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Universitätsstrasse 150

44810 Bochum

{sebastian.uellenbeck, christopher.wolf}@rub.de

Abstract: Smartphones have become the standard personal device to store private or
sensitive information. Widely used as every day gadget, however, they are susceptible
to get lost or stolen. To protect information on a smartphone from being physically
accessed by attackers, a lot of authentication methods have been proposed in recent
years. Each one of them suffers from certain drawbacks, either they are easy to cir-
cumvent, vulnerable against shoulder surfing attacks, or cumbersome to use. In this
paper, we present an alternative approach for user authentication that is based on the
smartphone’s sensors. By making use of the user’s biometrical behavior while entering
text into the smartphone, we transparently authenticate the user in an ongoing-fashion.
In a field study, we asked more than 300 participants to enter some short sentences into
a smartphone while all available sensor events were recorded to determine a typing
motion fingerprint of the user. After the proper feature extraction, a machine learning
classifier based on Support Vector Machines (SVM) is used to identify the authorized
user. The results of our study are twofold: While our approach is able to continuously
authenticate some users with high precision, there also exist participants for which no
accurate motion fingerprint can be learned. We analyze these difference in detail and
provide guidelines for similar problems.

1 Introduction

Smartphones have become the epitome of the always on, always connected trend. They

combine and extend the functionality of feature phones with a multitude of characteristics

from desktop computers, and this have made them a world-wide commodity with an ever

increasing market share. Unfortunately, the great amount of personal data stored on these

devices, including passwords or banking information, have made them an attractive target



for criminals. To prevent this information from being physically retrieved by attackers,

access control mechanisms like user authentication have been proposed. When focusing

on the Android OS, user authentication can mainly be divided into two categories.

First, methods that are based on knowledge like PIN, password, and Android Unlock Pat-

terns. Second, biometrics based methods. It is well known that knowledge-based authenti-

cation factors, such as passwords and PINs, provide only limited security on smartphones.

Similarly, some biometric factors, such as Face Unlock, also fail to provide a reliable user

authentication (c. f., [MDAB10, BPA12, UDWH13, FM12]). In either case: A smartphone

that was unlocked once stays unlocked until it is actively locked again or a fixed period of

time elapses without interaction. Therefore, there always exists a time frame in which an

attacker can steal the unlocked phone to later obtain all data stored on the device.

Our Contribution In this paper, we present a user authentication approach that is based

on analyzing the typing motion behavior of a specific user. To counter attacks that happen

after the smartphone is unlocked, our approach uses a continuous authentication scheme

by means of biometry while the user is entering text. In general, biometric features can

be divided into the two classes: physiological and behavioral biometrics. Physiologi-

cal biometrics rely on something the user is. This class contains features like finger-

print [CKL03], face [ZCPR03], hand geometry, voice, and iris. They are often used for

authentication to high secure entrance systems [JRP06] but need special hardware to be

identifiable. Apart from that, behavioral biometrics are based on how the user behaves,

like keystroke patterns, the user’s gait [GS09], or location information without requiring

additional hardware. This class can be used to authenticate the user uninterruptedly and is

also implementable with built-in smartphone sensors.

To gather behavioral biometrics, we have developed a software keyboard application for

the Android OS that stores all sensor data for further learning and evaluation. In a field

study, we asked more than 300 participants to enter a short text into our smartphone. To

ensure that only motion data related to typing behavior is used to learn a profile, we pre-

processed the sensor signals according to certain time constraints. Next, we extracted

various features leading to a 2376-dimensional vector representing the typing motion be-

havior of a user in a given time frame. By means of SVMs, we learn a classifier in order

to identify the behavioral fingerprint of each user. In the end, we analyze the results of

our approach and its limitations, and discuss what obstacles can be found when tackling

similar problems and their possible improvements.

Summary In summary, we make the following contributions:

• We implemented a software keyboard for Android that enabled us to collect the

typing behavior of 300 users in a field study.

• We designed a time-based feature extraction method and evaluated the performance

of a machine learning classifier in a continuous authentication problem.

