
Building Secure Systems Using a Security Engineering
Process and Security Building Blocks ∗

Andre Rein, Carsten Rudolph, Jose Fran. Ruiz

(andre.rein, carsten.rudolph, jose.ruiz.rodriguez)@sit.fraunhofer.de

Abstract:
In today’s software development process, security related design decisions are

rarely made early in the overall process. Even if security is considered early, this
means that in most cases a more-or-less encompassing security requirements analysis
is made. Based on this analysis best-practices, ad-hoc design decisions or individual
expertise is used to integrate security during the development process or after weak-
nesses are found after the deployment. This paper explains the SecFutur security en-
gineering process with a focus on Security Building Block Models which are used to
build security related components, namely Security Building Blocks. These Security
Building Blocks represent concrete security solutions and can be accessed via SecFu-
tur patterns on the level of domain-specific models for particular application domains.
The goal of this approach is to provide already defined and tested security related
software components, which can be used early in the overall development process, to
support security-design-decision already while modeling the software-system. Secu-
rity Building Blocks are discussed in the context of the SecFutur Security Engineering
Process with its requirement analysis and definition of security properties.

1 Introduction

Considering security in all phases of a system development process means to introduce
an additional view in all phases including among others requirements specification, de-
sign decisions, implementation or documentation. Further, in many cases expert knowl-
edge on security topics is essential for the development of secure systems. The SecFutur
project [SF] develops a process that provides this additional view through UML-based se-
curity models of a system and combines these with support for design decisions based on
security building blocks that are also modeled using UML.

Large parts of the SecFutur process use domain-specific artifacts. The domain-independent
parts are a core security meta-model defining the concepts used in modeling security and
the rather technical security building blocks describing how to use concrete implementa-
tions of security functions. Domain-specific parts include domain-specific security mod-
els, specific system models and security patterns that describe how security building blocks
can be used and combined within a particular application domain to satisfy specific secu-

∗This work was supported by the EU FP7 project SecFutur

529



rity requirements.

The Goal of SecFutur is to provide a modular modeling framework that allows the creation
of precise and pluggable representations of the specialized knowledge of different appli-
cation domains. The design of the representation mechanisms must also take into account
the different roles involved. The specialized knowledge must serve different purposes. Of
course, it should increase the security of the system. Further, documentation of security
requirements and security design decisions is very important in the engineering process
and should be tool-supported. Finally, the framework should provide useful knowledge
to system engineers (security requirements, threats to consider, available solutions, trust
models,. . . ) and help developers to correctly implement and / or integrate security solu-
tions, do optimization, testing, assurance, etc.

This paper describes the SecFutur security engineering process and focuses on the model
for security building blocks (SBBs). These SBBs are a core element of the SecFutur
process, as they represent domain-independent security functions and help developers to
understand how to securely use particular security functions. Furthermore, in addition to
interfaces, conditions and information on the functionality, SBBs also provide information
on the set of assumptions that needs to be satisfies in the system. These assumptions can
then either be realized by additional building blocks or can be subject to risk analysis and
concrete threat analyses.

2 State of the Art

A large variety of security technology and individual security solutions exists that can
be used by system developers to support security in their systems. Thus, in principle, a
developer should be able to take security design decisions early in the development process
and just choose from the large set of available security solutions this idealized view of
development processes is only valid in very rare cases. The usual approach is a mixture
of more-or-less systematic security requirements analysis, ad-hoc design decisions, some
best practices, individual security expertise and finally step-by-step improvement after
weaknesses have been found either by security testing or in the deployed product.

