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Concolic-Fuzzing of JavaScript Programs using GraalVM
and Truffle

Robert Delhougne1

Abstract: The scripting language JavaScript has established itself as a central component of the
modern internet. However, the dynamic execution model of the language limits the support for
source-code analysis, which leaves a developer without essential tools to maintain safety and security
requirements. This paper describes a concolic-fuzzer based on the GraalVM to automatically test
JavaScript programs. The fuzzer shows promising results in both code coverage and runtime evaluations
and provides developers with additional features such as special analysis targets.
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1 Introduction

Originally intended as a simple language for interactive media on a web application’s client-
side, the scripting language JavaScript is now also used for server- and desktop applications.
However, a study by Ocariza et al. [OPZ11] shows that programming with JavaScript can
be difficult because even subtle programming errors can lead to severe repercussions later
in the program’s execution. Moreover, due to the aggressive type-coercing, these errors can
propagate through the program for a long time before being detected and thus hiding the
initial cause [PS15]. These features of the language and their consequences complicate the
development process and point to the need for more precise tools for checking code quality.

In this paper, the author presents a tool that can automatically test JavaScript programs
for errors with a technique called concolic-fuzzing, an advanced software-testing method
that has gotten more attention in recent years [Ba18; Ka15]. This fuzzer uses the virtual
machine GraalVM and its language implementation framework Truffle to execute the
JavaScript programs and keep track of the inner workings of the program to guide the
testing process. One advantage of this method is that it is fully automated and does not
require any modification of the language or program to guide the testing process. To address
the difficulties of JavaScript, the fuzzer has special analysis targets to detect the errors
characterized by Ocariza et al. [OPZ11] or Pradel and Sen [PS15] as early as possible. In a
preliminary evaluation, the fuzzer reached between 50% to 98% branch coverage without
the need to specify any information about the input structure of the test programs.
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Related Work One of the first tools using concolic-execution is DART, short for directed
automated random testing [GKS05]. DART can be used to test the programming interfaces
of C-programs automatically. Build on the ideas of DART, the testing framework jDART
proposed by Luckow et al. [Lu16] can test Java programs. The concolic-execution of the
program is performed using the Java-Pathfinder [Vi03] framework. Another well-known
program for symbolic execution is SAGE [GLM08]. Godefroid et al. are stating that it was
extensively used in the development of the operating system Windows 7, claiming that
about one-third of all errors found with testing based on files are found by this tool. SAGE
works by directly utilizing x86 instructions and thus is capable of testing all programming
languages that can be compiled to x86 machine-code. The support for dynamic languages
like JavaScript in symbolic execution tools is much less common. Saxena et al. [Sa10]
presented a symbolic execution framework for JavaScript called Kudzu. Kudzu uses a
simplified version of the JavaScript language to reduce the complexity of the symbolic
model called JASIL. The tool is used to test inputs for web applications and utilizes a modified
version of the WebKit engine to observe the application at runtime. Sun et al. [Su18] also
presented a software testing framework for Node.js applications that utilizes source-code
instrumentation, but does not use true symbolic or concolic execution techniques like they
are employed in this work.

2 Motivational Example

function factorial(n) {
if (n >= 0) {
fac = 1;

while (n > 1) {
fac = fac * n;

n = n - 1;

}

return fac;
}

}

List. 1: Algorithm to calculate
the factorial of =.
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Fig. 1: Execution trees of factorial(n).

To visualize the methodology of fuzzing in general and specifically the principles of
concolic-fuzzing, we look at the small JavaScript function shown in Listing 1. The function
call of factorial(n) with = < 0 introduces an error state into the surrounding program
(e. g. factorial(-1) returns the value undefined). To test this function, besides approaches
like unit testing, the automated technique fuzzing can be used. This method aims to generate
a vast number of (pseudo-) random input data to test the software. If the software reaches a
failure state, the fuzzer detects it and saves the corresponding input data. However, a naive,
completely random fuzzer often has a low probability of triggering errors in a program
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and needs redundant test iterations. Modern fuzzers use additional information about the
inputs or the program to narrow down the generated input data and speed up the testing
circumventing this issue. One of these advanced techniques used in this paper is called
concolic-fuzzing.

