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Abstract: We are surrounded by ever more dependable systems, such us driving
assistance systems from the automotive domain or life-supporting systems from
the medical domain. Due to their increasing complexity, not only the development
of but also the quality assurance for such systems are becoming increasingly
difficult. They may cause various degrees of harm to their environment. Hence, in
order to reduce risks associated with these systems, development as well as quality
assurance normally use risk analysis as a basis for constructive and analytical
measures against these risks. One of the aims of quality assurance is fault detection
and fault forecasting. In this paper, the authors present indicator-based inspections
using Goal Indicator Trees, a novel risk-oriented quality assurance approach for
fault detection. It can be used to detect faults of different types, like safety faults or
security faults. Starting from typical risk analysis results like FMECA and FTA,
the approach systematically derives quality goals and refines these goals into
concrete quality indicators that guide the indicator-based inspection. Quality
indicators can be mapped to concrete checklists and concrete inspection goals in
order to support inspectors checking artifacts in a fine-grained way with respect to
certain quality properties. The approach is explained and demonstrated with
respect to the quality property safety, but tends to be generalizable to further
quality properties.

1 Introduction

With the growing importance of systems that help control critical aspects of our
environment, such as automotive driving assistants and medical life support systems, the
importance of guaranteeing the dependability of software and embedded systems is also
increasing steadily. As these systems often have high inherent complexity, both
constructive measures and analytical quality assurance measures are necessary to ensure
the required level of dependability.

To ensure that the dependability properties required of a system are fulfilled, a wealth of
measures are taken, starting with risk analysis to identify possible problems, followed by
constructive measures to ensure fault avoidance and fault tolerance, and concluding with
quality assurance measures for fault removal and fault forecasting. Sadly, the results
derived during risk analysis are often too coarse to allow a truly satisfying quality
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assurance: The descriptions of different risks and countermeasures may lack the detail
needed to effectively ensure that appropriate risk reduction and prevention steps have
been taken.

In particular, common risk analyses like Failure Mode, Effect and Criticality Analysis
(FMECA) and cause-effect analyses like Fault Tree Analysis (FTA) tend to terminate
with fairly abstract causes for hazards, and the measures taken inside the system might
not have obvious connections with the hazard causes. Moreover, existing inspection
reading techniques like checklists or scenarios that support inspectors in finding
problems often also contain questions that are not focused enough. One method that aims
to solve this problem are Security Goal Indicator Trees (SGITs [19]), which allow the
refinement of security goals into indicators that can be used directly to drive inspections
of the system under consideration. On the other hand, this technique is specially tailored
to the security domain, not considering other quality properties such as safety or
reliability.

The approach presented here builds upon the idea underlying SGITs, generalizing them
into Goal Indicator Trees (GITs) so that they may be applied to different quality
properties. In particular, quality goals are identified, which are then refined into sub-
goals making up a particular goal. This refinement is continued until one can derive
indicators, i.e., statements about the system that can be directly checked by looking at
one or more system artifacts. These indicators are then used to drive an inspection, with
the benefit of supporting an inspector by presenting information how to read artifacts
such as requirements, design or code documents in a detailed manner. As the
construction of the indicators is a systematic process in which domain experts should be
involved, it is reasonably certain that all important facets for a given quality goal are
considered inside a GIT. The work presented in this article describes work in progress
and presents the conceptual framework towards risk-oriented indicator-based inspections
demonstrated with a safety-critical example from the automotive domain.

The remainder of this work is structured into three sections: Section 2 gives an overview
of related work, both with regard to analysis techniques and inspections. Section 3
describes the approach in detail, illustrating it with an example from the automotive
domain. The quality property under consideration is safety, and the derivation of
questions guiding an inspection for a given safety property is shown, together with the
actual inspection results. Finally, Section 4 summarizes the results and gives details
about ongoing evaluation activities and further research directions.

2 Related Work

Two areas should be sketched: on the one hand, methods that support analysts and
developers during certain development steps ensuring a certain quality constructively
and, on the other hand, those that do so analytically. Our focus is on static quality
assurance methods, which are suitable for analyzing certain development artifacts such
as requirements documents, design documents, models, or code.
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A common classification of the means for ensuring dependability is described in [12]: A
method may focus on fault avoidance, fault tolerance, fault removal, or fault prediction.
Construction-time methods tend to fall into the fault avoidance and fault tolerance
classes. For many of these approaches, the first step is to carry out an analysis that will
identify the risks inherent in the system, as well as possible causes that lead to the
manifestation of these risks. From these analyses, possible countermeasures are derived
that will help to either reduce the probability of occurrence of each hazard or its severity.

