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Modeling Low-Level Network Configurations for Analysis,
Simulation and Testing

Marcel Schuster! Markus Germeier? Frank Hilken? Martin Gogollaﬁ‘ Karsten Sohr®

Abstract: In this paper, we present an approach to specifying a network configuration model based
on the ISO/OSI reference model. The network configuration model is capable of modeling the lower
layers of networks enabling several use cases: (a) analyze existing network configurations, e.g., to find
configuration errors and identify which components contribute to the error; (b) simulate changes made
to the configuration and predict their consequences; (c) serve as documentation for the network; and
(d) visualize the network in order to better understand it and to make clear its structure to everyday
users. These analysis techniques were applied to essential parts of a professional network center.

Keywords: UML and OCL model; Network configuration model; Network configuration analysis;
Network configuration documentation.

1 Introduction

The administration of large-scale computer networks is tedious and error-prone. Since
network documentation is often difficult to establish and maintain for administrators, a
supporting methodology to systematically model and test a computer network is desirable.
In particular, this applies to the lower layers of the well-known Open Systems Interconnec-
tion (OSI) model [IT94] as these layers deal with technical details where often administration
errors occur.

Here, we address this problem with the help of UML and OCL modeling and the validation of
UML models. We first define a UML/OCL model, which represents the frame for expressing
the concepts of the two lowest layers of the OSI model. This allows us to represent network
concepts, such as “network component”, “interface”, “interface link”, and “Virtual LAN”
(VLAN), by using UML class diagrams and complementing OCL constraints. The concrete
description of a computer network is then expressed in form of a UML object diagram.

After defining our language for representing computer networks based on UML, we use the
UML-based Specification Environment (USE) [GBR07, GHD17] for different validation
tasks. First, we automatically read network descriptions for a real-world network (a university
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housing center) and transform them into a corresponding UML object diagram. This diagram
is subject to the validation tasks. If certain OCL constraints are violated, this gives an
administrator hints that her network descriptions might be inconsistent. The ability to query
the system state helps to identify the cause for the inconsistencies. For example, we found a
concrete administration error in the network configuration. After reporting, this error was
immediately eliminated by the administration of the housing center.

Our main contribution lies in the practical application of UML modeling and model
validation in the area of network administration. In particular, the model concentrates on
the lower layers 2 and below, which are seldom covered in other approaches. Based on
this UML model we test concrete network configurations, which are represented as UML
object diagrams. We then demonstrate the effectiveness of our approach with a real-world
computer network at our university.

The rest of the paper is structured as follows. After presenting the technical background
we explain our network configuration model for computer networks in Sect. 3. Section 4
describes the validation tasks in detail and Section 5 discusses related work. A discussion
of the experience with our approach concludes the paper.

2 Background

2.1 Communication in Computer Networks

The OSI model is a communication model that describes the communication between
two systems in seven layers [[T94], among them a physical layer and a data link layer.
The data link layer provides mechanisms for detecting and correcting so-called frame
errors. The “Ethernet” is a widely distributed and commonly used technology for LAN
network communications [TW11]. A frequently used standard in corporate networks is
IEEE 802.1Q [IE14a] which specifies virtual LANs (VLAN). VLANs provide the possibility
for a logical separation of physical infrastructure for performance and security reasons. The
implementation requires VLAN-aware network components and the main idea is to assign
network interfaces to a VLAN by configuring a number. The number is called “VLAN-ID”
and represents the membership of an interface to a certain VLAN. Figure 1 shows a switch
interconnecting four hosts. Interface 1 and 2 belong to VLAN 10 and interface 3 and 4
to VLAN 20. Due to the VLAN memberships of the interfaces, only hosts A and B can
communicate with each other on layer 2 (analogously hosts C and D).

In practice one can differentiate between “access interfaces”, which can be member of exactly
one VLAN, and “trunk interfaces”, which can be member of multiple VLANs [TW11].
Every incoming frame to an interface is classified and assigned to a certain VLAN. Another
commonly used Ethernet standard in corporate networks is IEEE 802.1AX [IE14b], which
introduces the aggregation of physical links between network components. Parallel point-to-
point connections between two components can be aggregated to one logical interconnection
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called Link Aggregation Group (LAG) resulting in higher bandwidth and higher resilience
due to redundancy. The link aggregation groups are not limited to interconnect only two
network components. The according standard defines a so-called Distributed Resilient
Network Interconnect (DRNI), which allows the aggregation of multi-homed connections
resulting in a multi-chassis LAG (MC-LAG). For the operation of the individual components
of the DRNI, an Intra-Portal Link (IPL) is mandatory, which is used for synchronization of
status/configuration data.

