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Abstract: This work introduces a novel approach for extremely low-resolution iris recognition based
on deep knowledge transfer. This work starts by adapting the penalty margin loss to the iris recog-
nition problem. This included novel analyses on the appropriate penalty margin for iris recognition.
Additionally, this work presents analyses toward finding the optimal deeply learned representation
dimension for the identity information embedded in the iris capture. Most importantly, this work
proposes a training framework that aims at producing iris deep representations from extremely low-
resolution that are similar to those of high resolution. This was realized by the controllable knowl-
edge transfer of an iris recognition model trained for high-resolution images into a model that is
specifically trained for extremely low-resolution irises. The presented approach leads to the reduc-
tion of the verification errors by more than 3 folds, in comparison to the traditionally trained model
for low-resolution iris recognition.
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1 Introduction
Iris recognition technology is considered one of the most accurate and robust recognition
methods, especially when images are captured with relatively high resolution under appro-
priate camera settings and user collaboration [Da09]. In certain real-world scenarios such
as iris recognition from mobile devices [Zh18] or images from the head-mounted display
[Bo20b, Bo20c], iris images are of low resolution and usually captured without user coop-
eration. Such sub-optimal iris captures and low-resolution iris images lead to degradation
in recognition performance [Bo22a, Al19, Bo20c]. This raises the need for biometric so-
lutions that can achieve highly accurate recognition performance from sub-optimal and
low-resolution iris captures. A common solution to deal with this challenge is to apply the
image super resolution method [DP17, Gu19, Al19]. Deshpande et al. [DP17] proposed
a local patch-based framework for iris reconstruction. Guo et al. [Gu19] proposed an iris
super-resolution method based on adversarial learning. The image reconstruction method
improves the visual appearance of the reconstructed images. However, they might not lead
to significant improvement in the recognition performance, as they do not enhance iden-
tity information in the reconstructed images [Al19]. For details on iris super resolution
methods, we refer to [Al19]. Another direction to improve iris recognition performance
under challenging capturing settings is to apply biometric fusion [Bo20a]. However, such
methods are usually computational costly (several feature extraction models), and they re-
quire processing additional biometric modalities to achieve high recognition performance
[Bo20a].

Knowledge transfer (KT), also known as knowledge distillation, is a technique in which
a deep knowledge learned by one model is transferred to another model. Ge et al. [Ge19]

1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
2 Mathematical and Applied Visual Computing, TU Darmstadt, Darmstadt, Germany



2 Fadi Boutros et al.

ModelLR

ModelHR

Knowledge 
Transformation

𝐿!"

Embedding Layer

𝐿#$%

𝑳𝑻𝒐𝒕𝒂𝒍 = 𝑳𝑨𝒓𝒄 + 𝝀𝑳𝑲𝑻
Ground-Truth

Classification
Layer

112 x 112

28 x 28

Fig. 1: An overview of the proposed training paradigm for extremely low resolution iris recognition.
ModelHR is trained with relatively high resolution images of the size 112×112. ModelLR is trained
with extremely low resolution images of size 28×28. We propose to transfer the knowledge learned
by ModelHR to ModelLR. During the training phase of ModelLR, the model is guided to learn to
generate feature representation that behaves similar to the features produced by ModelHR.

proposed a framework to improve low resolution face recognition performance based on
selective knowledge distillation. Moreover, knowledge distillation is commonly adopted
to improve compact model accuracy by transferring the knowledge from deeper and more
powerful models to shallow models [CH19, Bo22b].

This work proposes improving the low-resolution iris recognition using KT. Specifically,
we propose to transfer the knowledge in the embedding space from a model learned from
high-resolution iris images to the model learned from extremely low-resolution iris im-
ages. We achieved that by guiding the low-resolution iris model during the training to
learn to produce feature representation that behaves similarly to the one produced model
learned from high-resolution iris images. We also provide three ablation studies on the
penalty margin selection of penalty margin softmax loss, the deep feature representation
dimensions, and the effectiveness of using data augmentation in the iris recognition model
training. The achieved results in this work pointed out the effectiveness of our proposed
approach in improving the low-resolution iris recognition performance. For example, the
Equal Error Rate (EER) is reduced by our approach on a testing subset (resolution of
28×28) of CASIA-IRIS-M1-S3 [Zh18] from 0.3272 to 0.0907.