There are numerous examples of such analysis techniques with different specializations.
In the context of safety, two of the most common methods, often used in tandem, are
FMECA and related techniques like FMEA [13][14][15] and FTA [16][22]. Both
techniques have complementary goals: While FMECA is used to identify failure modes
of the system and assess their criticality; FTA is used to identify the underlying causes
that may lead to the manifestation of a failure mode. These techniques are usually
employed together: possible system failure modes are determined using FMECA, and
iteratively refined to “basic events” using FTA. These basic events are defined as
“component failures” [22]. For software, this means that basic events are formulated as
“software component failure”, without describing possible causes.

For reliability analysis and identification of reliability-critical components, Reliability
Block Diagrams (RBDs, [17]) are used. These models are built from information about
the system structure and individual component reliabilities. Component failure causes
are not considered.

Finally, for security, attack trees [18] allow an approach similar to FTA, while SGITs
[19] are used for fine-grained analysis. From our point of view, only SGITs have a
sufficient level of detail for guiding inspectors when focusing on a certain quality
property: The combination of FMECA and FTA stops at a level where the failure of
individual components is considered, not going into the detailed analysis of failure
causes of software, while RBDs do not consider failure causes at all.

For checking certain development artifacts analytically, software inspection is a suitable
means. Inspections have existed for over thirty years and were first published in 1976 by
Fagan [1]. They are a structured and well-defined static quality assurance method for
verifying the quality properties of different artifacts. Two main research directions can
be identified regarding inspections, namely, the inspection process itself (e.g., phased
inspection [3], n-fold inspection [4]) and reading support for defect detection by
inspectors.

While focusing on support for developers, analysts or, inspectors in general, in order to
check certain qualities, different reading support were developed that can and should be
used to find defects (which can also mean violations regarding a certain quality) in an
effective manner. Three different kinds can be distinguished. First, ad-hoc reading,
where an inspector does not get any reading support. In this case, the inspector can
perform the defect detection based solely on his knowledge and experience. Second,
checklists can be used. Beside one general checklist used by each inspector [5], focused
checklists [6] and guided checklists [7] were developed in order to present different
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perspectives or defect classes that can be looked for in an inspection. The main
advantage of focused and guided checklists is the higher defect coverage within the
artifact to be checked and the lower overlap of defects found by the inspectors, i.e.,
inspectors mainly find different defects, resulting in higher effectiveness. One main
problem with checklists is that the checklist questions are often too general, as stated in

[8].

The third class of reading techniques are scenarios. The idea is that an inspector should
work actively with a document instead of only reading checklist questions in a passive
manner. For this, an inspector gets, for example, a description of his perspective
(perspective-based reading [5]) or a certain defect class (defect-based reading [9]), which
sets the focus. Next, concrete instructions have to be followed and questions have to be
answered. For example, imagine an inspector taking the tester perspective. One
instruction might be, “Derive a number of test cases from the corresponding document”,
and a possible question is, “Is all necessary information for deriving test cases stated?”

Despite many research activities regarding reading support and a number of existing
reading techniques as mentioned above, little work has been done on how to support
inspectors with detailed reading support to ensure certain qualities in a holistic way. The
already mentioned SGITs and guided checklists are initial methods that go into this
direction. Nevertheless, they only focus on the quality property security and have not
been generalized to further qualities. Finally, little support is given today that describes
how to derive reading support for inspectors.

In summary, despite a lot of existing constructive and analytical methods to ensure
certain qualities, a generalized approach for focusing on the details of quality attributes
that should be ensured across the software development cycle (i.e., in the created
documents and the code) is still missing.

3  The approach

The approach for creating reading support and performing the indicator-based inspection
is carried out in three steps, shown in Figure 1. To describe these steps, consider the
following example: The object under consideration is the control unit for an electrically-
powered car window, as described in [10]. As it is a safety-critical system, the quality
assurance of this control unit must demonstrate that all safety-related non-acceptable
risks have been reduced to an appropriate level [11][20].

indicators in the GIT

Determine congrete J\ Construct a Goal J\ Carry outan
P Indicatar Tree for ingpection using the
quality goals )
each quality goa

Figure 1: Steps of an indicator-based inspection
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The system under consideration is called “Automotive Power Window System”. It
describes an electronic control unit for an electrically controllable car door window. This
control unit allows the driver (and the passenger) to move the window inside the car
door using an up/down button. Additionally, it will detect whether the window is
jammed by some object, using this information to avoid crushing that object. The
inspection will be carried out on the requirements for this device as well as on a
Matlab/Simulink model of the system (i.e., a model inspection as required in [11] for a
software unit design and implementation).