These network techniques are some examples of commonly used concepts in industrial
networks. Each one raises the complexity of network configurations in terms of sheer size
and keeping track of the network structure in general. A modeling and analysis approach
supporting network administration is desirable.

2.2 University of Bremen Housing Center

The housing center of the University of Bremen is the central data center which consolidates
the IT infrastructure of all research groups. It is divided into two fire compartments, which
have a total capacity of 4,000 rack-mounted servers. It is connected with a 80 Gbit/s
bandwidth to the campus network.

The network design of the housing center follows the common data center network design
consisting of three layers: core layer, distribution layer and access layer. The network
components of the core layer build the heart of the network. They have high requirements
regarding performance and resilience as a failure can lead to a complete outage of the
housing center. The components of the distribution layer connect the core components to
the access layer. The network components of the access layer are located in the two fire
compartments of the housing center and provide the network access of the housed servers.
The housing center uses components from Cisco Systems.

Despite not having many network components in the setup of the housing center, the
individual configurations are complex and hard to maintain. This, for example, includes
multiple VLANSs for the separation of network traffic, LAG and MC-LAG setups for
increasing the resilience of interconnections and diverse virtual routing instances (VRF)
containing IP addresses and IP routes for an independent package routing. The configuration
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Fig. 2: Class diagram of the network configuration model.

files of all network components currently sum up to 32,500 lines for a proper interface
configuration.

3 Network Configuration Model in UML/OCL

3.1 Major Challenges

Network administrators must address different challenges. One general challenge is the
bottom-up configuration as networks are not configured as a whole. Each network component
is configured individually and network administrators must make sure that the overall
configuration is functional and secure so that no unwanted communication is possible. To
track down errors, system tools like ping or traceroute are often used, which can help one
roughly locate errors, but success is not guaranteed. In addition, sophisticated knowledge of
the network is needed w.r.t the network components and wiring with their configurations
consisting of VLANs, LAGs, IP addresses, subnets, IP routes, and firewalls.

Another challenge is the overview of logical topologies that evolve from the physical topology
with its given configurations. With the technologies provided by Ethernet (e.g. VLAN and
LAG) different network components can have different views on the network topology.
Some components might not be reachable due to some VLAN restrictions and physical
links might be aggregated to single logical LAGs. It is hard to keep track of these different
network views. A documentation of the network is indispensable, yet difficult to create and
maintain.

A further challenge are the differences between the theory of network standards and the
practice. Companies often use a terminology for their products, which may be different
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from standards; sometimes they even behave different than proposed. This makes it
hard for administrators to understand the products and the comparison between different
manufacturers. As an example, the access and trunk interfaces for the use of VLANS are
very common but neither defined nor mentioned in IEEE 802.1Q. The standard allows a
very flexible handling of VLANS at interfaces, which may not be useful or secure. This
might be the reason why the simplified interface concepts are enforced in practice.

3.2 Network Configuration Model

To address the aforementioned challenges in network administration, a representation of
static low-level configuration data of network components was established in UML and
OCL. This model can help network administrators to analyze, simulate, document and
visualize the details of a computer network. The model itself aligns to the OSI reference
model and commonly used Ethernet standards like VLANs and link aggregation, which
results in a homogeneous terminology and abstracts proprietary implementations. The
advantage of focusing on static configuration data and neglect state data makes the model
protocol independent, which leads to a wider applicability of the model. For the usage of
the model, it makes no difference which proprietary equipment the network is built with
and which implementations of common algorithms are used.

The basic idea of the network configuration model is that computer networks consist of
network components, interfaces and links:

. Network component: A network component is an abstract representation of a physical
or virtual device, which can be integrated into a computer network. It may represent
something like a virtual machine, rack-mounted server, switch or router which is
capable of dealing with VLANs and link aggregation. Network components do not
belong to any layer.