2 Approach

This work presents a novel approach for low resolution iris recognition using deep KT.
We propose to guide the model trained on low resolution iris images (ModelLR) to learn
to generate feature representation that behaves similarly to the feature representation of
model trained on high resolution iris images (ModelHR). Figure 1 presents an overview of
the proposed training paradigm. The training objective of the ModelLR is to learn multi-
class classification, i.e., Cross-entropy loss, and to learn to produce feature representations
fLR that behaves similar to ones fHR produced by ModelHR. The second learning objective
is achieved by minimizing the L2 distance between fLR and fHR, as it details later in this
section. This section presents iris processing, including eye detection, segmentation, and
iris unrolling, as they are initial steps prior to iris feature extraction [Zh18]. Then, this
section presents deep iris feature extraction and our proposed KT.
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Iris processing This work uses CASIA-IRIS-M1-S3 [Zh18] to train the proposed ap-
proach (dataset details provided in Section 3). Images in CASIA-IRIS-M1-S3 [Zh18] were
acquired using mobile phone equipped with near-infrared (NIR) iris-scanning technology
and provided as full face images, as shown in Figure 2. The iris processing includes the fol-
lowing operations: 1) Eye detection and cropping from face images, 2) Iris segmentation,
and 3) Iris unrolling.

Given a face image, we first crop the left and right eye area from the input face image. To
achieve that, for each input image, we calculate the eye centers (left and right), the width
and the height of the eye area. The width and the height of the eye area are calculated based
on standard proportion of different face components in human anthropometry [RW10,
BSM13] and they are given by:

Widtheye = 0.67∗
Height f ace

2
(1)

and
Heighteye = 0.49∗

Width f ace

2
, (2)

where Height f ace and Width f ace are the height and the width of the face bounding box
extracted from multi-task cascaded convolutional neural network (MTCNN) [Zh16]. We
consider the eye landmark points obtained from MTCNN as the center of the eye. Once
the eye images are cropped, we utilize the Multi-scale Segmentation Network (Eye-MMS)
approach [Bo19] to segment the eye images and extract the inner and outer boundary of
the iris. Finally, the iris is normalized using the rubber sheet model by unrolling it to a
rectangular image [Da04].

MTCNN

Eye-
MMS

Eye-
MMS

𝐻
𝑒𝑖
𝑔ℎ
𝑡 𝑓
𝑎𝑐
𝑒

𝑊𝑖𝑑𝑡ℎ𝑓𝑎𝑐𝑒

0.67x
𝐻𝑒𝑖𝑔ℎ𝑡𝑓𝑎𝑐𝑒

2

0.
49
	x
𝑊
𝑖𝑑
𝑡ℎ

𝑓𝑎
𝑐𝑒

2

Iris 
unrolling

0.67x
𝐻𝑒𝑖𝑔ℎ𝑡𝑓𝑎𝑐𝑒

2

Input images Bounding box
and landmarks

detection

Cropping Semantic
segmentation

Unrolled iris
images

0.
49
	x
𝑊
𝑖𝑑
𝑡ℎ

𝑓𝑎
𝑐𝑒

2

Fig. 2: An overview of data processing. The bounding box and landmarks are first extracted from
face images using MTCNN. Then, the left and the right eye areas are cropped. Eye images are
further processed by Eye-MMS to obtain the inner- and outer-boundary of the iris. Finally, the iris is
unrolled using rubber sheet.

Iris feature extraction ResNet50 [Du20] architecture is used as the backbone of ModelHR
and ModelLR to extract iris feature representation. ModelHR and ModelLR model are trained
with the penalty margin softmax loss. Specifically, we utilize ArcFace loss [De19] as train-
ing loss which is given by:

LArc =− 1
N

N

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m))+
c
∑

j, j ̸=yi

escos(θ j)
, (3)
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where θ is the angle between the feature representation and the weights of the last fully
connected layer, i.e. θyi is the angle between the feature fyi of a sample i (belongs to class
y) and yi-th class center. N is the batch size, c is the number of classes, s is the scaling
parameter and m is the penalty margin.