Another interesting aspect is that only a rather small set of available security solutions is
actually used in real-life products and is obviously not available in the current design pro-
cesses. One prominent example is the Trusted Platform Module (TPM) as specified by the
Trusted Computing Group (TCG) [Gro]. A very interesting work [Pea02] describes TPMs
as the future elements for security. This security chip is already available in thousands
of notebooks and laptops. A TPM potentially can provide various security functionalities
that can be used to secure network connections, monitor the security of devices, securely
store data, etc. However, only a very small subset of installed TPMs is actually activated
and used. Furthermore, if it is used only a very small subset of available functions of the
TPM is involved. Experience with developers interested in applying the TPM has shown
that one of the reasons for the missing uptake of this technology is the complexity of the
specifications. It is not clear how combinations of TPM commands (or TCG software

530



stack commands) can actually implement some particular security services. Thus, making
advanced security functionality available for development processes is a challenge.

A different approach for security solutions are security patterns. Usually, technical details
and implementation details necessary for development are not included in the concept of
security patterns [Ste06, Roe01]. Some interesting works are the one presented by H.
Lohr et al. [LSW10] where he presents patterns for secure boot and secure storage in
computer systems, the security patterns for mobile ad hoc networks developed by Jayraj
Signh et al. [SSS11], security patterns for agent systems defined by Paolo Giorgini et al.
[MGS03] or the work for architecting software with security patterns done by Riccardo
Scandariato et al. [SYHJ08]. Although there exist more works for using security patterns
as security solution of systems one problem they have is that they do not cover all the
different phases of the creation of a system, as they are used for design or implementation
but not in the modeling phase. This can create several problems, being one of them the
outdating of the models of the system. For example, if, after modeling the system, an
engineer uses a security pattern that needs additional elements such as a database or key-
store the system will be modified with elements not defined in the modeling phase. These
new elements can create new configurations or security flaws that were not expected. For
that reason, our approach uses the idea of security patterns and extends it with Security
Building Blocks (SBBs). They are represented by UML models in order to describe the
functionality and characteristics of security properties in a real world scenario. These SBB
models reflect security related software components, which are encapsulated abstractions
of program functionalities. Software abstraction, encapsulation and information hiding
build the basis of those SBBs. The main focus of using Building Blocks has always been
reusability, maintainability and documentation. An interesting work [LSW87] describes
these basic concepts with relation to General Building Blocks used in software develop-
ment. Consequently, this work tries to refine those general concepts and apply them in the
field of security, to model and build more secure systems.

The security patterns are not used directly with the security requirements of the system.
They are connected to them by means of the security properties defined in the Domain Se-
curity Meta-models (explained in the following section). Each security property provides
the solution as a security pattern and this one provides a set of SBBs for the implementa-
tion of the solution. Thus, the security patterns are not related to the security requirements
of the system but to its security properties. This way the modeling phase and implemen-
tation phase of a system are related in a direct way and it is naturally embedded in the
system.

3 Security Engineering Process

The development of systems composed of embedded components is a very complex task
due to their specific characteristics and nature. Many systems of embedded components
are composed of a lot of different embedded devices, such as the smart metering system. In
these systems, many smart metering devices obtain the information of metering from many
houses, process and send it to a different node. This node checks, processes, stores, etc. the

531



information and sends it to another node, which works with the information provided from
many nodes as that one. The systems of embedded components has a reactive nature too.
When they process information they may need to react in a specific way, e.g. activating
other systems, sending information, etc. One example is the forest control system, where,
if they detect a fire, they have to send an alarm. Following this last example we can see that
these systems have a real-time nature. They obtain the information, process it and work
in real-time. For example, in the Mobile ad-hoc Network (MANET), the nodes enter and
exit the system without warning, so the system must react in real-time to these changes
and act accordingly. These systems use many components and resources, being hardware
or software. For example, they can work with external components such as transmitters,
video cameras, sensors or resources such as key-stores, databases, APIs, TPMs, etc.

Through some research done by the companies involved in the SecFutur project and others
related to the development of TPM systems, real-time systems, etc. it was learnt that
companies usually do not follow a clearly defined engineering process for the development
of these systems. Their way of work is start developing and implementing as soon as
they can. They sometimes follow a methodology but their focus is to start developing
and adding functionalities as they find it necessary. This implies that security is either
implemented later in the process as an extra feature or just ignored. Sometimes, when the
functionality of the system is almost complete they start adding security. Obviously, in this
stage, security is not naturally integrated in the system. Of course, this observations does
not hold for systems with strong safety regulations, where strict waterfall development
models are in place. In such a clearly structured development process, current threat-
based approaches are also not suitable, because the detection of threats and high risks later
in the development process requires to start-over and go back to the requirements phase.