) Interface: A network component has interfaces (or ports), which connect them to
other network components. Interfaces can be physical or virtual as well and contain
a layer-specific network address like a MAC address on layer 2 or an IP address on
layer 3. Interfaces can be assigned to different layers on which they operate.

. Link: Interfaces of network components are interconnected by physical or virtual
links. A link represents a bidirectional connection between exactly two interfaces.
Two over a link interconnected interfaces are called opposites or corresponding.

Figure 2 shows an overview of the class diagram of the network configuration model, which
consists of 16 classes, 14 associations, 48 invariants and 21 query operations. Unlike the
OSI reference model, this model starts at the bottom with an abstract layer represented by
the abstract classes Interface and Link, which combine common concepts from all layers.
The specializations of these classes can be assigned specific layers, which are based on the
OSI reference model. This results in layer-specific interfaces like the Layer1Interface with
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HasAggregationLayer2interfaces

* | aggregationinterfaces

Layer2Interface «enumeration»
description : String AcceptableFrameType
MAC : String admitAll
PVID : Integer aggregatorinterface admitTagged
VID : Set(Integer) o admitUntagged
frameType : AcceptableFrameType 0.1
getOpposites() : Set(Layer2Interface) Layer2Link
getPeerOpposites() : Set(Layer2Interface) peerLink : Boolean
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ingress(aLayer2Interface : Layer2Interface, aVID : Integer) : Integer minLinkRedundancy : Integer
egresses(aVID : Integer) : Boolean minChassisRedundancy : Integer

Fig. 3: Abstract class Layer2Interface with the class Layer2Link of the second layer.

a corresponding Layer1Link. The model represents the lower layers of the OSI reference
model. In particular the focus is on the first two layers, which are fully implemented.
Additionally, a rudimentary implementation of the third layer exists only focusing on the
necessary parts for this project.

The first layer of the model correlates to the first layer of the OSI reference model. Due to
the strong relationship of the first layer and the physical medium, both can be seen as one in
context of this UML model. Because of this simplification, objects of the class Layer1Link
can be seen as a physical medium like a copper twisted-pair cable. Analogously, objects of
LayerlInterface correlate to physical cable connectors.

In contrast to the straightforward layer 1, the second layer of the UML model is much more
complex and correlates to the data link layer of the OSI reference model (from Fig. 3).
The class Layer2Interface represents a logical (or virtual) interface capable of dealing
with technologies like VLAN and link aggregation so that objects of this class can be seen
as Ethernet interfaces. Similarly, objects of the class Layer2Link are logical (or virtual)
links interconnecting Ethernet interfaces. Due to the virtual characteristic, multiple layer-2
links can be associated with an Ethernet interface depending on the number of VLAN
memberships.

Beyond a description and a MAC as a layer-specific network address, the class
Layer2Interface defines three more attributes: PVID, VID and frameType (see Fig. 3).
With the help of these attributes, it is possible to represent a VLAN configuration compatible
to the standard IEEE 802.1Q. Different from the standard, the VLAN-IDs are assigned to the
interfaces to define the membership and not the other way around (as it is done in practice).
To help network administrators with an easier reference to the practice, some specializations
of layer-2 interfaces were implemented like AccessInterface or TrunkInterface. These
specializations determine a certain allocation of the aforementioned attributes for an easier
mapping. An AccessInterface, for example, is member of one VLAN and is able to receive
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and send frames without a VLAN-tag. This results in a valid assignment of the PVID and an
empty VID set with the default frameType configuration. The other specialization classes
can be mapped to a specific attribute setting analogously.

To represent link aggregations as specified in standard IEEE 802.1AX a structural solution
was chosen. With the help of the reflexive aggregation HasAggregationLayer2Interfaces,
it is possible to aggregate layer-2 interfaces. Based on the IEEE standard, the aggregate
of the whole-part relationship is called “aggregator interface”, whereas the component is
called “aggregation interface”. An aggregator interface can be associated with multiple
network components to represent a multi-chassis LAG (like a DRNI). The presence of a
LAG or MC-LAG accommodates strong structural requirements. For example, aggregator
interfaces can only be interconnected to other aggregator interfaces to ensure the increased
resilience of the logical link. In case of MC-LAGs, “Peer Links” (like an IPL) are required
between the associated network components to enable synchronization of status information,
which are modeled via attributes on layer-2 links (see Fig. 3).