Template-driven Knowledge transfer This work aims to enhance the performance of
the ModelLR, i.e model with low-resolution images, by driving it to learn to produce fea-
ture representations similar to the ones produced by the ModelHR, i.e model with high-
resolution images. We achieve that by adding an additional loss (mean square error loss
LMSE ) to the main training loss (LArc). Specially, we propose to minimize the L2 distance
between the feature representations fLR produced by ModelLR and the feature representa-
tions fHR produced by ModelHR. The KT loss is given by:

LMSE =
1
N

N

∑
i=1

1
D

D

∑
h=1

( f i
HR[h]− f i

LR[h])
2, (4)

where f i
HR and f i

LR are the feature representation obtained from sample i using ModelHR
and ModelLR, respectively. D is the feature representation dimension, i.e. size of the feature
extraction layer. N is the batch size. The final combined loss of LMSE and LArc is given by:

L = LArc +λLMSE , (5)

where λ is a weight parameter to balance the two losses during the training. We followed
the setting in [Bo22b] and set λ to 100.

3 Experimental setups
Datasets We use CASIA-IRIS-M1-S3 [Zh18] to train and evaluate the presented models
in this work. CASIA-IRIS-M1-S3 [Zh18] contains images of 360 identities with 10 im-
ages per identity and it is split equally for training and testing i.e. 180 identity for testing
and 180 identity for training. The testing set is identity disjoint form the training set. The
images were acquired with a mobile phone equipped with NIR iris-scanning technology
and provided as face images. The high-resolution (CASIA− IRISHR) iris images are ob-
tained from CASIA-IRIS-M1-S3 as described in Section 2. Each face image results in two
iris images (left and right). All images in CASIA− IRISHR are of size 112×112. The ex-
treme low-resolution (CASIA− IRISLR) are obtained by resizing CASIA− IRISHR images
to 28× 28 pixels using the bilinear interpolation. The left and right iris images of each
image in CASIA− IRISHR and CASIA− IRISLR are considered as of different identities.
MTCNN failed to detect faces in 42 images. These images are removed from the dataset.

Evaluation Metrics The presented models are evaluated by using the following metrics
[Ma06]: Equal Error Rate (EER) as well as FMR10, FMR100 and FMR1000 which are
the lowest false none match rate (FNMR) for a false match rate (FMR) FMR≤ 10.0%,
≤ 1.0% and ≤ 0.1%, respectively. We also plotted the Receiver Operating Characteristics
(ROC) curve and reported the area under the curve (AUC). For each experimental result,
we reported the verification performance separately of the left (L) and right (R) iris as well
as the overall performance of left and right iris (LR).
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Model training setup The presented feature extraction models are implemented using
Pytorch. All models are trained with Stochastic Gradient Descent (SGD) optimizer with
an initial learning rate of 1e−1 and a batch size of 256. The learning rate is reduced by
a factor of 10 after 200, 280 and 320 epochs. The training is stopped after 400 epochs.
The scale parameter of ArcFace is set to 64 following [De19]. For penalty margin of Arc-
Face, we conduct an ablation study (Section 4) to select optimal penalty margin by training
three models with m = 0.40, m = 0.45 or m = 0.5, respectively. These models are trained
and tested on CASIA− IRISHR i.e image size of 112× 112 and noted as ModelHR −M4,
ModelHR −45, and ModelHR −5, respectively. After selecting the optimal penalty margin
of ArcFace, we study the optimal deeply learned representation by setting the embed-
ding size to 128, 256 and 512. The trained three models are noted as ModelHR −Em128,
ModelHR −Em256 and ModelHR −Em512, respectively. Additionally, as the size of the
training dataset is relatively small, we propose to increase the variation of the training
data by using RandAugment technique [Cu19]. Finally, the ModelLR is trained first on
CASIA− IRISLR without KT, noted as ModelLR and then, we repeat the training with the
proposed training paradigm (noted as ModelLR −KT ).

4 Ablation study
This section presents three ablation studies on the selection of the optimal penalty margin,
the need for data augmentation and the optimal size of deep feature representation.