SecFutur proposes a security engineering process that allows to develop and use security
solutions in order to satisfy the security requirements of systems of embedded components.
It integrates, in a flexible way, security solutions in a framework for the development of
systems composed of embedded components. Its main objective is to help developers
and engineers in the management of security aspects and its use in System Models. The
process can be applied to existent processes, improving the security functionality of any
process used to model a scenario. Due to size limitations it is not possible to explain all the
details and characteristics of the SecFutur Security Engineering Process. A more complete
description of the process itself can be found at [RHM11].

Some of the most important characteristics of the process are:

• It helps system developers in making design decisions for finding the best solution
for their systems

• It facilitates the certification and the national / international regulations of the secu-
rity artifacts

• It satisfies the specific requirements of the systems

• The implementation solutions are provided by means of SecFutur Patterns (SFPs)
and Security Building Blocks (SBBs), where domain-specific SFPs define how do-
main -independent SBBs are used and composed within a particular domain.

532



Figure 1: SecFutur Layers

3.1 Artifacts

The different artifacts of the security engineering process have specific objectives and
functionalities. Figure 1 describes the artifact structure.

The SecFutur layers go from more to less abstraction and specification. The upper one, the
Core Security Meta-model (CSM), is the most abstract. It is based on the UML Standard
Meta-model. This meta-model is used as basis for the definition of the different UML
elements used in the creation of the CSM such as classes, relations, attributes, etc. The
CSM defines the grammar and language for the definition of the domain-specific security
artifacts. Because of that, the CSM is domain independent and only defines the abstract
architecture. The specification of the security properties and characteristics of each domain
is done in the Domain Security Meta-model (DSM). This one uses the CSM as basis
because it defines the language. Finally, the System Model is the most specific layer. It is
the model of the use case. In this model the system engineer imports a DSM (or various
DSMs) and apply its security properties in order to fulfill the security requirements of the
system. As we said before, due to the size limitations the reader can find more information
of these layers in [RHM11].

The DSMs, as we explained before, define the specification of the domain security knowl-
edge. It allows experts to capture their security knowledge (properties, solutions, threats,
etc.) related to specific scopes (standards, company policies, etc.) in a specific domain
(Mobile ad hoc Network, Smart meters, etc.). The security properties defined in a DSM
are related to implementations by means of SecFutur Patterns (SFP) and Security Build-
ing Blocks (SBBs). The security properties define the characteristics and attributes of the
solution and the SFP and SBBs their implementation using software / hardware elements.
A SecFutur Pattern is a evolved version of the traditional security patterns [Ste06, Roe01],
adapted and extended to the SecFutur Engineering Process. It provides information such
as the security properties provided and the elements of the system where they can be ap-
plied, some examples of use (with support for computer-processing), the elements of the
system model that must inter-operate with the pattern elements, a list of restrictions and

533



metrics of the pattern with regards to the security properties defined before, the elements
that must be added to the system in order for the pattern to work (this part is done by using
the Security Building Block Models (SBBMs), a series of rules (in OCL format) used to
verify the sound integration of the pattern in the system, a series of assumptions that apply
to the system once the pattern has been integrated, some known uses and finally related
patterns. Due to size limitations we only do a superficial description of this element. Thus,
each security property is attached to a SFP, which defines its implementation by means of
a SBBM and SBBs. The Security Building Block Models define the structure, relations
and elements of the solution. Its basic elements are the SBBs. A SBB (or the aggrega-
tions of several SBBs) can provide the implementation solution for a specific property in
a specific DSM. Resuming, each security property of a DSM has a SFP that describes its
solution, which is implemented by means of SBBs. Following we describe these elements,
its characteristics and functionality.

