
21

A Mutual Pruning Approach for RkNN Join Processing

Tobias Emrich, Peer Kröger, Johannes Niedermayer, Matthias Renz, Andreas Züfle

Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstr. 67, D-80538 München, Germany

{emrich,kroeger,niedermayer,renz,zuefle}@dbs.ifi.lmu.de

Abstract: A reverse k-nearest neighbour (RkNN) query determines the objects from
a database that have the query as one of their k-nearest neighbors. Processing such a
query has received plenty of attention in research. However, the effect of running mul-
tiple RkNN queries at once (join) or within a short time interval (bulk/group query)
has, to the best of our knowledge, not been addressed so far. In this paper, we analyze
RkNN joins and discuss possible solutions for solving this problem. During our per-
formance analysis we provide evaluation results showing the IO and CPU performance
of the compared algorithms for a variety of different setups.

1 Introduction

A Reverse k-Nearest Neighbor (RkNN) query retrieves all objects from a database having
a given query object as one of their k nearest neighbors. Various algorithms for efficient
RkNN query processing have been studied under different conditions due to the query’s
relevance in a wide variety of domains — applications include decision support, profile-
based marketing and similarity updates in spatial and multimedia databases.

Let us now shortly recap the definition of RkNN queries. Given a finite multidimensional
data set S ⊂ R

d (si ∈ R
d), a query point r ∈ R

d, and an arbitrary distance function
dist(x, y) (e.g. the Euclidean distance), a k-nearest neighbor (kNN) query returns the k
nearest neighbors of r in S:

kNN(r, S) = {s ∈ S : |{s′ ∈ S : dist(s′, r) < dist(s, r)}| < k}
A monochromatic RkNN query, where r and s ∈ S have the same type, can be defined by
employing the kNN query:

RkNN(r, S) = {s ∈ S|r ∈ (k + 1)NN(s, S ∪ {r})}
Thus, an RkNN query returns all points si ∈ S that would have r as one of its nearest
neighbors. In Figure 1(a) an R2NN query is shown. Arrows denote a subset of the 2NN
relationships between points from S. Since r is closer to s2 than its 2NN s1, the result
set of an R2NN query with query point r is {s2}. s3 is not a result of the query since its
2NN s2 is closer than r. Note that the RkNN query is not symmetric, i.e. the kNN result
kNN(r,S) <= RkNN(r, S), because the 2NN of r are s2 and s3. Therefore the result of an
RkNN(r,S) query cannot be directly inferred from the result of a kNN query kNN(r,S).

Besides the monochromatic RkNN query, research often discusses the bichromatic RkNN
query. However, in this paper, we will concentrate on the monochromatic case and will

22

(a) R2NN Query (b) R1NN Join

Figure 1: R2NN Query and R1NN Join.

therefore just shortly introduce this second variant of the RkNN query. In the bichromatic
case, two sets R1 and R2 are given. The goal is to compute all points in R2 for which a
query point r ∈ R1 is one of the k closest points from R1 [WYCT08]:

BRkNN(r,R1, R2) = {s ∈ R2|r ∈ kNN(s,R1)}

An important problem in database environments is the scenario where the query does not
consist of a single point but instead of a whole set of points, for each of which a RkNN
query has to be performed. This setting is often referred to as group query, bulk query

or simply join of two sets R and S. Despite the potential applications, the join operation
has so far only received little attention in the context of RkNN queries. Given two sets R
and S, the goal of a monochromatic RkNN join is to compute, for each point r ∈ R its
monochromatic RkNNs in S.

Definition 1 (Monochromatic RkNN join) Given two finite sets S ⊂ R
d and R ⊂ R

d,

the monochromatic RkNN join R
MRkNN

%& S returns a set of pairs containing for each r ∈ R

its RkNN from S:R
MRkNN

%& S = {(r, s)|r ∈ R ∧ s ∈ S ∧ s ∈ RkNN(r, S)}

An example for k = 1 can be found in Figure 1(b). The result for both objects from R in

this example is R1NN(r1) = R1NN(r2) = {s2}, i.e. R
MRkNN

%& S = {(r1, s2), (r2, s2)}. Note
that the elements r1 and r2 from R do not influence each other, i.e., r1 cannot be a result
object of r2 and vice versa. This follows directly from the definition of the MRkNN join.