Let’s demonstrate concolic-fuzzing using the example program in Listing 1. In the first step,
the fuzzer executes the program with random inputs, in this example the input of function
factorial(n) is set to = = 2. Simultaneously with running the program with this concrete
value, the fuzzer treats the input as a symbolic value and records all modifications to this
variable. This implies that the fuzzer can fully observe all procedures of the tested program
at runtime, down to single operators and variable accesses. With the help of the symbolic
variables, the fuzzer constructs an execution tree to keep track of the already executed paths
of the program. Figure 1 (left) shows the execution tree for function factorial(n) after
the first iteration with = = 2. For every new test iteration, the fuzzer chooses a different,
unknown execution path from this model, e. g., the red “Unknown” node. All the branch
conditions starting from the root of the tree down to the unknown location are then collected
and combined to form a path-condition:

= ≥ 0 ∧ ¬(= > 1). (1)

To find a value for = that fulfills these conditions, the fuzzer uses an SMT-Solver like the
solver Z32 developed by Microsoft. In this example, the only possible solution is = = 1. If
the program is executed with this value as an input, it takes exactly3 this predicted execution
path, and the fuzzer can extend the execution tree. To trigger the failure state in the program,
the fuzzer only has to collect the conditions for the green node (only ¬(= ≥ 0)) and then run
the program with an = satisfying this condition. Figure 1 (right) also depicts the execution
tree after these two iterations.

With this method, a concolic-fuzzer quickly achieves very high code coverage because all
new inputs are tailored for a new execution path. Code paths that check the input data for
distinct patterns and usually pose a hard to overcome barrier for naive fuzzers can easily get
around.

3 Implementation

As demonstrated in the example, a concolic-fuzzer needs to observe the tested program at
runtime and must be able to modify the execution e. g. to inject new input values directly
into the running program instead of relying on reading the data from the file system. In
this implementation, I use the GraalVM and the Truffle framework for this purpose. The

2 https://github.com/Z3Prover/z3

3 There are exceptions, e. g., if the program flow depends on a non-deterministic variable or the fuzzer does not
exhaustively model the program flow.
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Fig. 2: Overview of the fuzzer’s architecture.

GraalVM is a virtual machine for Java, developed by Oracle, based on the HotSpot VM. Its
first production-ready version was released in 2019. Besides Java, it supports a wide variety
of additional languages through Truffle, which is a framework to implement an interpreter
for abstract-syntax-trees (ASTs) [Wü13]. The behavior of the interpreted language, the
so-called guest-language, is implemented through Java classes. One benefit of the Truffle
architecture is that it also allows developers to deeply inspect and alter the execution of a
guest-language program at runtime, based on the AST representation of the program. In the
concept of GraalVM, these extensions are called tools.

Figure 2 shows the simplified architecture of the fuzzer. All of the components, except the
SMT-Solver, are running inside of the GraalVM. The program logic of the fuzzer creates a
language-context, that parses the source code of the executed program, builds the AST, and
then executes it. Simultaneously, the fuzzer monitors all operations of the AST and creates
the symbolic model of the program (cf. Section 3.1). The execution tree grows with every
iteration and based on that, the fuzzer chooses a new execution path according to a specific
strategy (cf. Section 3.2), solves the path constraints with the help of an SMT-Solver (in
this case, Z3), and executes the JavaScript program again with the newfound input values.
When the program is running, the fuzzer checks it for exceptions or special error analysis
targets (cf. Section 3.3). The three main components of the implementation are presented in
more detail in the following subsections.

3.1 Symbolic Flow

To keep track of the variable modifications inside the running JavaScript program, the fuzzer
uses the Truffle API concept of wrapper-nodes. In this work these nodes are used to define a
symbolic behavior for every AST-node of the program, in addition to the concrete behavior
that is already given by the language implementation. The symbolic behavior depends on
the type of the AST-node, for example, arithmetic nodes, variable read/write or constants.
The wrapper-nodes are dynamically attached to nodes in the (JavaScript-) AST and can
listen to specific events, e. g., before the corresponding AST-node gets executed, a new input
is available, or execution of the node has finished. With the help of the wrapper nodes, a
developer can extend the behavior of the AST-nodes as desired. The symbolic model of the
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program, modified by the wrapper-nodes, consists of two central data structures that are
essentially representing a load-store-architecture.