Penalty margin ArcFace [De19] investigated several penalty margin values and sug-
gested that penalty margin of 0.5 is the optimal for face recognition. However, the identity
nature in iris might differ from the well-studied penalty margins in face recognition. Thus,
we investigate in this ablation study the selection of optimal penalty margin by training
three instances of ModelHR with ArcFace loss and margin of m = 0.40, m = 0.45 and
m = 0.5, respectively. The achieved verification performances of these models are pre-
sented in Table 1. It can be observed that the model trained with margin of m = 0.45
achieved the best verification performance in term of FMR10, FMR100 and FMR1000
and obtained a very close EER value to the model trained with m = 0.5. Therefore, we
fixed the margin to m = 0.45 in the rest of the experiments.

Margin ERR FMR10 FMR100 FMR1000
L R LR L R LR L R LR L R LR

0.40 0.0781 0.0825 0.0810 0.0712 0.0759 0.0753 0.1481 0.1579 0.1597 0.2607 0.2538 0.2642
0.45 0.0769 0.0802 0.0796 0.0695 0.0746 0.0733 0.1443 0.1421 0.1471 0.2497 0.2365 0.2457
0.50 0.0787 0.0794 0.0794 0.0719 0.0726 0.0734 0.1510 0.1520 0.1547 0.2498 0.2550 0.2557

Tab. 1: Evaluation results of different penalty margins.

Data augmentation In this experiment, the impact of data augmentation is analysed. In
our work, we adapt RandAugment [Cu19] technique to increase the variety of the training
data, as the used CASIA-IRIS-M1-S3 [Zh18] is a relatively small-scale dataset. RandAug-
ment [Cu19] uses a simple parameterization for targeting augmentation to the particular
model and dataset sizes. The results showed that RandAugment obtained a notable per-
formance improvement with minimal computational cost, i.e., only two hyperparameters.
In our work, we set the number of operation of N = 2 and the magnitude of M = 9 as
suggested in [Cu19]. Then, we trained two instances of ModelHR with and without data
augmentation, respectively. The achieved results of these models are presented in Table 2.
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It can be clearly noticed that including data augmentation is beneficial for improving the
iris recognition performance.

Data augmentation EER FMR10 FMR100 FMR1000
L R LR L R LR L R LR L R LR

w/o 0.0769 0.0802 0.0796 0.0695 0.0746 0.0733 0.1444 0.1421 0.1471 0.2497 0.2365 0.2457
w. 0.0705 0.0653 0.0686 0.0632 0.0545 0.0588 0.1322 0.1312 0.1312 0.2431 0.2516 0.2512

Tab. 2: The achieved verification performances of models trained without (first row) and with data
augmentation (second row).

Fig. 3: ROCs achieved by ModelHR, ModelLR and ModelLR trained with KT.

Deep feature representation dimension Given that the optimal penalty margin is 0.45
and data augmentation is beneficial for iris recognition, we further conduct in this exper-
iment an evaluation on the dimensions of deep feature representation. We trained three
instances of ModelHR with feature dimension of 128, 256 and 512. The achieved results of
these three models are presented in Table 3. The best verification performance is achieved
by the model trained with feature dimension of 256.

F. dimension EER FMR10 FMR100 FMR1000
L R LR L R LR L R LR L R LR

128 0.0705 0.0653 0.0686 0.0632 0.0545 0.0588 0.1322 0.1312 0.1312 0.2431 0.2516 0.2512
256 0.0665 0.0637 0.0654 0.0579 0.0529 0.0556 0.1247 0.1219 0.1249 0.2244 0.2395 0.2325
512 0.0682 0.0651 0.0673 0.0610 0.0561 0.0576 0.1297 0.1242 0.1300 0.2348 0.2410 0.2412

Tab. 3: Evaluation results of models with different features dimensions. The model with a feature
dimension of 256-D leads to the best verification performance based on all considered metrics.
5 Results
We evaluated and reported the verification performance of the model trained and tested
on extreme low resolution iris images (modelLR) i.e. 28× 28. The achieved results are
presented as part of Table 4. It can be observed that the verification performances are
significantly degraded using extremely low resolution iris images (modelLR) in compar-
ison to the case when the model is trained and tested on relatively high resolution iris
images (modelHR). This degradation in the verification performance can be seen in all re-
ported evaluation metrics. For example, EER value is increased from 0.0654 (obtained by
ModelHR) to 0.3272 (obtained by ModelLR).