In this paper we discuss two solutions for solving RkNN joins. The first solution simply
involves the iterative execution of an existing algorithm, while for the second solution we
introduce an algorithm specialized for RkNN joins. The resulting algorithms are evaluated
in an experimental section under a variety of different setups, including both synthetic and
real data sets.

The remainder of this paper is organized as follows. Section 2 gives an insight into related
work. In Section 3 we propose an RkNN join algorithm that is based on an existing
mutual pruning algorithm. An extensive performance comparison of our solution follows
in Section 4. Section 5 concludes this work.

23

2 Related Work

The problem of efficiently supporting RkNN queries has been studied extensively in the
past years. Existing approaches for Euclidean RkNN search can be classified as self prun-
ing approaches or mutual pruning approaches. Self pruning approaches [KM00, YL01,
ABK+06b, TYM06] are usually designed on top of a hierarchically organized tree-like
index structure. They try to conservatively/exactly estimate the kNN distance of each in-
dex entry e. If this estimate is smaller than the distance of e to the query q, then e can be
pruned. Thereby, self pruning approaches do not usually consider other entries (database
points or index nodes) in order to estimate the kNN distance of an entry e, but simply pre-
compute kNN distances of database points and propagate these distances to higher level
index nodes.

Mutual pruning approaches such as [SAA00, SFT03, TPL04] use other points to prune a
given index entry e. The most general and efficient approach called TPL is presented in
[TPL04]. We will employ this approach as a benchmark algorithm during our performance
evaluation.

The approach of combining self- and mutual pruning has been followed in [AKK+09,
KKR+09b]. It obtains conservative and progressive distance approximations between a
query point and arbitrarily approximated regions of a metric index structure.

Beside solutions for Euclidean data, solutions for general metric spaces (e.g. [ABK+06b,
ABK+06a, TYM06]) usually implement a self pruning approach.

Furthermore, there exist approximate solutions for the RkNN query problem that aim at
reducing the query execution time for the cost of accuracy [SFT03, XHL+05].

Besides the attention paid to single RkNN queries, the problem of performing multiple
RkNN queries at a time, i.e. a RkNN join, has hardly been addressed. The authors of
[YZHX10] addressed incremental bichromatic RkNN joins as a by-product of incremen-
tal kNN joins, aiming at maintaining a result set over time instead of performing bulk
evaluation of large sets. Since it does not address the problem of a monochromatic join, it
solves a different problem.

3 The Mutual Pruning Algorithm

Mutual pruning approaches such as TPL [TPL04] are state-of-the-art solutions for single
RkNN queries. In this paper we aim at analyzing whether this assumption still holds for
an RkNN join setting. Therefore, in this section, we propose an algorithm for processing
RkNN joins based on a mutual pruning strategy similar to TPL. We assume that both sets R
and S are indexed by an aggregated hierarchical tree-like access structure such as the aR∗-
tree [PKZT01]. An aR∗-Tree is equivalent to an R∗-Tree but stores an additional integer
value (often called weight) within each entry, corresponding to the number of objects
contained in the subtree. The indexes are denoted by R and S , respectively.

24

(a) Case 1 (b) Case 2 (c) Case 3

Figure 2: Mutual pruning on directory entries.

3.1 General Idea

The proposed algorithm is based on a solution for Ranking-RkNN queries, initially sug-
gested in [KKR+09a]. Unlike TPL, which can only use leaf entries (points) to prune other
leaf entries and intermediate entries (MBRs), the technique of [KKR+09a] further permits
to use intermediate entries for pruning, thus, allowing to prune entries while traversing
the tree, without having to wait for k leaf entries to be refined first. The algorithm of
[KKR+09a] uses the MAXDIST-MINDIST-approach as a simple method for mutual prun-
ing using rectangles. This approach exploits that, for three rectangles R, A, B, it holds
that A must be closer to R than B, if maxDist(A,R) < minDist(B,R). The algo-
rithm that we use in this work, will augment the algorithm of [KKR+09a] by replacing the
MAXDIST-MINDIST-approach by the spatial pruning approach proposed in [EKK+10]
which is known to be more selective. In the following, the base algorithm of [KKR+09a],
enhanced by [EKK+10] will be extended to process joins.