Two derived attributes were established in the class Layer2Link to visualize the resilience
of the logical link in the context of link aggregation:

. /linkRedundancy computes on how many layer-1 links this logical link depends. Any
value greater than 1 represents link redundancy where every but one physical link
can fail without affecting the availability of the logical link.

. /chassisRedundancy calculates the chassis redundancy, which is relevant when using
MC-LAGs, whose interfaces are distributed across multiple network components.
Any value greater than 1 represents redundancy so that network components on each
side of the logical link can fail without breaking the connection.

The UML model also contains multiple derived associations. They are useful for the
inspection of large system states as they help visualizing implicit information. Figure 4
shows a simple system state as an object diagram. This system state consists of two network
components named NC-A and NC-B, which are physically interconnected. The resulting
connection is represented by a layer-1 link, which is associated to two layer-1 interfaces. The
existence of this layer-1 connection leads to the existence of the derived association called
D_LayerlConnection in the context of network components. This association connects two
network components when they are actually interconnected on the first layer. A modeler can
then hide objects of the first layer without losing information.

Furthermore, the system state in Fig. 4 contains two interconnected access interfaces,
which are member of the VLAN 1. They are based on the existing layer-1 objects and
represent a logical connection between the two network components. The derived associ-
ation D_DependsOnLayer1Link associates objects of class Layer2Link to objects of class
Layer1Link to represent on which physical link the logical link is based on. The existence of
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Fig. 4: Valid state: components NC-A and NC-B interconnected on different layers.

aderived layer-1 link is mandatory and can be inferred by the associations of the neighbored
objects.

4 Analysis of the Housing Center

4.1 Basic Analysis Process

The first step of the housing center analysis is to have a valid representation as a USE system
state. Due to the infrastructure complexity, the focus lies on the described core network
components with two servers modeled as an example. Nevertheless, the complexity of the
pursued system state is high resulting from the complex configuration of individual network
components.

To avoid to go through the network configurations and manually construct the USE
system state, a Java parser was implemented for an automatic transformation. Usually the
Cisco network components are configured using specific configuration commands via an
SSH interface. The overall configuration can be displayed and exported using particular
commands. Besides this configuration, the parser expects an export of the Cisco Discovery
Protocol (CDP) information for each network component. The CDP is a proprietary
implementation of the Link Layer Discovery Protocol (LLDP), which helps to identify
neighbored network components. This information helps to infer the physical cabling among
the considered network components and create the layer-specific interconnections.

Configuration | __ Cisco ey SOIL o USE ____|UML class diagram
files parser Statements and W

S~

Fig. 5: Processing the configuration files and input for USE.

An overview of the parsing process is shown in Fig. 5. In our case, the parser processes
14 files of configuration commands and CDP information. In total, they consist of about
32,500 lines. The parsing process itself only takes less than 1 second and outputs a so-called
“SOIL file” containing OCL-like commands to build a USE system state. The SOIL file
contains about 6,500 lines of statements for object and link creation and setting attribute
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values. With this SOIL file and the class diagram, USE establishes the system state of the
network.

Figure 6 shows the object and link count of the fully loaded system state of the
housing center in USE. The object diagram consists of 13 network components,
712 (14+288+68+268+50+2+22) interfaces with 180 Link objects of different layers
in addition to 1,760 regular and 857 derived links. About one third of the total links
are derived showing their importance as these links are implicitly derived from various
constraints. At this point, the system state satisfies only 45 of the 48 invariants. A detailed
analysis of the three failed invariants is discussed in the next section.
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Fig. 6: Object and link count of the housing center system state in USE.

A network administrator now has many options to use the system state for her needs. It is
possible to visualize the system state in USE to obtain a rough overview of the individual
objects. Due to the quantity of objects and links, it is not advisable to display everything
at once. USE provides features to show specific objects by name, type or OCL query
and discover their neighbored objects by path length. Using this technique, a network
administrator can display, for example, only interfaces and links of a certain layer providing
a layer-specific investigation of the system state. The embedded derived associations help to
keep track of the overall context, even if not every object is visible.