3.1 Determination of concrete quality goals

The first step is the selection of the quality goals in question. For safety, the quality goals
tend to be highly application-specific, since every system comes with a different set of
potential safety hazards. In the automotive domain, the applicable standard (ISO WD
26262, [11]) prescribes that a safety risk analysis must be undertaken. In particular, the
system’s safety hazards are to be identified, e.g., using FMECA, and the causes of each
failure mode must be determined, e.g., by FTA.

Using a Fault Tree Analysis or similar techniques, one arrives at a description of all
those situations in which a safety hazard may manifest itself. These situations are often
described by so-called cut sets, e.g., sets of events that must occur together. One
common analysis performed during FTA is the determination of minimal cut sets, e.g. of
those cut sets that describe the minimum preconditions for the occurrence of a safety
hazard.

For the power window controller, an FMECA includes (among others) the following
failure modes:

Table 1: FMECA of power window controller (excerpt). See [14] for a description of the columns.

Eror location |Potential error Consequences |S|CRIT |Causes O|Detection D (RPN
of error
Jam prevention |Window is Object crushed | 9yes Jam detection | 4[No simple direct | 9| 72
jammed while fails solution

motor moves it up

This failure mode is hence highly safety-critical and must be further analyzed. By
carrying out a Fault Tree Analysis, one arrives at the fault tree depicted in Figure 2. The
software-related basic events are marked by stripes.

To ensure that a system is safe, one therefore considers each critical minimal cut set in
turn, formulating a quality assurance strategy that demonstrates, for each minimal cut
set, that not all its events can occur together. Thus, the concrete quality goals can be
given in the form “not all events of the minimal cut set C may occur simultaneously”,
where C ranges over all minimal cut sets. The minimal cut sets of the power window

LEINTY3

controller all have the form “object jams window”, “‘window up’ button pressed”, and
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one of the statements “sensor does not notice jam”, “motor moves on its own”, “sensor
data not received”, “sensor data misinterpreted”, and “motor still ordered to move up”.

Hence, for deriving indicators, three minimal cut sets need to be considered:

1. “object jams window”, “‘window up’ button pressed”’, “sensor data not
received”

2. “object jams window”, “‘window up’ button pressed”, ‘“sensor data
misinterpreted”

99 Gee

3. “object jams window”, “‘window up’ button pressed”, “motor still ordered to
move up”

Slindow
up” buton
pressed

21

Sensor Maotor
does naot maves on
nolice jam ils owr

Sensor Sensar Tdcios stil
data not data mis- ardered 10
reveicec inferpreted move Up

Figure 2: The fault tree for “Object jam detection fails”

From these minimal cut sets, one derives three goals:

1. When an object potentially jams the window while the “window up” button is
pressed, the data from the jam sensor must be correctly received correctly.

2. When an object potentially jams the window while the “window up” button is
pressed, data received from the jam sensor must be evaluated and interpreted to
detect possible jamming conditions.

3. While the “window up” button is pressed, the motor must not be ordered to
move up when a jam is detected.
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3.2  Construction of Goal Indicator Trees for the quality goals

Next, the goals can then be iteratively refined into sub-goals and indicators. This
refinement process is described exemplarily on goal 1, using a graphical notation. The
result is shown in Figure 3. The detailed process and possible variations will be
described in an upcoming paper; here, one variant, based on a goal refinement
procedure, is illustrated on an example. A graphical notation was chosen as many
common approaches (e.g., FTA and SGIT) for similar analyses also use a graphical
representation.

The Goal Indicator Tree is built up from several elements, namely a single goal (at the
top), two sub-goals below it, and several indicators. Goals, sub-goals, and indicators are
connected by logical junctures (namely, “and”, and “or”). If the goal is made up of sub-
goals and indicators connected by “and”, all of the sub-goals and indicators must be
fulfilled for the goal to be satisfied. In the same way, if they are connected by an “or”
node, at least one of them must hold for the goal to be fulfilled. The same holds for sub-
goals and indicators made up of other elements. The difference between a sub-goal and
an indicator is that a sub-goal may still be unspecific, while an indicator must be detailed
enough to be directly checkable.