The mutual pruning approach introduced in this section is based on an idea which is often
used for efficient spatial join processing: Both indexes R and S are traversed in parallel,
result candidates for points r ∈ R of the outer set are collected and for each point r ∈ R
irrelevant subtrees of the inner index S are pruned; we will evaluate if this approach is
also useful for RkNN joins during performance analysis. Thus, at some point of traversing
both trees, we will need to identify pairs of entries (eR ∈ R, eS ∈ S) for which we can
already decide, that for any pair of points (r ∈ eR, s ∈ eS) it must/must not hold that s is
a RkNN of r. To make this decision without accessing the exact positions of children of
eR and eS , we will use the concept of spatial domination ([EKK+10]): If an entry eR is
(spatially) dominated by at least k entries in S with respect to eS , then no point in eS can
possibly have any point of eR as one of its k nearest neighbors. Due to the spatial extend of
MBRs, this decision is not always definite. We have to distinct several cases, as illustrated
in Figure 2. The subfigures visualize two pages eR and eS0 , and one of the additional pages
eS1 , eS2 , eS3 . The striped areas in the picture denote the set of points on which a closer
decision can definitely be made. This means, no matter which points from the rectangle
eR and eS0 are chosen, a point in the striped are is always closer to the point from eR (or
eS0) than to the point from eS0 (or eR). Therefore, in the first case, eS1 is definitely closer
to eS0 than to eR. In the second case, eS2 is definitely closer to eR than to eS0 . In the third
case, in all of the four subcases, no decision can be made.

25

More formally, in the first case, we can decide that an entry is (spatially) dominated by
another entry. For example, in Figure 2(a), entry eR is dominated by entry eS1 with respect
to entry eS0 , since for all possible triples of points (s0 ∈ eS0 , s1 ∈ eS1 , r ∈ eR) it holds
that s1 must be closer to s0 than r. This domination relation can be used to prune eS0 :
If the number of objects contained in eS1 is at least k, then we can safely conclude that
at least k objects must be closer to any point in eS0 , and, thus, eS0 and all its child entries
can be pruned. To efficiently decide if an entry eS1 dominates an entry eR with respect
to an entry eS0 (all entries can be points or rectangles), we utilize the decision criterion
Dom(eS1 , e

R, eS0) proposed in [EKK+10] which prevents us from doing a costly material-
ization of the pruning regions like the striped areas in Figure 2. Materialization here means
the exact polygonal computation of the areas that allow pruning a page.

In the second case, we can decide that neither an entry, nor its children can possibly be
pruned by another entry. In Figure 2(b), consider entry eS2 . It holds that for any triple of
points (s0 ∈ eS0 , s2 ∈ eS2 , r ∈ eR), that s2 cannot be closer to s0 than r. Although, in
this case, we cannot prune eS0 , we can safely avoid further domination tests of children of
the tested entries. We can efficiently perform this test by evaluating the aforementioned
criterion Dom(eR, eS2 , e

S
0).

Finally, in the third case, both predicates Dom(eS3 , e
R, eS0) and Dom(eR, eS3 , e

S
0) do not

hold for any entry eS3 in Figure 2(c). In this case, some points in eS3 may be closer to some
points eS0 than some points in eR, while other points may not. Thus, we have to refine at
least some of the entries eS0 , eS3 or eR. The reason for the inability to make a decision here,
is that the pruning region between two rectangles is not a single line, but a whole region
(called tube here, cf. Figure 2). For objects that fall into the tube, no decision can be made.