The creation of a DSM involves two different steps. First the analysis of the domain and
second the definition of the different security properties. Although the two steps are out
of scope of this paper we describe them briefly so the reader can understand better how
the Security Building Block Models and the Security Building Blocks provide solutions
to a great number of security properties of different domains. Briefly, the analysis of the
domain checks the possible security threats and security properties of the system. This
analysis provides the necessary information for the definition of the security properties.
Once the security domain expert has the information of the domain, she starts modeling
security properties. Each security property is composed of several elements such as its
threats, assumptions, certifications, V&V (Validation & Verification) elements, etc. After
the security domain expert defines a security property she searches for the SBB model that
can provide a solution. The search of the solution is done by checking the characteristics
of the security property in the list of SBB models. The SBB models are defined by the
security property they fulfill, some requirements of the system (such as the elements they
need in order to work correctly), the domain, etc. When the SBB model is found, it is
attached to the SFP and then linked to the security property. If a combination of SBBs is
needed, a more complex SFP needs to be build and validated / verified within the context
of the DSM.

4 Security Building Blocks

In contrast to a security pattern, one single Security Building Block does not describe a
complex integrated security solution. SBBs should be seen as encapsulated components
that are domain-independent and can interact with other components in order to provide
a clearly defined security service. The concept of abstracting software functionalities in
SBBs can use other SBBs and can also interact with other components in a clearly defined
way. In principle, a SBB can be just a concrete implementation of a security solution.
However, in order to integrate a SBB into the engineering process, a description of the
SBB is required. Here, this description is done in terms of a UML model. Thus, a so-
called SBB Model represents one (or several) instantiations (i.e. implementations) of the

534



SBB.

As SBBs may reflect concrete implementations of a Security Solution, they also need to
provide an interface which defines method names and data types used by the SBB. On one
hand this is documentation for the system modeler, to better understand how the SBB can
be integrated in the system model. On the other hand it serves as a concrete specification
how the SBB may be implemented in a concrete realization. In addition to the security
properties (or security service) provided by the SBB, this model also needs to provide
information on preconditions and constraints, as well as on postconditions on the system
that need to be fulfilled after the SBB was applied.

The SBB Meta-model, which is described in detail in Section 4, defines all the different
artifacts and their relationships which were concisely presented in this section.

4.1 The Security Building Block Meta-model

Figure 2: SBB Meta-model

The Security Building Block Meta-model (SBB Meta-model), as shown in Figure 2, de-
lineates artifacts and relationships to construct Security Building Block Models (SBBM).
More concretely, the SBB Meta-model acts as a determining factor to depict one or more
Security Building Blocks and their interactions with other artifacts to build a SBBM.

Different artifacts enable the SBBM designer to describe their SBBMs in a concrete way
(as a detailed view of internal SBBM components), but also leave the possibility to de-
scribe interfaces which may be used from a system model. Although a concrete SBBM

535



and its SBBs may be used in concrete implementations, its main purpose is helping to
represent Security Properties at the implementation level. These implementations provide
the solutions of the security properties defined in the Domain Security Meta-model. The
solutions are specified by means of Security Patterns.

Each SBBM and so their SBBs comes with its own dependencies and conditions. These
dependencies may be whole system components (databases, key-chains, TPMs or other
external components), simple data structures (cryptographic keys, plain-text / encrypted
data, etc.) or even other SBBs. In a later stage of the development of the SecFutur tools,
all these dependencies should be resolved automatically and imported into the concrete
system model after a Security Pattern is selected as a solution for a specific Security Prop-
erty.

The following presents a more detailed explanation of the artifacts shown in Figure 2.

4.2 Artifacts and Interactions

4.2.1 SBB Datacontainer

The SBB Datacontainer artifact is the most general type in the SBB Meta-model. It
is used as a container for any kind of data which needs to be processed by a SBB. It
may appear in the model as an output value of an external component (SBB External
Component creates SBB Datacontainer) or of a SBB (SF BBM Building Block creates
SBB Datacontainer). Additionally a SBB may use it as a input value (SF BBM Building
Block uses SBB Datacontainer).