When the ModelLR model is trained and evaluated with our proposed KT approach, it
can be clearly observed that our proposed approach significantly enhanced the verifica-
tion performance of low-resolution iris, as shown in Table 4 and Figure 3. ModelLR with
KT outperformed ModelLR in terms of all evaluation metrics. For example, the EER is
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significantly reduced from 0.3272 to 0.0907, corresponding to an improvement of around
72.28%. It can also be noticed that the ModelLR with KT achieved competitive results to
the ModelHR. For example, the achieved EERs by ModelHR and ModelLR with KT are
0.0654 and 0.0907, respectively. These achieved results proved the effectiveness of our
proposed approach in improving the low resolution iris recognition.

Model EER FMR10 FMR100 FMR1000
L R LR L R LR L R LR L R LR

ModelHR 0.0665 0.0637 0.0654 0.0579 0.0529 0.0556 0.1247 0.1219 0.1249 0.2244 0.2395 0.2325
ModelLR 0.3157 0.3324 0.3272 0.4811 0.5142 0.5012 0.7069 0.7310 0.7192 0.8424 0.8499 0.8486
ModelLR w. KT 0.0945 0.0868 0.0907 0.0927 0.0814 0.0867 0.1826 0.1783 0.1796 0.2938 0.3104 0.3046

Tab. 4: The achieved verification performance by our proposed KT training paradigm. The results
in the first row are achieved by ModelHR. The results in the second row are achieved by ModelLR
trained only with ArcFace loss using extremely low resolution images of 28× 28. The results in
the third row are achieved by ModelLR trained using extremely low resolution images with our
proposed knowledge transformation from ModelHR. The results showed that our proposed approach
significantly enhanced the iris recognition accuracy on extremely low resolution images.

6 Conclusion
We presented in this paper a novel approach to improving low-resolution iris recognition
by transferring the knowledge from the model learned on high-resolution iris images to the
model learned on extremely low-resolution iris images. Three different ablation studies are
conducted in this work to analyze and study the penalty margin selection, the deep feature
representation dimensions, and the effectiveness of using random data augmentation in
the iris recognition model training. By demonstrating extensive experiment evaluations
on the CASIA-IRIS-M1-S3 dataset, we proved the benefits of the proposed approach in
improving the verification performance of extremely low-resolution iris recognition. The
model trained with our proposed method significantly improved the verification perfor-
mance compared to the model trained with conventional classification learning.

Acknowledgment: This research work has been funded by the German Federal Ministry
of Education and Research and the Hessen State Ministry for Higher Education, Research
and the Arts within their joint support of the National Research Center for Applied Cyber-
security ATHENE. This work has been partially funded by the German Federal Ministry
of Education and Research (BMBF) through the Software Campus Project.

References
[Al19] Alonso-Fernandez, Fernando; Farrugia, Reuben A.; Bigün, Josef; Fiérrez, Julian;

Gonzalez-Sosa, Ester: , A Survey of Super-Resolution in Iris Biometrics With Evalua-
tion of Dictionary-Learning, 2019.

[Bo19] Boutros, Fadi; Damer, Naser; Kirchbuchner, Florian; Kuijper, Arjan: Eye-MMS: Minia-
ture Multi-Scale Segmentation Network of Key Eye-Regions in Embedded Applications.
In: ICCV Workshops. IEEE, pp. 3665–3670, 2019.

[Bo20a] Boutros, Fadi; Damer, Naser; Raja, Kiran B.; Ramachandra, Raghavendra; Kirchbuchner,
Florian; Kuijper, Arjan: Fusing Iris and Periocular Region for User Verification in Head
Mounted Displays. In: FUSION. IEEE, pp. 1–8, 2020.

[Bo20b] Boutros, Fadi; Damer, Naser; Raja, Kiran B.; Ramachandra, Raghavendra; Kirchbuchner,
Florian; Kuijper, Arjan: Iris and periocular biometrics for head mounted displays: Seg-
mentation, recognition, and synthetic data generation. Image Vis. Comput., 104:104007,
2020.



