classification
limited to one type of attack at a time. From the available literature using similar databases
and addressing the generalisation problem, stands out the meritory initiative of Fingerprint
LivDet2015 of evaluating the methods with some unseen types of PAISp.

Table 3 presents the results of the proposed regularised CNN version, CNNreg, along-
side with the comparable literature methods currently available. The comparison is made
with the best results from the LivDet2015 [Gh17, Mu15] for common subsets of the used
database, as well as with an additional recent publication [Pa19]. From the observed re-
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sults, it is remarked the significant improvement of the CNNreg in two out of three sensors
and undoubtedly when considering the average values. In particular, the CNNreg provided
an APCER value of 0.76% against 2.09% and 6.33% of the other methods (for the average
of the three sensors).

Tab. 3: Literature and proposed approach.(BPCER@APCER = 5% noted by BPCER@5.)

Method
PAD metrics (%)

Cross Match Digital Persona GreenBit Average
APCER BPCER@5 APCER BPCER@5 APCER BPCER@5 APCER BPCER@5

Proposed CNNreg 1.07 4.65 0.60 3.85 0.60 2.93 0.76 3.81
LivDet2015 [Gh17, Mu15] 1.68 ≈ 0.80 0.60 ≈ 10.00 4.00 ≈ 5.00 2.09 ≈ 5.27

Park et al [Pa19] 0.00 - 11.00 - 8.00 - 6.33 -

4 Conclusions
This work addresses the fingerprint PAD generalisation problem through an adversarial
training objective which combines representation learning and artificial neural networks.
The method is specifically designed to address the generalisation capacity to an unseen
attack by enforcing the learning of the task of distinguishing the bona fide from the attack
presentations while ensuring the invariance between the different type of the PAI species.

Comparing the baseline and regularised versions, it can be stated that, overall, the regular-
isation technique improves the PAD robustness of both the models. Despite the fact that
the MLPreg fed with rich handcrafted features proved to be competitive, the fact is that
CNNreg has more potential for growth and for increasing its performance in the future.

The comparison of the proposed approach against the current DL based PAD methods
that tackle the unseen-attack scenario, is not an easy task as most works still opt for a
more traditional approach based on binary classification limited to one type of attack at a
time. Still, from the comparison with the available literature using similar databases and
addressing the generalisation problem, it is verified a significant superiority of the CNNreg
in two out of three sensors and undoubtedly when considering the average values.
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