4.2.2 SF BBM Building Block

The SF BBM Building Block artifact (SBB) is the key components of any SBBM. SBBs
are used to represent any kind of security-related system components and encapsulate
them in a single artifact which is used in the SBBM. A SBB may be defined broadly in an
early stage of the SBBM and refined more detailed as soon as more information is needed
or provided. Since a SBB may be composed of other SBBs the level of detail may be
increased during the SBBM development process when it is needed or required. On the
other hand it is also common that SBBs are used to compose a more complex SBB. This
is also independent from the level of detail of any single involved SBB and depends only
of the desired level of abstraction of the SBBM. Any artifact from the SBB Meta-model
has at least one direct relationship to a SBB.

4.2.3 SBB Precondition

A SBB Precondition is an requirement which specifies under what conditions a SBB may
be applied successfully (SBB expects SBB Precondition). A single SBB Precondition rep-
resents exactly one requirement, which may be formal or informal. It is designated that

536



for any different requirement a single artifact instance is used. For example if an input
value of a SBB is a cryptographic key the SBB Precondition may determine that its size
must be at least 128Bit. Additionally another SBB Precondition may determine that a ran-
dom number for the key generation may only come from a source considered secure (e.g.
”/dev/random” instead of ”/dev/urandom” in Unix Systems). Preconditions can be either
satisfied by other SBBs (to be defined in a SecFutur Pattern) or remain as assumptions for
the final system that need then to be evaluated for the environment the system should run
in. This evaluation of remaining assumptions will be part of a risk analysis. In security
certifications, these assumptions express policies for the operational environment.

4.2.4 SBB Postcondition

A SBB Postcondition is a statement that is valid if a SBB is applied successfully (SBB
provides SBB Postcondition). A successful application implies that any SBB Precondition
was obeyed. For example a SBB which encrypts confidential data under a given key may
assert that the output data may be protected against eavesdropping. If a SBB has multiple
assertions which become valid after a successful application, each different statement must
appear as a single artifact instance. Again a SBB Postcondition may be formal or informal.

4.2.5 SBB External Component

A SBB External Component is a system component which must be available for a SBB
to function properly, but lies out of scope of the current SBB or even the SBBM. A
SBB may use the functionality of the external component either by using its function-
ality directly (SF BBM Building Block uses SBB External Component) or by using data
structures that are produced by it (SF BBM Building Block uses SBB Datacontainer cre-
ated by SBB External Component) . If a Security Pattern is selected which involves exter-
nal components the system engineer is informed about what specific external components
are needed. Either the system engineer must provide these components from within their
own system model or they are created automatically represented by additional interfaces
or even concrete implementations. Another possibility is that a SBB Datacontainer is
used by a SBB External Component as an input value (SBB External Component uses
SBB Datacontainer).

Additionally an SBB External Component may apply functionalities of an SBB Internal
Component, by using its SBB Component Operations (SBB External Component applies
SBB Component Operation). For example using a SBB implementation which involves
a TPM, many functionalities are based around the reporting of a system state. To keep
track of the system state, an external component, namely IMA (Integrity Measurement
Architecture) is used. IMA applies an operation of the TPM, which modifies internal
registers in the TPM. These registers, which reflect the current system state, are later used
in SBBs which need this system state for their own functionality. In consequence it is
mandatory to distinguish between external and internal components. Both components
must be available, but an external component represents a part of the system where the
SBBM or a concrete SBB has no direct influence.

537



4.2.6 SBB Internal Component

The SBB Internal Component represents a part of the SBBM which is directly associated
with a SBB over its SBB Components Operations. Any internal component consists of
SBB Component Operations, which represent a concrete functionality of the component.
A SF BBM Building Block may modify a SBB Internal Component (SF BBM Building
Block modifies SBB Internal Component), which is considered as an unspecified usage of
a SBB Component Operation within the SBB.