Intermediate Results The fuzzer saves all symbolic counterparts to intermediate results,
computed by the AST-nodes, into a data structure consisting of a unary function 8 → (,
mapping integer identifiers 8 onto a data structure for symbolic expressions (. The integer 8
is a unique identifier of an AST-node of the instrumented JavaScript program. This can be
thought of as symbolic “register”.

Symbolic Model The symbolic model is a binary function : × B→ (, which contains a
flat hierarchy of the symbolic representation of all the data structures currently present in the
observed JavaScript program. The integer identifier : , in this case, represents a JavaScript
object, the string B represents the attribute name. This data structure can model attributes
inside objects, arrays, and stack frames. This data structure is a symbolic “memory”, where
the intermediate results get written to when their concrete counterpart is assigned to a
JavaScript variable.

Figures 3a to 3e show an example of the technique for the JavaScript expression n = n
- 1 that is part of the small JavaScript function factorial(n), shown in Listing 1. The
expression reads a local variable =, subtracts 1 and saves the result back to the local variable.
The initial situation is shown in Figure 3a. First, given the information about the current
function context, the JSReadCurrentFrameSlotNodeGen loads the symbolic expression =
from the variable “n” of the current function from the symbolic model into the intermediate
results (Figure 3b). Then, the JSConstantIntegerNode is evaluated (Figure 3c). The wrapper
of this node only stores a symbolic constant into the intermediate results. Both of these
intermediate results are then used by the instrumentation of the JSSubtractNodeGen to
construct the symbolic subtraction operation (Figure 3d). In the last step, this symbolic
result is transferred back to the symbolic model, just like it is saved as a local variable in the
simultaneously running concrete execution of the program (Figure 3e).

3.2 Path Exploration

To construct the execution tree of the program, two types of AST-nodes have to be
instrumented: The node type IfNode for branching instructions and the node type WhileNode
to cover while and for loop statements. A separate node type handling for-loops does not
exist; this loop statement is also handled by the WhileNode. The execution tree in this fuzzer
is modeled as a state-machine, meaning every new iteration of the JavaScript program, the
current position inside the execution tree is reset to the root of the tree. While the fuzzer
runs the JavaScript program, the instrumentation of the IfNodes and WhileNodes keep
track of the current position inside the tree. When the program enters an unknown part

Concolic-Fuzzing of JavaScript Programs using GraalVM and Truffle 17
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(a) Initial condition for the expression n = n - 1 from the function factorial(n).
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Fig. 3: Example of the concolic execution based on AST-nodes.

of the tree, meaning this execution path is run for the first time, the tree gets extended by
the instrumentation. The wrapper-node transfers the matching branch condition from the
intermediate results to the newly created execution tree node.

One of the challenges of symbolic execution is the selection of the next possible execution
path. In this work, I implemented three different strategies to select a new, unknown
execution path. They are listed in Table 1. For the comparison of the strategies, refer to
Section 4. The user can further configure these strategies and other parts of the fuzzer with
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Strategy Description
DEPTH_SEARCH Of all the unknown candidate leaves of the execution tree, select

the one that is the farthest away from the root of the tree.
IN_ORDER_SEARCH Traverse the tree in-order and return the first unknown node that

is found.
RANDOM_SEARCH Traverse the tree from the root. At each node, switch into one of

the child nodes with a possibility of 1
2 until an unknown node is

found. If a leaf is reached but it is not unknown, use backtracking.

Tab. 1: List of the implemented search strategies for unknown execution paths in the execution tree.

a YAML configuration file. One example of a parameter is the maximum search depth in
the execution tree, which prevents the fuzzer from forming too long path predicates that are
hard to solve in later stages of the test process.