At any time of the execution of the algorithm only one entry eR of the outer set is consid-
ered. For eR, we minimize the number of domination checks that have to be performed.
Therefore, we keep track of pairs of entries in S , for which case three holds, because only
in this case, refinement of entries may allow to prune further result pairs. This is achieved
by managing, for each entry eS ∈ S, two lists eS .update1 ⊂ S and eS .update2 ⊂ S:
List eS .update1 contains the set of entries with respect to which eS may dominate eR but
does not dominate eR for sure. Essentially, any entry in eS .update1 may be pruned if
eS is refined. List eS .update2 contains the set of entries, which may dominate eR with
respect to eS , but which do not dominate eR for sure. Thus, eS .update2 contains the set
of entries, whose children may potentially cause eS to be pruned.

3.2 The Algorithm joinEntry

In order to implement these ideas, we use the recursive function shown in Algorithm 1,
joinEntry(Entry eR, QueueQS) . It receives an entry eR ∈ R that represents the
currently processed entry from the index of the outer set R, which can be a point, a leaf
node containing several points, or an intermediate node. QS represents a set of entries
from S sorted decreasingly in the number |eS .update1| of objects that an entry eS ∈ S
is able to prune. The reason is that resolving nodes with a large update1 list potentially
allows pruning many other nodes.

26

Algorithm 1 joinEntry(Entry eR, Queue QS)

1: for all eSi ∈ QS do
2: {Update domination count (lower bound) of all eSi }
3: for all eSj ∈ eSi .update2 do
4: if Dom(eSj ,e

R, eSi) then
5: {definite decision possible, eSj prunes eSi }
6: eSi .dominationCount += eSj .weight

7: else if Dom(eR,eSj , e
S
i) then

8: {eSi can definitely not be pruned by eSj }
9: eSi .update2.remove(eSj)

10: eSj .update1.remove(eSi)
11: end if
12: end for
13: if eSi .dominationCount ≥ k then
14: {no point in eSi can be an RkNN of a point in eR}
15: delete(QS , eSi))
16: end if
17: end for
18: {in the following, resolve S}
19: Queue QS

c = ∅
20: while (eSi = QS .poll()) <= NULL do
21: Go to line 20 if eSi .dominationCount ≥ k {eSi does not contain result candidates}
22: if Vol(eSi) > Vol(eR) then
23: {go one level down in the subtree of eSi and add child pages to QS}
24: QS .add(resolve(eSi , e

R))
25: else if isLeaf(eSi) ∧ isLeaf(eR) then
26: {if no further refinement is possible, results still have to be verified}
27: if eR ∈ kNN(eSi) then
28: reportResult(< eR, eSi >)
29: end if
30: else
31: {put pages eSi into QS

c if they could neither be pruned nor reported as result}
32: QS

c .add(eSi)
33: end if
34: end while
35: {in the following, resolve eR}
36: if ¬isLeaf(eR) then
37: {finally, refine eRi by recursively calling joinEntry with QS

c }
38: for all eRi ∈ eR.children do
39: joinEntry(eRi , clone(QS

c))
40: end for
41: end if

27

Algorithm 2 resolve(Entry eS , Entry eR)

1: LIST l
2: {(1) check which objects the children eSi of eS may affect}
3: for all eSj ∈ eS .update1 do
4: eSj .update2.remove(eS) {remove, children of eS are now relevant instead of eS}
5: for all eSi ∈ eS .children do
6: if Dom(eSi , e

R, eSj) then
7: {definite decision possible, eSi prunes eSj }
8: eSj .dominationCount += eSi .weight

9: else if ¬ Dom(eR, eSi , e
S
j) then

10: {no definite decision possible, eSi might prune eSj }
11: eSj .update2.add(eSi)

12: eSi .update1.add(eSj)
13: end if
14: end for
15: end for
16: {(2) check which other entries may affect a child eSi }
17: for all eSi ∈ eS .children do
18: for all eSj ∈ eS .update2 do
19: if Dom(eSj , e

R, eSi) then
20: {definite decision possible, eSj prunes eSi }
21: eSi .dominationCount += eSj .weight

22: else if ¬ Dom(eR, eSj , e
S
i) then

23: {no definite decision possible, eSj might prune eSi }
24: eSi .update2.add(eSj)

25: eSj .update1.add(eSi)
26: end if
27: end for
28: if eSi .dominationCount < k then
29: {only return relevant entries that can not be pruned, yet}
30: l.add(eSi)
31: end if
32: end for
33: return l