8 Fadi Boutros et al.

[Bo20c] Boutros, Fadi; Damer, Naser; Raja, Kiran B.; Ramachandra, Raghavendra; Kirchbuch-
ner, Florian; Kuijper, Arjan: On Benchmarking Iris Recognition within a Head-mounted
Display for AR/VR Applications. In: IJCB. IEEE, pp. 1–10, 2020.

[Bo22a] Boutros, Fadi; Damer, Naser; Raja, Kiran B.; Kirchbuchner, Florian; Kuijper, Arjan:
Template-Driven Knowledge Distillation for Compact and Accurate Periocular Biomet-
rics Deep-Learning Models. Sensors, 22(5):1921, 2022.

[Bo22b] Boutros, Fadi; Siebke, Patrick; Klemt, Marcel; Damer, Naser; Kirchbuchner, Florian; Kui-
jper, Arjan: PocketNet: Extreme Lightweight Face Recognition Network Using Neural
Architecture Search and Multistep Knowledge Distillation. IEEE Access, 10:46823–
46833, 2022.

[BSM13] Bakshi, Sambit; Sa, Pankaj Kumar; Majhi, Banshidhar: Optimized Periocular Template
Selection for Human Recognition. BioMed Research International, 2013, 2013.

[CH19] Cho, Jang Hyun; Hariharan, Bharath: On the Efficacy of Knowledge Distillation. In:
ICCV. IEEE, pp. 4793–4801, 2019.

[Cu19] Cubuk, Ekin D.; Zoph, Barret; Shlens, Jonathon; Le, Quoc V.: , RandAugment: Practical
automated data augmentation with a reduced search space, 2019.

[Da04] Daugman, John: Iris recognition border-crossing system in the UAE. International Airport
Review, 8(2), 2004.

[Da09] Daugman, John: How iris recognition works. In: The essential guide to image processing,
pp. 715–739. Elsevier, 2009.

[De19] Deng, Jiankang; Guo, Jia; Xue, Niannan; Zafeiriou, Stefanos: ArcFace: Additive Angular
Margin Loss for Deep Face Recognition. In: CVPR. Computer Vision Foundation / IEEE,
pp. 4690–4699, 2019.

[DP17] Deshpande, Anand; Patavardhan, Prashant: Super resolution and recognition of long
range captured multi-frame iris images. IET Biometrics, 6:360 –368, 09 2017.

[Du20] Duta, Ionut Cosmin; Liu, Li; Zhu, Fan; Shao, Ling: Improved Residual Networks for
Image and Video Recognition. In: ICPR. IEEE, pp. 9415–9422, 2020.

[Ge19] Ge, Shiming; Zhao, Shengwei; Li, Chenyu; Li, Jia: Low-Resolution Face Recognition in
the Wild via Selective Knowledge Distillation. IEEE Trans. Image Process., 28(4):2051–
2062, 2019.

[Gu19] Guo, Yanqing; Wang, Qianyu; Huang, Huaibo; Zheng, Xin; He, Zhaofeng: Adversarial
Iris Super Resolution. In: ICB. IEEE, pp. 1–8, 2019.

[Ma06] Mansfield, A: Information technology–Biometric performance testing and reporting–Part
1: Principles and framework. ISO/IEC, pp. 19795–1, 2006.

[RW10] Ramanathan, Venkatesh; Wechsler, Harry: Robust human authentication using appear-
ance and holistic anthropometric features. Pattern Recognition Letters, 31(15):2425–
2435, 2010.

[Zh16] Zhang, Kaipeng; Zhang, Zhanpeng; Li, Zhifeng; Qiao, Yu: Joint Face Detection and
Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process.
Lett., 23(10):1499–1503, 2016.

[Zh18] Zhang, Qi; Li, Haiqing; Sun, Zhenan; Tan, Tieniu: Deep Feature Fusion for Iris and Pe-
riocular Biometrics on Mobile Devices. IEEE Trans. Inf. Forensics Secur., 13(11):2897–
2912, 2018.