Additionally a SBB may modify a internal component (SBB Internal Component extended
by SF BBM Building Block) such that it enhances the functionality of the component.

This operation is also not precise and should be explained in detail depending on the
enhancement (e.g. with additional diagrams or textual).

4.2.7 SBB Component Operation

A SBB Component Operation is an operation of an internal component which may be ex-
ecuted by a SBB (SF BBM Building Block uses SBB Component Operation). This usage
is handled internally in a SBB and is mostly a call of a function or method, provided by a
library of the internal component, which executes the components real operation.

4.2.8 SBB Interface

The SBB Interface describes the public interface which may be used by a system engineer
or other SBBs which need to integrate the current SBB. The application of the SBB is
limited to just this specified operations and thus the only way to communicate with the
SBB. The SBB Interface serves as documentation for the input and output values as well
as the description of the functionality. This information is mandatory for a system engineer
who wants to use SBB in a concrete system model. Additionally the SBB Interface is
used when SBBs are combined with each other. This aspect is described in more detail in
Section 5.3 and 5.4.

5 Example Model

Assuming there exists a SBB which simply encrypts data by using a symmetric cipher1,
as shown in Figure 3. This SBB needs at least data which should be encrypted (Data) and,
additionally, a key (Key) that is used to apply the encryption. After the data is encrypted
by the SBB, an output value is created which contains the original data encrypted under the
given key (EncryptedData). A system engineer, who wants to integrate SBB Encryption
in a system model, needs the information about all input and output values of a SBB.

1For the used example a concrete encryption algorithm was intentionally left out. An encryption SBB which
is used in a real world scenario must always specify a concrete algorithm (like AES-128 in CBC mode) or provide
a mechanism to select / propose a proper algorithm.

538



Figure 3: Combining SBBs

Although the SBB Meta-model defines the general type SBB Datacontainer, it is necessary
that the specific supplied input and output data to any SBB is specified concretely in a
SBBM.

5.1 Interfaces for SBBs

Each SBB consists of an interface which may be used in a system model to apply the func-
tionality of that specific SBB. In this example the input values data and key are parame-
ters to the encrypt()method. This method results in the output data EncryptedData.
Figure 3 shows the EncryptionInterface of the Encryption SBB. More details on
interfaces can be found in Section 5.4.

5.2 Preconditions and Postconditions

Describing a SBB only with its input and output values is insufficient in most cases. There-
fore two additional artifacts are used to describe so-called Preconditions and Postcondi-
tions. Both conditions are optional and should only be used if there are concrete conditions
for the described SBB. Using conditions to describe under which circumstances a software
component may be executed and what it provides, is based on the concepts of Design by
Contract. Two interesting works [Mey92, Mey97] describe how these conditions can be
applied in software design and development.

A Precondition always describes restrictions, which need to be fulfilled, before the SBB
may be applied successfully. Thus they represent a requirement information for the system
engineer. In this example, as shown in Figure 3, the SBB Precondition states that the key
used for the encryption must be at least 128 Bit. If the system uses a key that does not meet
this precondition the successful application of the SBB is not guaranteed and therefore the
postcondition is not provided. In consequence this means that the system engineer is

539



forced to fulfill all the preconditions of any used SBB in order to obtain the postconditions
they provide.

On the other hand a SBB Postcondition describes what the SBB provides if applied suc-
cessfully. In this example the SBB Postcondition Confidentiality states that Encrypted-
Data is now encrypted under a specific key and may only be decrypted if the same key is
used. Furthermore it states that an external observer is not able to gain any information
about the submitted original data.

If a system modeler now uses EncryptedData (e.g. send it to another system component
or over a network device), he is assured that no one without the specific key is able to use
the submitted data in any way to gain access to its original plain-text content.