Jam detection: Goa
Sensor data
correctly received Gubgeal

\o_r/ ‘ Logical
junchure
Dedicated. jam.detéction, Jantdelgction. by

motor monilering

@

Current measuranent
is used to detect window
jamming

Mator current
is monitored

Controller has
asutabe
connectian to the
SENSOr

Jam detection
condikions
are realstic

Jam detector
ex1515

Maximum metor
current 13 sgeciiec

The metor curret
is compared aganst
the limit

Jam conditien is
“counter force on
mator is at masl n
Mewton” with n at
masi 100

The limit is justified

Jam cenditien is
“window does not
move for n seconds”
with n at mast 3

Figure 3: Derivation of indicators for a safety goal, using a Goal Indicator Tree

In the example, one starts with the first goal, “Jam detection: Sensor data correctly
received”. Since there are a number of possible implementations, the tree needs to be
refined to allow an easier inspection. In this case, the goal describes the correctness of a
system behavior that depends on the implementation of the underlying component. Thus,
it is refined using an “or” juncture, resolving the dependency on the implementation by
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enumeration. One arrives at two sub-goals, “Dedicated jam detection: Sensor data
correctly received” and “Jam detection by motor monitoring: Sensor data correctly
received”. Each of these goals describes the correctness of a system which consists of
more than one component. Thus, an “and” juncture is used to split up the goal into sub-
goals for each component. Following the second path, one finds that there must be both a
way to monitor the motor current, and the current measurement must be used for jam
detection. The existence of a motor current monitor can be directly checked by
inspection (e.g., by checking whether the system has appropriate hardware). Therefore,
this sub-goal is formulated as an indicator. In theory, the correct use of the current
measurement could also be checked directly; hence, it is also marked as an indicator. In
practice, not every inspector will be familiar with the necessary knowledge in electrical
engineering to decide what an appropriate check is. Thus, this indicator is further
refined.

For the second and third goal, the respective Goal Indicator Trees are shown in Figure 4.

Jam detection:
Jam detection data
used correctly and

Jam detection:
Motor control
effectively uses jam

ffectivel:
effectively signal
Jam signal is o
passed to motor U
control Jam handling by
- lam handling by
T;Tje;ﬁd:ig::r/ control logic

Jam signal is
checked at least once
per second

Jam signal handling
is implemented in its
own process

Component sits - y

. pon jam detection;

inbetween normal motor is made to move ile jam i

motor control and While jam is de\ect_ed,
motor driver down or not at all no up movement is

generated

Upon jam detection,
component makes motor
ove down or not at al

Figure 4: Goal Indicator Trees for the remaining two minimal cut sets

To keep the set of indicators manageable, one next defines assessment and selection
criteria for indicators. For safety indicators based on cut sets, the following criterion can
be used: An indicator is considered useful if it significantly contributes to the
demonstration that the events in one of the most critical cut sets can only occur with low
probability. A cut set is critical if it has a high risk priority number. As all minimal cut
sets in this example have the same risk priority number, each of them must be
considered.

3.3 Carrying out the inspection

Based on the defined Goal Indicator Tree shown in Figure 3, the inspection of the
corresponding development documents is performed in order to find problems that
violate the goal “Jam detection: Sensor data correctly received”. With respect to the
inspection process, the focus is on the defect detection phase and there is a description of
how to apply the GIT. A requirements document (Simulink — Automotive Power
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Window System Demo — Part 1 — Designing the Controller) and a Matlab Simulink
model (“Power Window”, as linked from the requirements document) are used as
artifacts to be analyzed, i.e., each indicator should be checked against these artifacts
[10]. The goal of an inspection is to find all potential defects. Thus, it is important to
check and document each indicator to the extent possible in order to find all defects that
do not comply with the indicators. The order of checking is depth-first, from left to right.
Finally, the GIT presents for each indicator only a short description of what to check.
This explanation is often not detailed enough for non-experts regarding certain goals or
for people using a GIT the first time. Thus, it is possible to derive a checklist containing
more details for each indicator. Basically, each indicator is transformed into one question
and enhanced with more information about what to check and how to proceed [7]. This
step is skipped here. Nevertheless, in the following, more detailed questions than seen in
the GIT are presented exemplarily in order to clarify some indicators.