• Finally, we discuss limitations to sensor-based approaches in authentication prob-

lems and propose several improvements and considerations.
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2 Related Work

Besides classic user authentication on smartphones by means of PINs or passwords, there

has been a lot of work in this area in recent years. Frank et al. [FBM`13] evaluated the

feasibility of continuous user authentication by means of touchscreen features. Although

they confirmed that user authentication is possible despite having a False Negative Rate of

only 0% to 4%, they do not consider other features obtained by motion or position sensors.

Zhen et al. [ZBHW12] proposed an extension to the plain PIN authentication method stren-

gthened with sensor data and timings. They collected five different acceleration values, the

touching pressure, the touched area on the screen, and different time values like key-hold

time or inter-key time. They evaluated previously specified 4-digit and 8-digit PINs from

over 80 participants. As a result they achieve an equal error rate between 3.65% and 7.34%

referred to the predefined PIN. In contrast to them, we propose a continuous authentication

methodology intended to be used without taking predefined text into consideration. After

a learning phase, users are authenticated while entering normal text.

Sandnes and Zhang [SZ12] studied strategies for identifying users based on touch dynam-

ics. They monitor and extract features like left vs. right hand dominance, one-handed vs.

bimanual operation, stroke size, stroke timing, symmetry, stroke speed, and timing reg-

ularity. In an experiment with 20 participants, they found their approach and feature set

useful. In contrast to us, they did not consider the behavior of attackers and had a very lim-

ited set of participants. They could therefore not give any numbers on how this approach

performs in reality. Shi et al. [SNJC10] investigated implicit authentication through learn-

ing the behavior of a user. They created user patterns based on sent and received text

messages and phone calls, the browser history, and the location of the smartphone. This

approach also allowed for considering typing behavior whereas this was only a theoretic

but not reviewed aspect of their work.

De Luca et al. [DHB`12] used biometric features to improve the security of the Android

Unlock screen. While performing the wipe gesture to unlock the smartphone’s screen, they

collected all data available from the touchscreen, including pressure, size, coordinates, and

time. In a study with 48 participants, they could show that their approach reaches a 98%

True Positive Rate but comes also with the price of a 43% False Positive Rate for the best

case.

Li et al. [LZX13] proposed a system similar to our approach, that uses a continuous au-

thentication for smartphones by taking the user’s finger movement pattern into account for

learning. In contrast to us, they did not consider entering text into a softkeyboard but only

gestures like sliding towards a special direction or taps.

Keystroke dynamics have also been considered for desktop computers [MR00, PKW04,

UW85, ASL`04]. Since smartphones comprise sensors to capture environmental changes,

they offer more capabilities to authenticate users. In the following, we show that sensor

data can be used to gather typing motion behavior.
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3 Methodology

In this section we describe the different steps of our method. First, we present how the

user data is collected by means of our softkeyboard prototype and then the feature building

process is described. These features allow us to design a learning and classification setup

that lets us identify a user during the ongoing interaction with the device.

3.1 Data Collection

Smartphones comprise many sensors that can be used to evaluate real-world character-

istics, like user biometrics. Still they have to been processed through adequate software

beforehand. The majority of smartphones do not contain hardware keyboards to enter

characters but a touchscreen that can be utilized as keyboard. Here, software displays a

virtual keyboard (softkeyboard) on the touchscreen and the user’s input is forwarded by

the touchscreen to the underling application.

In this paper, our goal is to explore the possibility of learning an individual profile from

the motion behavior of a smartphone while the user is typing. This model will then be

used to continuously authenticate the user against unauthorized attackers. To this aim and

in order to collect the user’s motion data, we have developed a softkeyboard prototype for

the Android OS being able to read and store all sensor events for further analysis.

The softkeyboard makes use of the accelerometer to measure acceleration, the gyroscope

to measure torque and the orientation sensor to measure the relative position of the device.