A network administrator can also query information with OCL. She can, for example, query
specific data from a network component to obtain a tabular configuration overview. Even
Cisco-specific analysis commands, like show vlan brief or show interface trunk, can
be rebuilt in OCL. Using its condensed output, she can compare and verify the system
state with the real world network component or the other way around. More powerful OCL
queries are possible, which include configuration data from different network components,
e.g., showing physical interfaces not posessing a link, every LAG or MC-LAG defined in the
network, or virtual links not meeting the required resilience parameters (indicating broken
physical links).
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In practice, an administrator would have to compare the distributed configurations manually.
Additionally she needs specific knowledge about the infrastructure itself combined with
a sophisticated understanding of the influence of different configurations on the overall
functionality of the network.

4.2 Incidents Found

The built USE system state does not satisfy every defined invariant. Nevertheless, the UML
multiplicities together with the structure checking invariants are fulfilled, which states that
the structure is valid and that the Cisco parser successfully parsed the configuration files.
The three failing, configuration checking invariants can be examined further using the check
command on the USE shell.

One of these invariants handles the uniqueness property of MAC addresses, whose trans-
formation is not yet implemented in the parser. The second invariant detected orphaned
“layer-2 subinterfaces”, which do not have a corresponding interface. This could lead to
miscommunication between network components, because the sent frames will not be pro-
cessed accordingly. The third invariant will be the focus of further analysis, exemplifying the
analysis process. A network administrator can get detailed information about the evaluation
using the command check -d. The additional parameter leads to a detailed output, in which
one can see which objects are violating the invariant:
use> check -d
checking invariant 8: FAILED.
Instances of Layer2Interface violating the invariant:

Set{TrunkInterface23, TrunkInterface26}
checked 48 invariants in 3.059s, 3 failures.

The focus is now on the failed invariant 8. This invariant checks if two corresponding
interfaces are able to receive frames of certain VLANSs the respective other interface is
member of. The output of the command shows that the two objects TrunkInterface23,
TrunkInterface26 are violating the invariant. Object TrunkInterface23 will be further
used to demonstrate the options of the UML model in combination with USE.

Using a query, first the corresponding opposite interface of TrunkInterface23 is found.
For this specific case the query operation getOpposited() is implemented, which re-
turns all corresponding interfaces. In this case, there is only one corresponding interface
TrunkInterface4:

use> ?TrunkInterface23.getOpposites() -> Set{TrunkInterface4}

Next, we compare the VLAN memberships of the determined interfaces, as this was the
cause of the invariant violation. To retrieve the VLAN memberships of an interface, the
query operation getVLANMemberships() is used. Querying the difference of the VLAN
memberships of the two interfaces shows the range of VLANS that are defined on one
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interface and not on the other. Here, the object TrunkInterface23 is member of ten more
VLANSs (1200-1209) than the object TrunkInterface4, which causes the invariant to fail.
use> ?(TrunkInterface23.getVLANMemberships() -

TrunkInterface4.getVLANMemberships())->asSet()
Set{1200,1201,1202,1203,1204,1205,1206,1207,1208,1209}

Now that the source of the violation is known, the network context can be explored further
in order to identify the components with faulty configurations. Using a simple OCL query
returning a tuple, the interface names and names of the associated network components are
detected:

use> ?Set{TrunkInterface23,TrunkInterface4}->collect(i |
Tuple{NM=i.name, NC=i.networkComponents.id().name})
Bag{Tuple{NM="'port-channell®"',
NC=Bag{ 'nexus-5500-a-1', 'nexus-5500-a-2'}},
Tuple{NM='port-channell®',
NC=Bag{ 'nexus-7000-a', 'nexus-7000-b'}}}

The output shows that both examined interfaces are named porz-channell0. It also states
that both interfaces are part of an MC-LAG, as they both are associated to two network
components. Using the hide-and-show feature of USE, it is possible to visualize only the
small examined context of the network as shown in Fig. 7. This confirms that the two
interfaces are part of an MC-LAG. Overall, the analysis shows that the invariant violation
was caused by an interface that interconnects the distribution layer with the access layer
over an MC-LAG.