3.3 Special Analysis Targets

To further adapt the fuzzer to the JavaScript language, I extended the fuzzer to analyze the
tested program for common programming mistakes. A known problem of JavaScript, which
is also described by Pradel and Sen [PS15], is that the aggressive type-coercing of JavaScript
can suppress errors, for example, in the form of an undefined value, for a long time, before
they are finally causing an unrecoverable error that is noticeable by the developer or user.
This hides the actual cause of the error. To circumvent this problem, this work extends the
fuzzer by enhanced error guards. These guards describe a valid JavaScript behavior under
normal circumstances that the fuzzer treats as an error condition when the user enables the
error guard during the test process. An example is the guard division_op_no_zero that
prevents the evaluation of a zero-division to +Infinity and instead throws an exception that
the fuzzer handles as a faulty state of the program. With the corresponding input value and
line number, the developer can reproduce the error at the root cause. These extensions to
the expected behavior of JavaScript applications also testify to the power and versatility of
the code instrumentation with the Truffle API.

4 Results

The evaluation objectives for the project are the the effectiveness of the three implemented
search strategies for path exploration and the total runtime of the testing process. The
evaluation set consists of about 15 JavaScript programs, ranging from simple functions
to complex programs with hundreds or thousands of lines. Table 2 shows a selection of
these programs and their properties. The programs are from three different sources: First,
programs written by the author, which are small with few inputs. Secondly, the work
used programs from the “Benchmarksgame”4 project. Third, the evaluation uses several

4 https://benchmarksgame-team.pages.debian.net/benchmarksgame

Concolic-Fuzzing of JavaScript Programs using GraalVM and Truffle 19
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Name Symbolic Inputs LOC Max. cycl. Compl. # Func.
fasta.js 1 String 106 6 4
calculator.js 2 Integer, 1 String 296 23 22
infusion.js 37 Integer, 22 Boolean 1165 70 23
alarm.js 65 Integer, 43 Boolean 2143 66 28
minepump.js 2 Integer, 16 Boolean 331 19 38
addition01.js 2 Integer 36 6 2
triangle.js 3 Integer 46 8 2

Tab. 2: A selection of test programs and their properties. Listed are the number and types of the
symbolic input variables for each program, the number of lines (LOC), the maximum cyclomatic
complexity per function, and the total number of functions.

programs from the SV-COMP5 benchmark, which have been converted manually from Java
to JavaScript. All of the measured coverage metrics and runtimes were calculated on a test
system, consisting of an AMD Ryzen 7 4800HS (16 vCores) and 16 GiB of RAM. For
detailed information about the used software versions please refer to the project page6 on
GitHub.

4.1 Code Coverage Metrics

To evaluate the effectiveness of the fuzzing technique in general and compare the different
path exploration strategies, the fuzzer calculates three different coverage metrics: statement
coverage (�0), function coverage, and branch coverage (�1). This evaluation will focus on
branch coverage. Figure 4 shows the calculated metric for some of the example programs. I
configured the fuzzer to stop the testing on a maximum of 3000 iterations or if it reaches
95% branch coverage. Moreover, I configured the search strategies to search in a maximum
depth of 64 in the execution tree. As the RANDOM_SEARCH strategy is nondeterministic , I
performed three different runs for this strategy to visualize the differences per run. In the
first execution of the test programs, the fuzzer always executes the programs with default
values for all inputs, namely true for boolean inputs, 1 for numeric values, and the empty
string for string inputs.

While the fuzzer quickly improves the code coverage against the first run in some of the
programs, namely calculator.js, infusion.js, or triangle.js, other programs like
alarm.js or minepump.js are less suited for this testing technique. This is likely since
these programs are simulating state machines. These programs prevent the execution of
certain code paths due to their structure, so a coverage like in alarm.js cannot be improved
much, even with many iterations. The fuzzer improves the test coverage of the program
minepump.js from 71% to 79%, the coverage of alarm.js is improved by 48.8% from
33.6% to 50%. The coverage metric can be improved much more on the other programs,

5 https://sv-comp.sosy-lab.org

6 https://github.com/rdelhougne/Amygdala
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Fig. 4: Branch coverage of various test programs.

with calculator.js and triangle.js almost reaching 100% branch coverage. Notably, the
tactic RANDOM_SEARCH always performs equal, if not better, than the other tactics. Especially
with the program calculator.js, where it can consistently reach a high code coverage in
about one-third of the iterations, or with program alarm.js, where the random tactic always
reaches a higher code coverage, although by a small margin.