In each call of joinEntry(), a lower bound of the number of objects dominating eR

with respect to eSi is updated for each entry eSi ∈ QS . This lower bound is denoted as
domination count. Clearly, if for any entry eSi , it holds that the domination count ≥ k, then
the pair < eR, eSi > can be safely pruned. Note that using the notion of domination count,
the list eSi .update1 can be interpreted as the list of entries eSj , for which the domination

count of eSj may be increased by refinement of eSi . The list eSi .update2 can be interpreted

as the list of entries whose refinement may increase the domination count of eSi . In Line 4

28

of Algorithm 1, the domination count of eSi is updated by calling Dom(eSj , eR, e
S
i) for

each entry eSj in the list eSi .update2. If Dom(eSj , eR, e
S
i) holds, then the domination

count of eSi is increased by the number of objects in eSj . The number of leaf entries is

stored in each intermediate entry of the index. Otherwise, i.e., if eSj does not dominate

eR w.r.t. eSi , we check if it is still possible that any point in eSj dominates points in eR

with respect to any point in eSi . If that is not the case, then eSj is removed from the list

of eSi .update2, and eSi is removed from the list of entries eSj .update1 (Lines 9-10). If

these checks have increased the domination count of eSi to k or more, we can safely prune
eSi in Line 15 and remove all its references from the update1 lists of other entries; this is
achieved by the delete function.

Now that we have updated domination count values of all eSi ∈ QS , we start our refinement
round in Line 20. Here, we have to decide which entry to refine. We can refine the outer
entry eR, or we can refine some, or all entries in the queue of inner entries QS . A heuristics
that has shown good results in practice, is to try to keep, at each stage of the algorithm,
both inner and outer entries at about the same volume. Using this heuristics, we first refine
all inner entries eSi ∈ QS which have a larger volume than the outer entry eR in line 24.
The corresponding algorithm is introduced in the next section.

After refining entries eSi , we next check in Line 25 if both inner entry eSi and outer entry
eR currently considered are both point entries. If that is the case, clearly, neither entry
can be further refined, and we perform a kNN query using eSi as query object to decide
whether eR is a kNN of eSi , and, if so, return the pair eR, eSi as a result. Finally, all entries
eSi which could neither be pruned nor returned as a result, are stored in a new queue QS

C .
This queue is then used to refine the outer entry eR: For each child of eR, the algorithm
joinEntry is called recursively, using QS

C as inner queue.

3.3 Refinement: The resolve-Routine

Our algorithm for refinement of an inner entry eS is shown in Algorithm 2 and works as
follows: We first consider the set of entries eS .update1 of other inner entries eSj whose

domination count may be increased by children eSi of eS . For each of these entries, we
first remove eS from its list eSj .update2, since eS will be replaced by its children later on.

Although eS does not dominate eR w.r.t. eSj , the children of eS may do. Thus, for each

child eSi of eS , we now test if eSi dominates eR w.r.t. eSj in Line 6 of Algorithm 2. If

this is the case, then the domination count of eSj is incremented according to the number

of objects in eSi .1 Otherwise, we check if it is possible for eSi to dominate eR w.r.t. eSj ,

and, if that is the case, then eSj is added to the list eSi .update1 of entries which eSi may

affect, and eSi is added to the list eSj .update2 of entries which may affect eSj . Now that we

have checked which objects the children eSi of eS may affect, we next check which other
entries may affect a child eSi . Thus, we check the list eS .update2 of entries which may
affect the domination count of eS . For each such entry eSj and for each child eSi , we check

1The check, whether the new domination count of eSj exceeds k will be performed in Line 21 of Algorithm 1

29

if eSj dominates eR w.r.t. eSi . If that is the case, the domination count of eSi is adjusted

accordingly. Otherwise, if eSj can possibly dominate eR w.r.t. eSi , then we add eSj to the

list of entries eSi .update2, and we add eSi to the list eSj .update1. Finally, all child entries

of eS are returned, except those child entries, for which their corresponding domination
count already reaches k.