NetworkComponent2:NetworkComponent} — — — — — — — — — — — — NetworkComponent6:NetworkComponent
name='nexus-5500-a-2' [ — — — — — —/ — —/ — —™ ™ name='nexus-7000-b'
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Fig. 7: Context of the found configuration error in the network components.

The impact of the discovered configuration error is a limited reachability of the network
components. The TrunkInterface23 is able to send frames belonging to VLAN 1200 to
its connected interface TrunkInterface4. As the receiving interface of the frames is not
a member of VLAN 1200, it will refuse and drop frames, resulting in a one-directional
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miscommunication for VLANs 1200..1209. It is recommended to match the VLAN
memberships of linked interfaces.

In practice this kind of error is hard to detect. The error will only become noticed when a
certain reachability from one network component to another is not available. The task of error
tracing can be very complex here due to the special conditions of the miscommunication,
as the reachability for one VLAN might be present but fails for another. The search for
misconfiguration can be simplified using our network configuration model. The defined
invariants allow one to check the basic configuration and show the objects violating these
constraints. With the use of a few query commands an administrator can extract and
visualize the errors. An administrator can also create own queries for a quick inspection of
the resilience attributes of certain links or any other data of interest.

4.3 Results and Discussion

When reporting the detected incidents to the administrator, the feedback was very positive.
Ignoring the MAC addresses, in case of the first incident, it turned out that during the
time of the acquisition of the configuration, an update has been pushed to some network
components while still being scheduled for others. This led to a known inconsistency in the
configuration that was later corrected. Nonetheless, this incident represents a configuration
error in the extracted data and was identified as such by the model. As for the second
incident, the misconfigured VLAN ranges have indeed not been recognized before and can
be corrected with the detailed information extracted during the analysis.

Overall, the results show the suitability of the model to find errors of various kinds in
the configuration of networks that would otherwise be hard to find in the distributed files
containing configurations per network component. Additionally, the options to query the
network configuration allows to locate causes of incidents directly. Furthermore, the model
has demonstrated its suitability for industrial networks: in terms of the technologies that
are used in such environments, which include proprietary equipment, and also in terms of
performance.

5 Related Work

The “Interconnected Asset Ontology” (I0) [Bil2, BS14b, BS14a] resembles our work in its
underlying goals. 10 follows an ontology-based approach to the representation and inference
of computer-network layers. It uses SPARQL as a query language to obtain information
from computer networks. In particular, IO can represent VLANs, LAGs, and MC-LAGs
as well. The topological model of our work can, hence, be seen as an UML/OCL-based
alternative to IO, however, with a focus on the lower OSI-layers. An advantage of using
UML is the fact that we can visualize network system states and exploit the USE model
validator’s capability to complete system states.
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Other works deal with the static analysis of computer networks. Xie et al. present an
approach to determining reachability in IP-based networks [Xi05]. Their model is based on
graphs and determines reachability between two network components by tracing all possible
“headers” from a source to a target. Kazemian et al. refine this approach by also providing a
technique for the detection of cycles and slices in network topologies [KVM12]. For this
purpose, they use static configurations of network components, which are represented in a
geometric model. This model also focuses on IP-based networks, but headers do not refer to
a specific OSI layer. A similar approach is proposed by Al-Shaer et al., who model computer
networks as finite state machines and follow a model-checking approach to analyze the
model w.r.t. reachability and consistency [Al09].

Our approach resembles the aforementioned works in several ways. All techniques deal with
the representation and analysis of static data of a computer network, however, with a focus
on the IP layer of a computer network (including firewalls). In contrast, our work allows an
administrator to consider the lower OSI-layers, which are not topic of the other works. In
particular, we now support concepts such as VLAN and link aggregation while at the same
time adopting ideas from the analysis of IP-based networks, such as reachability, cycle and
slice analysis.