4.2 Runtime Evaluation

The total run time measurements further underline the performance of this strategy. Figure
5 shows the total runtime of the fuzzing processes. The random strategy needs needs much
less time to test alarm.js and minepump.js, despite running the same number of iterations.
The runtime differences in these cases were caused by path constraints that take much more
time to be solved by the SMT-solver and are simply less likely to be hit by the RANDOM_SEARCH
strategy because this strategy does not exhaustively explore the execution tree with respect
to boundaries like maximum depth. This effect is particularly noticeable in the program
calculator.js. In addition, the smaller number of iterations (cf. Figure 4) ensures that the
random strategy with a runtime of 7.5 seconds only needs a fraction of the time compared
to the other strategies.

Concolic-Fuzzing of JavaScript Programs using GraalVM and Truffle 21
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Fig. 5: Total runtime of the fuzzing process for various test programs.

5 Discussion

Section 4 shows a preliminary evaluation of the fuzzer. The applicability of the fuzzer in
real-world applications is, however, limited at this time. This has two leading causes: First,
the fuzzer only does support a subset of the ECMAScript standard to this date. This subset
includes all arithmetic, logical, and comparison operators (except for bitwise operators)
and several frequently used string and math operations. Despite the extensive support of
operators, the presented fuzzer is relying purely on concolic-execution. Therefore, it needs
to model the whole execution flow of the tested program exhaustively. If the fuzzer or the
SMT-Solver does not support just one statement and a branch depends on this statement, the
path conditions for this branch cannot be constructed or solved. As a result, every part of
the program lying behind this branch cannot be reliably reached and tested by the fuzzer. A
solution to this problem is the extension of the support for the ECMAScript standard, which
is work-intensive as explained below, or to build a hybrid fuzzer. Such a fuzzer uses a more
straightforward method like grammar-fuzzing for most of the testing procedure and only
relies on concolic/symbolic execution at difficult to reach sections of the program [MS07].

The results from chapter 3 showed that the Truffle API is an elegant way to monitor programs
at runtime. The tested programs had a high execution speed despite the instrumentation due
to the simultaneous optimization of AST-interpreter and tool by the GraalVM. However, the
usage of wrapper-nodes imposes a drawback to this architecture: The detailed information
needed to successfully implement concolic-execution forces the programmer to directly
work with the low-level language implementation, instead of one of the other high-level
interfaces Truffle provides. As a result, the programmer has to define a symbolic behavior
for many different nodes, each of which can be arbitrarily complex. A search for class
definitions for nodes in the JavaScript language implementation resulted in 634 definitions,
most of which potentially can appear in an executed AST. This quantity is a lot more
than the maximum of 256 opcodes of the Java VM [Li20], or the strictly defined set
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of operations in LLVM-IR [Ll21]. The problem is worsened by nodes with extremely
complex behavior like JSArrayJoinNodeGen7. The behavior of this node has to be manually
symbolically modeled because the execution of the node is only observable as a whole. The
dependency on the low-level JavaScript implementation also prevents the fuzzer from being
easily ported to other languages. To make this possible, Truffles’s high-level polyglot API
would have to provide more specific information, which contradicts its deliberately abstract
implementation.

6 Conclusion and Outlook

Due to the dynamic nature of the JavaScript language, the support for sophisticated code
analysis tools lacks compared to other, more strict languages like C/C++ or Java. This
work shows the implementation of a concolic-fuzzer for JavaScript using the capabilities
of the Truffle API as part of the GraalVM. The implemented fuzzer extended the standard
behavior of the AST interpreter to extract the required information about the tested program
at runtime. The study of this approach on several test programs contained an evaluation of
code-coverage metrics and a consideration of runtime measurements. The fuzzer showed
promising results on the testing scenarios, reaching more than 95% branch coverage on
some programs. This result is accomplished without providing any information about the
input structure of the programs. This testing approach is therefore completely automated. In
addition, the fuzzer is tuned to the peculiarities of JavaScript through the special analysis
targets and can thus detect common errors at an early stage. While the use of GraalVM and
Truffle provides a highly efficient and fast execution speed of the tested program and the
fuzzer, the implementation of the fuzzer was also work-intensive due to the high number
of different data structures present in the AST. Therefore, a direction of future work is the
modification of the language implementation to bring the requirements of execution speed
and easy-to-use instrumentation closer together.
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