5.3 Combining SBBs

It is also possible that SBBs are combined with other SBBs to enhance and encapsulate
functionalities. There are different ways to express such a combination. One way is to
use domain-specific SFPs to define the combination. If the combination results in another
domain-independent security functionality, it can be useful to describe the combination as
another (more complex) SBB. In all cases, the combination needs to be be validated or
verified by security expert. If detailed enough and if a formal (or operational) semantic is
provided, the SBB model can be the foundation for a rigorous verification. The following
paragraphs concentrate on the creation of new SBBs by combining existing SBBs.

Figure 4: Combining SBBs

Figure 4 shows the case where the output of the Encryption SBB is used in another SBB
(SignedEncryption) which generates a signature for that data. The include statements
states that the interface for SignedEncryption also accepts the input values from the En-
cryption SBB. Additionally both SBBs are bound through the EncryptedData data-
structure. .

Another approach to combine SBBs, as shown in Figure 5, is to use two independent SBBs
and include both in an additional SBB. There exist two SBBs, one (Signature) generates
a signature of any arbitrary data and the other one (Encryption) encrypts any arbitrary

540



Figure 5: Creating new SBBs by Inclusion

data. Both SBBs may be used independently from another. Both SBBs are included
in a third SBB called SignedEncryption. This SBB now uses the SBBs (Signature and
Encryption) to generate also an SignedEncryptedData data-structure. While in both
cases the resulting data-structures are semantically the same, both modeling approaches
are different. In the latter case the SignedEncryption SBB is not directly bound to the
EncryptedData data-structure, which means that EncryptedData is no valid input
parameter for this SBB by default. (In this example it might be legal to add a separate
method which also accepts EncryptedData as an input parameter. This decision is left
to the SBBM designer and depends on the concrete SBB.)

5.3.1 Aggregation of Conditions

Another important aspect while composing SBBs is that postconditions are aggregated.

Figure 6 shows a general architecture of SBBs and how the aggregation takes place in
deeper and nested hierarchical structures.

Whenever a SBB is aggregated of one or more SBBs (SBB 3 includes SBB 1 & SBB 2
and SBB 4 includes SBB 3) the including SBB (aggregate) also provides all postcondi-
tions of its included SBBs (parts). The table from Figure 6 shows all SBBs and their
provided postconditions, where ”o” marks an indirect aggregated postcondition, ”x” a di-
rectly aggregated postcondition and ”-” that no postcondition is adopted.

An aggregate itself may always add additional postconditions, as shown for SBB 3 in
Figure 6, but these direct postconditions do not affect the postconditions of its parts.

When working with SBBss in a specific system model, this means that a SBB may be
substituted by a SBB which is deeper nested in the same hierarchical aggregated struc-

541



P 1 P 2 P 3
SBB 1 x - -
SBB 2 - x -
SBB 3 o o x
SBB 4 o o o

Figure 6: Conditional Aggregation

ture (covariant behavior [Car88]). For example SBB 2 may be substituted by SBB 3, but
SBB 3 must not be substituted by SBB 1 or SBB 2.

Moreover, it is also possible to substitute a SBB with another independent SBB that is not
even in the particular hierarchical aggregation structure (the one of the original SBB). The
explanation for this property is that if two distinct and independent SBBs provide the same
postcondition, they can be substituted by one another.

For preconditions the same methodology may be used. As long as a particular hierarchical
aggregation structure is observed the preconditions of any SBB in that structure stay the
same. As soon as a distinct and independent SBB is able to substitute a SBB (by satisfying
the original postcondition), the preconditions may be different to any of the preconditions
of the substituted SBB. This means that if a SBB provides the same postcondition, but
with totally or partially different preconditions, it may be used though.

While composing SBBs it is possible that postconditions are aggregated which contain
contradictions. Assuming that the postcondition P 3 is the contrary of P 1 (P 3 =!P 1).
This would mean that SBB 3 has both P 1 and !P 1 as a postcondition.

In general, SBBs provide a process to systematically aggregate postconditions and prop-
erties. However, as security is not composable in general it cannot be concluded that
the aggregated set of postconditions is actually satisfied for the combined SBB. There
is no generic approach to verify these postconditions as this verification strongly depend
on the particular properties expressed and on the character of the security functionality
represented by the SBB. The SBB expert is responsible to provide evidence that the com-
bination is correct. This evidence can range from best-practice or knowledge of the expert
to results of a formal verification.