4 Experiments

We evaluate our mutual pruning approach using update lists (referred to as UL) in com-
parison to the state-of-the-art single RkNN query processor TPL in an RkNN join setting
within the Java-based KDD-framework ELKI[AGK+12] on both synthetic and real data
sets. We use the synthetic data to show the behaviour of the different algorithms in a well-
defined setting. Additionally, we use the real data set to show the behaviour of the different
algorithms on a not normally distributed data set with dense clusters and additional noise.
As performance indicators we chose the CPU time and the number of page accesses.

For measuring the number of page accesses, we assumed that a given number of pages
fit into a dedicated cache. If a page has to be accessed but is not contained in the page
cache, it has to be reloaded. If the cache is already full and a new page has to be loaded,
an old page is kicked out in LRU manner. The page cache only manages data pages from
secondary storage, remaining data structures have to be stored in main memory.

Concerning the nomenclature of the algorithms we use the following notation. UL is the
mutual pruning based algorithm from Section 3. The additional subscript S (Single) means
that every single point of R was queried on its own. With ULG (Group), a whole set of
points, a leaf page, was queried at once. ULP (Parallel) traversed both indexes for R and
S in parallel. These three versions can be easily derived from Algorithm 1 in Section 3.
The algorithm expects an entry of R’s index. In our performance analysis we call the
algorithm with leaf entries (leading to ULS), the entries pointing to leaf nodes (leading
to ULG) and the root entry of R’s index (leading to ULP). This is especially of interest
for large data sets, since ULG and ULS allow to split the join up to process it on several
distributed systems, increasing its applicability for distributed databases.

TPL was implemented as suggested in [TPL04], however we replaced the clipping step
and instead implemented the decision criterion from [EKK+10] to enable cheap pruning
on intermediate levels of the indexes.

As an index structure for querying we used an aggregated R*-tree (aR*-Tree [PKZT01]).
The page size was set to 1024 bytes, the cache size to 32768 bytes.

4.1 Experiments on Synthetic Data

We chose the underlying synthetic data sets from R and S, which have been created with
the ELKI-internal data generator, to be normally distributed with equivalent mean and
a standard deviation of 0.15. We set the default size of R to |R| = 0.01|S|, since the
performance of both algorithms degenerates with increasing |R|. For each of the analyzed

30

algorithms we used exactly the same data set given a specific set of input variables in order
to reduce skewed results.

During performance analysis, we analyzed the impact of k, the number of data points in
R and S, the dimensionality d, and the mean difference Δµ between the data sets R and
S on the performance of the evaluated algorithms keeping all but one variable at a fixed
default value while varying a single independent variable. Input values for each of the
analyzed independent variables can be found in Table 1. In the table, bold values denote
default values that are used whenever a different variable is evaluated.

Variable Values Unit

k 5, 10, 100, 500 points
|R| 10, 100, 1000, 10000, 20000, 40000 points
|S| 10, 1000, 10000, 20000, 40000,80000 points
Δµ 0.0, 0.2, 0.4 |µS − µR|
d 2, 3, 4 dimensions

Table 1: Values for the evaluated independent variables. Default values are denoted in bold.

Varying k. In a first series of experiments, we varied the parameter k. Note that both
mutual pruning approaches, TPL and our UL approach are mainly applicable to low val-
ues for k, especially concerning the execution time (cf. Figure 3 (a)). The runtime of TPL
increases considerably fast. The reason for this is that not only the number of result can-
didates but also the number of objects which are necessary in order to confirm (or prune)
these candidates increase superlinear in k. In contrast, the runtime of the UL algorithms
degenerates slower compared to TPL. The main problem with this family of algorithms
is their use of update lists. Each time a page is resolved, the corresponding update lists
have to be partially recomputed. This leads to an increase of cost with larger k since on
the one hand side, more pages have to be resolved, and on the other hand the length of the
update lists of an entry increases and therefore more distance calculations are necessary.
Note that ULG and ULP perform very similar to ULS, which is an interesting observation,
since for kNN joins parallel tree traversals usually show a higher gain in performance than
in an RkNN setting. Concerning the number of page accesses, the picture is quite similar
(cf. Figure 4 (a)). TPL shows a performance worse than UL.