Each one of these parameters is measured in the three dimensions of space x, y, and

z. Additionally, our prototype utilizes the display to get the exact position the user has

touched to introduce a keystroke. On the software-side, a keystroke is divided into three

events: onPress, onKey, and onRelease. The first is raised when the user touches the

screen, the second when the software sends the character to the underlaying layer, and the

last presents the event when the user’s finger leaves the screen. This fine-grained approach

is necessary since smartphones allow to change the selected character after the onPress

event so the final character is only fixed when the user’s finger releases the screen. For

each of this three events, we record the timestamp with a granularity of milliseconds and

all sensor values. Since the duration of a keystroke can—depending on the user—last from

80ms to 500ms, we record all sensor events that occur while a user is entering text.

In order to analyze the typing motion behavior, we asked 315 people to write a short

and predefined text (« 160 characters) on the test smartphone using our softkeyboard

prototype. The text introduced by the subjects was a set of different pangrams containing

all letters of the English language like The quick brown fox jumps over the lazy dog. By

choosing such sentences we assured that the users had to touch each virtual character at

least once. When asking them to support our work we explained that their data was taken

and recorded for a scientific experiment.

We split the keystroke data into two fractions. The first fraction was taken from 303 partici-

pants that entered the text only once. This group represents individuals who in a figurative

attack scenario, take the device away while unlocked. Their typing motion behavior is
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therefore considered as an attempt to interact with the device unauthorized. The second

fraction, the remaining 12 participants, were asked more than 10 times to write the same

short text. This group was intended to be considered as authorized users. Their larger

amount of data should allow us to model a unique profile that can be used to individually

distinguish their behavior from the one of any other unauthorized attacker. Figure 1(a)

shows the total number of keystrokes introduced by each user. In the following section we

present the preprocessing steps to extract relevant features from the sensor signals recorded

in real time and which will be fed to the classifier.

300 250 200 150 100 50 0 50

User ID

0

500

1000

1500

2000

2500

3000

3500

R
e
c
o
rd
e
d
K
e
y
s
tr
o
k
e
s

(a) Keystrokes per User

1 2 3 4 5 6 7 8 9 10 11 12

User ID

0

500

1000

1500

2000

2500

3000

3500

R
e
c
o
rd
e
d
K
e
y
s
tr
o
k
e
s

(b) Keystrokes per Authorized User

Figure 1: Total number of keystrokes introduced per unauthorized and authorized users.

3.2 Time-based Feature Extraction

During the data collection phase, different users introduce text through the softkeyboard

while motion data is continuously recorded by the sensors. In order to ensure that only

motion information related to typing behavior is used to learn each user profile, the sensor

signals need to be processed according to certain time constraints.

The goal during the feature extraction phase is to compute a data point from all values

acquired during T seconds while a user is typing. Figure 2 shows how different timers are

used to correctly identify and record the data captured by the sensors.

Once a user has started typing, a data point is computed every T seconds. If the user does

not introduce any keystroke during Tstop seconds, we assume that the user has stopped

typing. This allows us to discard sensor values measured after T1. In case that recorded

values do not sum up to T seconds and the user resumes typing, new sensor values will

be added to the previously captured up to complete the T seconds. Since data points are

computed on a time basis, the burst of keystrokes used to compute each data point may be

different and depends on the typing speed and pauses performed by the user.

Captured signals are then normalized to remove the artifacts or constant values such as

the 9.81 m{s2 typically measured in the accelerometer z coordinate as result of gravity.

The normalization is performed in a similar manner as described by Aviv et al. [ASBS12].
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Figure 2: Description of the relation between typed keystrokes and motion measurements. Certain
timing conventions are introduced to slice sensor signals according to a predefined time window.

As mentioned above, the 9 signals resulting from the spatial readings of the accelerome-

ter, gyroscope, and orientation sensors are recorded during T seconds. Three normalized

forms are computed for each one of them. Table 1 shows how a mean, linear, and 3-degree

spline (P3d) are subtracted from the original values to obtain the three normalized versions

that will be used to extract a set of discrete features.

Table 1: Description of the 3 normalization forms applied to each sensor signal.