542



5.4 Interface from System Model to SBBM

A crucial part in the modeling of SBBs is the definition of an interface. This interface is
used either from a system engineer who integrates a SBB into the system model or used
to interconnect SBBs within the SBBM itself. The interface is the only visible part and
thus the only way to communicate with the SBB. This means that if a SBB is applied in
a system model the system modeler may only interact with the specified methods of the
building block. While this is the standard procedure how interfaces are used in general,
it is a crucial requirement as a SBB expert has to consider the interfaces when designing
SBBs.

While a SBB itself provides a solution for a specific security requirement, there may also
exist different SBBs solving the same requirement but with different other components
involved. As long as the interface of any different SBB is equal, the SBB is easily ex-
changeable during the development process.

6 Conclusion

The creation of a security model for a system is a very complex task due to the different
security requirements, constraints, functionalities, etc. The security engineering process
and security building blocks described in this paper helps developers in creating a security
model that fulfills all the security requirements of a domain-specific system using security
properties and the security building blocks that implement them. Currently, the process
is been applied to several use cases of different domains in the SecFutur project, showing
good results in each of them.

The SBB Meta-model and the SBB Models as provided in this paper provide one possible
approach towards exact specifications of security solutions and their integration into secu-
rity engineering processes. A validated security solution can be described in a way that
preconditions, constraints, dependencies, etc. are exactly expressed and considered in the
integration of the SBB into a system.

The next step in this work is to enhance and update the security engineering process with
security patterns (that will describe how to create a solution for complex security proper-
ties), create certification for the models and increase the DSM online repository with more
artifacts. Regarding the SBBs, the next steps are to integrate the concept of SBBs with
the SecFutur CSM and DSM and describe domain-specific integrations of SBBs for the
realization of more complex security properties.

References

[Car88] Luca Cardelli. A Semantics of Multiple Inheritance. Information and Computation,
76:138–164, 1988.

543



[Gro] Trusted Computing Group. TPM Main specification.

[LSW87] M. Lenz, H.A. Schmid, and P.F. Wolf. Software Reuse through Building Blocks. Soft-
ware, IEEE, 4(4):34–42, july 1987.

[LSW10] H. Lohr, A. R. Sadeghi, and M. Winandy. Patterns for Secure Boot and Secure Storage in
Computer Systems. 2010.

[Mey92] B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51, oct. 1992.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2. edition, 1997.

[MGS03] Haralambos Mouratidis, Paolo Giorgini, and Markus Schumacher. Security Patterns for
Agent Systems. 2003.

[Pea02] S. Pearson. Trusted Computing Platforms, the next security solution. Technical report, HP
Labs, 2002.

[RHM11] Jose Fran. Ruiz, Rajesh Harjani, and Antonio Maña. A security-focused engineering pro-
cess for systems of embedded components. In Proceedings of the International Workshop
on Security and Dependability for Resource Constrained Embedded Systemss, D4RCES
’11, pages 4:1–4:9, New York, NY, USA, 2011. ACM.

[Roe01] Schumacher M. Roedig U. Security Engineering with Patterns. In Pattern Languages of
Programs, 2001.

[SF] Design of Secure and Energy-efficient Embedded Systems for Future Internet Applications
(SECFUTUR), IST-25668, Seventh Framework Programme. www.secfutur.eu.

[SSS11] Jayraj Signh, Arunesh Singh, and Ms. Raj Shree. Security Patterns in mobile Ad hoc
Network: Requirement and Security Management Perspective. 2011.

[Ste06] et al. Steel C. Core Security Patterns. Pearson Ed. Inc., 2006.

[SYHJ08] Riccardo Scandariato, Koen Yskout, Thomas Heyman, and Wouter Joosen. Architecting
Software with Security Patterns. 2008.

544