Our work has also connections to approaches for network configuration and administration
based on formal semantics or formal tools and on proving-like techniques. A general formal
configuration language is discussed in [AH16], and the application to real scenarios is
demonstrated. In [Mal5] a tool based on SAT solving is used for network and access
control list configuration. The configurations are checked through various standard and
complex service access queries. [FM10] introduce a formal approach allowing to formally
and optimally configure a network so that a given security policy is respected and by
taking into account the quality of services. Special emphasis is put on the consideration of
firewalls. The approach in [Ro06] presents a logic-based model that is suitable for describing
networks and intrusions. The approach is implemented in Prolog and allows to analyze
important static properties of networks. The work in [Fo06] proposes an abstract model for
network configuration that is intended to help to understand fundamental underlying issues
in self-configuration. When individual network components that are securely configured are
connected together in an apparently secure manner, configuration cascades resulting in a
misconfigured network are detected. Within the area of mobile-ad-hoc-networks (MANETS)
the proposal from [S005] describes a formal approach to modeling and reasoning about
auto-configuration protocols to support the detection of malicious nodes. Global security
requirement for a network are defined that characterize the good behavior of individual
nodes to assure a global property.

Work on configuring networks has also been done in prover-like contexts. [Hal5] focuses
on the behavior of individual switches, and demonstrates that even simple configuration
rule updates can result in inconsistent packet switching. The paper demonstrates that
consistent configuration updates require guarantees of strong switch-level atomicity from
both hardware and software layers of switches. [DKC15] presents the tool topoS which
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automatically synthesizes low-level network configurations from high-level security goals.
The tool topoS is formally verified with Isabelle/HOL, which prevents implementation
errors. None of the above approaches employs standardized modeling languages like UML
and OCL to describe networks.

6 Lessons Learned and Conclusion

We have performed a full analysis of the static configurations on a real-life network and
were able to show the effectiveness of our approach with the example of a professional
network. In particular, with the model and the USE tool, two incidents in the extracted
configuration snapshot were uncovered. The process was fully automatic in that the existing
configuration files were processed by a parser to create the system state of the model on
which USE evaluates the model invariants and gives detailed information about the results.
In case of a failed invariant, the cause is reported and can be used as an entry point for
further analysis steps. The analysis of errors works on the model level, which gives network
administrators an abstract view and control over the state of the network, e.g. connections
of network components can be interactively followed using navigation in OCL. For this
purpose, the model contains several query operations that perform commonly used tasks,
such as following virtual links.

Our approach models network configurations from the bottom, starting with network
components and physical cables from OSI layer 1. Third-party tools offered by network
companies only allow one to inspect network configurations from the third layer or above.
Therefore, configuration errors in lower layers cannot be detected using these tools and less
convenient methods have to be used to analyze the lower layers, e.g. the low-level options
ping and traceroute.

Aside from static analysis, representing the network as a UML system state allows for
modifications that directly affect the whole network. These modifications can be analyzed
before they are implemented whether they are free of errors and have the desired effect on
the model, e.g. regarding reachability.

OCL and its formal basis allow for verbally formulated requirements of a network to be
precisely represented using the network configuration model. Thus custom requirements
can be automatically checked on a system state or be implemented as invariants, to be used
in the future. These requirements can also be used to create a new network. The generation
of the links and configurations can then be generated by a model completion tool like USE.
Additional parameters can be defined using higher layers of the model.

The documentation options of the network configuration model are useful at all development
stages. Before installing a network, the network requirements can be checked and during
network maintenance, changes can be simulated. With the parser for the Cisco configurations,
the system state can be generated from existing networks at any time reducing initial costs.
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More parsers can be implemented to support more technologies and brands. These parsers
also allow for continuous integration during maintenance and for continuous documentation.

Being able to query the model, visualize the system state and test setups before they are
physically installed are only some of the general features for UML/OCL models. Also,
besides the USE tool, a multitude of tools exists to analyze yet more properties of general
UML/OCL models, like the configuration model. Certainly, it also would have been possible
to use a DBMS and define integrity rules, but employing USE allows us to automatically
generate a series of test cases rather than defining only single cases.

In conclusion, we believe that the presented methodology helps network administrators.
Specifically, administration of large-scale computer networks often becomes tedious and
error-prone, but the abstractions and gained overview enable a better understanding of
networks—existing and new ones—and validation detect faults in the configurations. Finally,
we do not claim that the network configuration model presented in this paper is fully
exhaustive. Further investigations can lead to more improvements, but the experience so
far supports the claim that it is worthwhile to invest into model-based automatic validation
techniques for networks and that these techniques pose a benefit for all networks.
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