Type Fit Normalization

Mean m “ 1

N

řN

1
si Sm “ S ´ m

Linear mx ` c Sl “ S ´ pmx ` cq
Spline P3d Sp “ S ´ P3d

Figure 3 presents a visual example of one of the sensor signals. The three types of fit

reconstructions are over imposed to the original signal. Their respective subtraction in

each one of the cases will produce the normalized signals Sm, Sl and SP . The set of

features described in Table 2 are then extracted from each sequence of normalized values.
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Figure 3: Example of accelerometer sensor readings for T = 5 in the x direction and the correspond-
ing three types of fit reconstructions.
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Table 2: Set of features extracted from each one of the normalized sensor signals.

Features Length Description

Simple Statistics 6 root mean square, mean, standard deviation, variance, max and min

Spline Coefficients 6 coefficients of a 5-degree smoothing spline

Spline Simple Statistics 6 simple statistics from 5-degree smoothing spline

iFFT Spline Features 35 inverse DFT of a DFT of the 5-d spline fit curve using 35 samples

iFFT Signal Features 35 inverse DFT of a DFT of the sensor signal using 35 samples

The total number of features extracted from each normalized signal is therefore 88. As

the signals from 9 sensors are recorded simultaneously and 3 normalize versions are re-

constructed, the total number of features computed is 3 ˆ 9 ˆ 88 “ 2376. As a result, a

2376-dimensional vector, representing a unique data point, is computed every T seconds

when the user is typing.

4 Evaluation

Our aim is to be able to correctly identify the profile of an authorized user versus that of

several unauthorized attackers. Therefore, we pose a two-class classification problem. The

first class, labeled `1, is formed by the data points generated from the signals of one of

the 12 users with the largest amount of recorded data. The second class, labeled ´1, is

formed by the data points generated from the typing behavior of the 303 users that have

introduced a short sequence of characters. A linear Support Vector Machine (SVM) is

finally used to find the hyperplane that optimally splits both classes of data points in the

2376-dimensional space spanned by the generated featured vectors.

To evaluate the classification performance, we compute the Receiver Operating Character-

istics (ROC) curve for the classifier of each user. The ROC curve presents the performance

of the classifier in terms of true positive rate (TPR) versus false positive rate (FPR), where

the area under the curve (AUC) of a perfect classifier has a value of 1. We can observe

in Figure 4(a) that the classifiers learnt for the different users show a heterogeneous per-

formance. While users with ID 3, 5, 9 and 12 can be identified with an AUC above 0.9,

the AUC remains under 0.6 for some of the other users. These results suggest that only

a certain number of users have a distinct and characteristic profile. We have established

that a user requires a classification AUC above 0.8 to be identified with sufficient confi-

dence. Now we can distinguish between identifiable and non-identifiable users. Figure

4(b) presents the average ROC for all of the users in both groups. The average classi-

fication performance of the classifiers for non-identifiable users presents a considerable

high FPR of 35%, while reaching only a TPR of 58% at this point. On the contrary, if

we consider the group of clearly identifiable users, the average classification performance

achieves a TPR of 92%, reached at only 1% of FPR.
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Figure 4: Classification performance for each authorized user. Figure 4(b) shows both, the average
ROC of users with an individual AUC over 0.8 and the average ROC of users with an individual
AUC under 0.8.

5 Discussion

In order to explain such an uneven performance and also to see what makes a user identi-

fiable, we observe the original sensor measurements for each user. Figure 5 presents the

sample mean and standard deviation of the normalized values recorded by each sensor. It

can be noticed that values recorded by the accelerometer and gyroscope sensors have very

similar average values with a very small dispersion for all the users, including the class

of unauthorized users labeled ´1. In fact, we see that the largest differences between the

typing motion behavior of the users is mainly characterized by the orientation sensor. In

particular, the average from the values recorded in the x coordinate presents not only the

higher differentiation between users but also a higher and disparate dispersion.
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Figure 5: Mean and standard deviation of the sensor values recorded from each user and normalized
between 0 and 1. User ID ´1 represents all measurements corresponding to users with negative IDs
(attackers).
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It should be noted that although the mean and standard deviation of the sensor values

can provide certain information about the dataset and the user profiles, the SVM is able

to determine more complex relationships within the data in the high-dimensional feature

space built from the original sensor values. This may be difficult to explain but led to

better results. Nevertheless, these simple statistics already allow us to draw some clear

conclusions on the good classification performance of the identifiable users.