Varying the Size of R (|R|). Varying |R| shows a negative effect on both approaches
TPL and UL — their computational time increases considerably fast (cf. Figure 3 (b)).
For ULS and TPL the increase of CPU time is linear since these algorithms perform a
single RkNN query for each point in R. For larger |R|, the remaining approaches ULG

and ULP show a better performance, since these algorithms traverse the tree less often.
Interestingly, the number of page access (cf. Figure 4 (b)) for all UL approaches is similar,
but always better than for TPL. We explain the large difference in page accesses by the
different pruning approaches used by TPL and UL. TPL only employes candidate points
for pruning pages, while the UL approaches can also take not yet resolved pages to prune.
This can lead to a significant reduction in the number of page accesses.

31

Figure 3: Performance (Execution Time), synthetic data set.

Varying the Size of S (|S|). Next we analyzed the effect of different values for |S|
regarding the CPU time (cf. Figure 3 (c)). Again, the UL approaches perform best, more
precisely ULS since this approach enables highest pruning power. Taking a look at the
number of disk accesses (cf. Figure 4 (c)), the results look very similar, however the
higher pruning power of ULS does not show any effect here.

Varying the Overlap BetweenR and S (Δµ). Until now we assumed that the normally
distributed sets of values R and S overlap completely, i.e. both sets have the same mean.
This assumption is quite intuitive for example if we assume that R and S are drawn from
the same distribution. However, if for example R contains feature vectors of a set of
dog pictures and S describes mostly flowers, the feature vectors from R and S should be

32

Figure 4: Performance (Page Accesses), synthetic data set.

located at different positions in feature space. We model this behaviour by decreasing the
overlap of the two sets R and S and therefore increasing their mean difference (Δµ =
µR − µS).

Both approaches, UL and TPL can take quite some profit from lower overlap between the
sets R and S. All of them employ pruning to avoid descending into subtrees that do not
have to be taken into account to answer the query. If the overlap decreases, subtrees can be
pruned earlier (because the MINDIST between a subtree and the query point increases),
greatly reducing the CPU-time and number of page accesses (cf Figures 3 (d) and 4 (d)).
Note that for TPL this gain is slightly higher, however even for a mean difference of 0.4,
the UL approaches perform better than TPL.

33

Figure 5: A sample of 5000 points from the postoffice data set.

Varying the Dimensionality (d). Taking a look at the performance of the different al-
gorithms with varying dimensionality offers other interesting results (cf. Figure 3 (e)
and 4 (e)).

With a dimensionality of 2 and 3, the most important ones for spatial query processing, the
UL approaches perform better than TPL concerning the execution time of the algorithms.
For two dimensions the gain in performance reaches a factor of 8, for three dimensions
still a factor of about 2.6. Beginning with a dimensionality of 4, the UL approaches scale
worse than the other approaches concerning execution time, because the pruning power
of index-level pruning decreases with increasing dimensionality. With increasing d, the
number of entries in an update list increases exponentially. Therefore, much more entries
have to be checked each time an intermediate node is resolved, leading to a significant
drop in performance.

The results in terms of the number of disk accesses look very similar, therefore they shall
not be further investigated. However note that the UL approaches show much better per-
formance in terms of the number of disk accesses than TPL, since they employ pruning on
an index level.

4.2 Experiments on Real Data: Postoffice Data Set

Now let us take a look at experiments driven with real data. As a real data set we employed
a set of 123593 post offices in the north-eastern united states.2 The set is clustered (and
therefore correlated) in the metropolitan areas, containing further noise in the rural areas,
as it can be seen in the visualization of the data set in Figure 5, containing 5000 sample
points. Boths sets R and S are taken from the data set by assigning each of the 123593
points to one of the sets R or S, respectively. To take full advantage of the whole data
set size of 123593 points, we decided to vary the sizes of R and S simultaneously such

2www.rtreeportal.org/

34

Figure 6: Performance (CPU time, page accesses), real data set (Postoffice).

that |R| + |S| = 123593. Clearly, the UL algorithms outperform TPL on this data set
(cf. Figure 6). Note that both approaches, TPL and UL, perform better if R is small and
S is large than if S is small and R is large. The explanation for this behaviour becomes
most clear when taking a look at TPL: Here, the size of S has a lower influence on the
performance of the algorithm, because often a larger set S just allows pruning more points.
In contrast, increasing the size of R introduces more RkNN queries, which is expensive.
This problem however, can be mitigated by using ULP or ULG, since these approaches
perform index-level pruning with whole sets of points from R.