Starting with the goal as entry point, the focus of the GIT to be checked is given.
Following the described order, the sub-goal “Dedicated jam detection” has to be checked
initially. The first indicator leads to the question, “Does a dedicated piece of hardware
exist for jam detection?” This can be checked both in the requirements and in the model.
The requirements document presents information about how an obstacle is treated while
the window is closing. No dedicated piece of hardware is defined that violates the
indicator. Consequently, the indicators below, which describe how to analyze
implementation details, cannot be checked because the implementation of the jam
detection is not done this way. Furthermore, the indicator that is not fulfilled corrupts the
sub-goal and a potential problem is found (which should be documented).
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Figure 5: A high-level view of the power window control system, showing that the current running
through the window movement motor is measured (the line between the armature current
connectors, at the top of the model).

Next, the second sub-goal “Jam detection by motor monitoring” should be ensured. For
this, the first indicator to be checked leads to the question of whether the motor current is
monitored. In the requirements document, it might say that “... the control switches to its
emergency operation when a current is detected that is less than -2.5 [A]”; thus,
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monitoring is documented. Next, a look is taken at the model in order to check the
implementation and find out where the implementation of the requirement is done in the
model (see Figure 5). A line from the window system to the
power_window_control system exists for armature current which indicates that the
current measurement takes place.

The next indicator “Current measurement is used to detect window jamming” is checked
in the requirements and could be found in a section where a description of the power
window control process is given. Finally, three dependent indicators are checked,
starting with the indicator “Maximum motor current is specified”. Within the mentioned
description, certain values for normal operation and for when an obstacle is detected are
defined. That the motor current is compared against the limit can be checked in the
model where the (absolute value of the) armature current measurement, whose value is
read from input 2, is compared to the constant 1.2 in the comparator named “object” (see
marked rectangle in Figure 6). For the last indicator, “the limit is justified”, a positive
answer can again be found in the requirements where the values for normal use and
deviations are defined and explained.

S — —
Produl

armature_current

H
b 4

mave_up

break
dependeny

delay_detection

Figure 6: The position of the current comparison that is used to detect jammed windows'.

After checking all indicators to the extent possible and documenting the issues as
described, the defect detection phase is finished. Finally, in order to judge if the overall
goal “Jam detection: Sensor data correctly received” is fulfilled, one has to go over the
indicators and logical connectors once again. The left sub-goal “Dedicated jam
detection” is not fulfilled. Regarding the right sub-goal “Jam detection by motor
monitoring”, each indicator is fulfilled, which results in fulfillment of the sub-goal and
moreover to overall fulfillment of the goal, because the two sub-goals are connected via
an “or”’-node (meaning that only one of the sub-trees has to be fulfilled).

! Path inside the model:
powerwindow03/powerwindow_control_system/detect obstacle endstop/detect obstacle
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4 Conclusion and Future Work

This paper presented a novel approach that defines how an inspection could be
performed using indicators in order to ensure certain quality goals. Output from existing
analysis techniques like FMECA or FTA is used to identify risks and subsequently to
derive goals and sub-goals, which are refined into indicators on certain artifacts, like
requirements or models that can be checked by an inspector. We explained the approach
with respect to a jam detection system where safety requirements should be ensured.
With this, we could show that the defined approach is applicable to ensure the quality
property safety (beside the initial focus on security) which gives initial evidence that the
approach tends to be generalizable.

Quality assurance techniques like FMECA, FTA, or existing reading support for
inspections often analyze corresponding documents on a level that is too coarse-grained,
only identifying general risks. Unfortunately, only little or even no information is given
on how to reduce the risk concretely. Thus, indicators are a new possibility to close this
gap and to improve the artifacts to be checked with respect to the goals to be ensured,
respectively the risk to be reduced. Consequently, the quality of the whole product is
improved with a special focus on the qualities that are checked.

The indicator-based inspection is currently being evaluated on examples in the
ViERforES research project [21]. In particular, a robot control system and an example
from industrial automation are in the process of being examined using the techniques
described in this paper, with more case studies planned later. The goal of these studies is
to evaluate whether the techniques presented herein lead to an effective method for
driving safety and security inspections (i.e., evaluation of the defect detection ability and
effectiveness regarding certain quality properties, evaluation of scalability, evaluation of
ensuring additional quality properties, and evaluation of the GIT construction step).

Another aspect regarding future work is an application of this approach to other
domains, including relevant standards, and to further quality properties. Until now, we
have been able to show that the indicator-based inspection approach is adaptable to the
quality properties security [19] and safety (in this paper). We believe that more qualities
can be refined with our approach and used for quality assurance in order to reduce risks
in software development and thus, improve the products of practitioners.
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