For example, Figure 6(a) shows how user 9 presents a very distinctive behavior with the

lowest mean value and a extremely low standard deviation in the x coordinate of the orien-

tation sensor. This is very interesting as this user have introduced a smaller amount of data.

In the same way, Figure 6(b) shows how user 3 presents a very high mean value on the z

coordinate of the orientation sensor, while having also a very low standard deviation. We

thus conclude that the high variance on the x coordinate of the orientation is a root-cause

for the differences in authentication performance. Likely, some users seem to randomly

shake or shift the smartphone during typing on this particular axis and thereby limit the

learning of an accurate behavioral fingerprint.
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(a) Orientation sensor, x coordinate
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Figure 6: Mean and standard deviation of measurements recorded by the accelerometer in the x and
z coordinates for all users.

In spite of the uneven performance, there exist some considerations that we have taken

into account to assure that the obtained results are sound, and also some remarks that

need to be addressed by any research dealing with similar problems to the one described

in this paper. In the first place, in every experiment that measures human behavior and

therefore requires human test subjects, the environmental conditions during the collection

phase need to be extremely well controlled. As reported in previous research, even the

behavior of a unique person can greatly differ from one day to another. Consequently, not

only different measurements from the same person have been taken on different days, but

in a well conditioned setting in order to minimize the influence of the environment in the

captured data.

Additionally, a particular issue may arise when dealing with time series. In order to select

the best parameters for the learnt model during the training phase a typical cross-validation

strategy can be followed. However, the time dependence of the data imposes certain con-
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straints during the phases of training and validation which are often overlooked. For in-

stance, in a k-fold cross validation, the data points in each fold should not be randomized.

This may improve the final performance but would also be an unrealistic setup if learning

is done on a real device while the user is introducing text. If we consider each sequence of

characters as independent from each other, cross-validation folds may be shuffled as blocks

but the data points that form each one of them should never be randomized. Furthermore,

the data points used for testing need to lie in the future of the training and validation sets

for the same reason. Moreover, the non-trivial problem of selecting the best possible pa-

rameters to model each user can led to a decrease in performance. An extensive analysis of

the influence of parameters like Tstop, the degree for spline reconstructions of the signals

or the length of the different FFT could reveal better combinations of values to identify

each individual user.

6 Conclusions and Future Work

In recent years, many different solutions to security problems but also attacks involving

the use of smartphone sensors have been proposed. The standard adoption of touchscreens

in these devices has led to a new strain of biometric related research, aiming in most

cases at improving the traditional authentication scheme of text-based passwords. As the

continuous interaction of users with these devices allows for a continuous analysis of their

behavior, we have explored in this paper how the motion information retrieved by the

sensors can be used to build a unique typing motion profile of an authorized user. During

the evaluation and discussion sections several conclusions have been drawn regarding the

achieved performance. We have shown that certain users show a characteristic behavior

which can be identified with a TPR of 92% at a FPR of 1%, while some other users

are hardly distinguishable from each other and from the typing motion behavior of the

attackers.

These results and the proposed method open the door to future improvements. For in-

stance, we have posed the problem as a binary classification experiment, however other

strategies may come to mind. In the general case or if attacker data is scarce, an anomaly

detection setup can be implemented, where the authorized user is modeled using a one-

class SVM. Moreover, in this type of problem, the false positive rate should be minimized

to avoid constant lockings of the device and additional requests to re-authorize the user

with text or graphical passwords. Certain techniques as majority voting or making the

classifier decide that a data point belongs to an unauthorized user only after a number of

data points have been identified as an attack, are interesting paths which we plan to explore

in our future work.

10 Continuous Authentication on Mobile Devices



References

[ASBS12] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. Practi-

cality of Accelerometer Side Channels on Smartphones. In Robert H’obbes’

Zakon, editor, ACSAC, pages 41–50. ACM, 2012.
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