5 Conclusions

In this paper, we addressed the problem of running multiple RkNN-queries at a time, a.k.a
RkNN join. For this purpose, we proposed a dedicated algorithm for RkNN join queries
based on the well-known mutual pruning paradigm and evaluated it in a variety of settings
including synthetic and real data sets.

However, our research is still preliminary and there is great space for improvements. For
example, we would like to develop algorithms specialized for higher dimensionality, since
all evaluated algorithms significantly drop in performance for a high number of dimen-
sions. To achieve this, we would like to develop algorithms based on the self pruning
paradigm and compare these to the developed mutual pruning approaches.

Acknowledgements. Part of this work was supported by the Deutsche Forschungsge-
meinschaft (DFG) under grant number KR 3358/4-1.

35

References

[ABK+06a] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz. Approximate
Reverse k-Nearest Neighbor Queries in General Metric Spaces. In Proc. CIKM, 2006.

[ABK+06b] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz. Efficient Re-
verse k-Nearest Neighbor Search in Arbitrary Metric Spaces. In Proc. SIGMOD, 2006.

[AGK+12] Elke Achtert, Sascha Goldhofer, Hans-Peter Kriegel, Erich Schubert, and Arthur
Zimek. Evaluation of Clusterings - Metrics and Visual Support. In ICDE, pages
1285–1288, 2012.

[AKK+09] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Reverse k-nearest neighbor
search in dynamic and general metric databases. In Proc. EDBT, 2009.

[EKK+10] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Boosting Spatial Pruning:
On Optimal Pruning of MBRs. In Proc. SIGMOD, 2010.

[KKR+09a] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and A. Katzdobler. Incremental Reverse
Nearest Neighbor Ranking. In Proc. ICDE, 2009.

[KKR+09b] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and A. Katzdobler. Reverse k-Nearest
Neighbor Search based on Aggregate Point Access Methods. In Proc. SSDBM, 2009.

[KM00] F. Korn and S. Muthukrishnan. Influenced Sets Based on Reverse Nearest Neighbor
Queries. In Proc. SIGMOD, 2000.

[PKZT01] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient OLAP Opera-
tions in Spatial Data Warehouses. In Proc. SSTD, pages 443–459, 2001.

[SAA00] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse Nearest Neighbor Queries for Dy-
namic Databases. In Proc. DMKD, 2000.

[SFT03] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High Dimensional Reverse Nearest
Neighbor Queries. In Proc. CIKM, 2003.

[TPL04] Y. Tao, D. Papadias, and X. Lian. Reverse kNN Search in Arbitrary Dimensionality.
In Proc. VLDB, 2004.

[TYM06] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse Nearest Neighbor Search in Metric
Spaces. IEEE TKDE, 18(9):1239–1252, 2006.

[WYCT08] W. Wu, F. Yang, C.-Y. Chan, and K.L. Tan. FINCH: Evaluating Reverse k-Nearest-
Neighbor Queries on Location Data. In Proc. VLDB, 2008.

[XHL+05] C. Xia, W. Hsu, M. L. Lee, J. Joxan, C. Xia, and W. Hsu. ERkNN: efficient reverse
k-nearest neighbors retrieval with local knn-distance estimation. In Proc. CIKM, 2005.

[YL01] C. Yang and K.-I. Lin. An index structure for efficient reverse nearest neighbor queries.
In Proc. ICDE, 2001.

[YZHX10] Cui Yu, Rui Zhang, Yaochun Huang, and Hui Xiong. High-dimensional kNN joins
with incremental updates. Geoinformatica, 14(1):55–82, 2010.

