
Survey of Techniques for Data-dependent Triangulations

Burkhard Lehner1, Georg Umlauf1, and Bernd Hamann2

1. Department of Computer Science, University of Kaiserslautern, Germany,
{lehner|umlauf}@informatik.uni-kl.de

2. Institite for Data Analysis and Visualization (IDAV) and
Department of Computer Science, University of California, Davis, USA,

bhamann@ucdavis.edu

Abstract: We present a survey of different techniques to approximate a color image
using a piecewise linear interpolation induced by a triangulation of the image domain.
We also include a detailed description of a method we designed. We give a short
overview of possible applications and extentions.

1 Introduction

Given a scalar field f : Ω → R over a 2-dimensional domain Ω ⊂ R2, a triangulation
T of the domain Ω can be used to approximate the scalar field by linear interpolation of
the corner values for every triangle t of T . The approximation quality, i.e., the distance
between the approximation and the scalar field, depends on three factors:

• the number of triangles in T

• the vertex positions, i.e., the corners of the triangles

• the connectivity of the vertices, i.e., the vertex combination of the triangles

If T adapts well to features of f , the approximation quality can be high even with a small
number of triangles.

Since we are looking for triangulations that define an approximation that has a high ap-
proximation quality with respect to f , the criterion to decide which triangulation to use
depends on our data, the scalar field f . The result of this search is therefore called a data-
dependent triangulation. Even if the number of triangles and the position of the vertices
is fix, the number of possible triangulations is large, so that an exhaustive search for the
optimal data-dependent triangulation is not possible except for trivial cases.

A subset of all possible triangulations is the set of all Delaunay triangulations. They are
widely used in fields like finite element methods (FEM) because of their min-max-angle
property, i.e., the smallest angle of all angles in the triangulation is as large as possible.
This avoids long, skinny triangles which may lead to numerical instabilities. But for the

178



purpose of approximating f , long, slim triangles may be well suited, if f contains high-
gradient regions indicative of feature boundaries (see [Rip92]). Therefore, the restriction
to Delaunay triangulations may prevent the detection of the optimal triangulation.

Computer images are usually defined as discrete scalar fields f : Ω → C, with a domain
Ω = {0, . . . , w−1}×{0, . . . , h−1} as a regular grid of width w and height h, into a color
space C, usually a three dimensional space, e.g., the RGB space. If the approximation is
stored instead of the image f , storage space can be saved. The search for a good data-
dependent triangulation can be used as a data compression method for images.

The rest of this paper provides an overview of algorithms to find good data-dependent
triangulation. It is organized as follows: Section 2 defines some categories of algorithm
types, that will be used later to classify the presented methods. Sections 3 to 5 present
algorithms for the search for data-dependent triangulations. Section 6 presents some ex-
tensions the authors are working on.

2 Algorithm Classification

Finding the best triangulation for approximating an arbitrary scalar field is a non-linear op-
timization problem. An exhaustive search could be done using a backtracking algorithm,
that lists all possible triangulations systematically, calculates the approximation quality,
and finds the optimum. In all non-trivial cases, the search space is too large to enumerate
all triangulations within reasonable time.

Instead, algorithms can be used that iteratively select one triangulation out of a limited
set of candidates. After a number of iterations, a good triangulation that has at least an
approximation quality close to the optimum is found.

One class of algorithms are greedy algorithms. In each iteration, they always select the
candidate that best approximates the scalar field. Every decision that is made is final, and
is never taken back. Because of the non-linearity of the problem, they often converge to a
local optimum, but fail to find the global optimum.

Furthermore algorithms can be divided into deterministic and non-deterministic (stochas-
tic) algorithms. In deterministic algorithms, every decision is based on a unique predicate,
and for the same input the algorithm produces the same result. Stochastic algorithms em-
ploy a (pseudo) random number generator for decisions. Even for the same input, the
result may be different, but the probability of a bad result is very small. Examples for
stochastic algorithms are Monte Carlo methods, genetic algorithms (GA), and simulated
annealing methods (see Sec. 2.1).

2.1 The Principle of Simulated Annealing

Simulated annealing is a stochastic, iterative method to solve a global optimization prob-
lem, i.e., finding the global extremum s∗ of a given function f(s) : D → R in a large
search space D.

179



Starting with an arbitrary setting s0 ∈ D, slightly modify s0 to get s0 ∈ D. Using
a probability function paccept : R × R × N → [0, 1], s0 is accepted with probability
paccept(f(s0), f(s0), 0), i.e., s1 = s0, otherwise it is rejected, i.e., s1 = s0. Iterating the
process of changing si to si ∈ D and accepting it with probability paccept(f(si), f(si), i)
yields a sequence of settings si which converges to the global extremum s∗ under certain
assumptions on paccept [KCDGV83].

In order to minimize f the probability function paccept should satisfy the following prop-
erties, for a, b, c ∈ f(D):

• A setting that reduces f has a larger probability to be accepted than a setting that
increases f :

c > a > b⇒ paccept(a, b, i) > paccept(a, c, i).

• For the sequence to converge, the probability for accepting settings that increase
f must converge to 0, whereas the probability for accepting settings that reduce f
must not converge to 0:

lim
i→∞

paccept(a, b, i) =
0 for b > a
const ∈]0, 1] for b ≤ a

.

For example, for a greedy method the probability function

paccept(a, b, i) =
0 for b ≥ a
1 for b < a

is used, that accepts new settings only if they improve the result. This method can get
stuck in a local minimum. A better choice for paccept is

paccept(a, b, i) =
exp ((a− b)/τi) for b ≥ a
1 for b < a

, (1)

where τi = τ0τ
i
b is a temperature that starts at an initial value τ0 and decreases exponen-

tially to 0 by a factor τb ∈ [0, 1] in every iteration. Since also settings that increase f
might be accepted, the sequence can escape a local minimum.

The temperatures τ0 and τb define the annealing schedule. Their choice is vital for the
result of the optimization process. If τi decreases too fast, the sequence can get stuck in a
local minimum, if it decreases too slow, the sequence converges to a better local minimum
(and possibly the global minimum), but it requires one to perform more iterations to reach
it. It can be shown that by choosing the right annealing schedule the probability for finding
the global minimum converges to one, but this usually implies a large number of iterations
[KCDGV83].

3 Refinement Algorithms

Refinement algorithms start with a very coarse triangulation with a small number of tri-
angles. Iteratively they insert more vertices and triangles, refining the triangulation. The

180



set of candidate triangulations for the next iteration is the set of all triangulations that can
be created from the current triangulation by inserting one vertex at all possible positions.
Since the number of possible positions can be high (or even infinite, if the domain is infi-
nite), heuristics are employed to limit the number of insertion positions.

The greedy refinement algorithm presented in [GH95] inserts vertices into a Delaunay tri-
angulation. Originally they used their algorithm to create high quality approximations of
height fields, but it can easily be generalized to work on arbitrary scalar fields. Starting
with a simple triangulation of the domain, consisting of just two triangles for a rectangular
domain, in every step a new vertex is inserted at the position of the largest distance be-
tween the approximation and the scalar field. So, the set of candidates to select the next
triangulation from consists of only one triangulation. This procedure is repeated until a
specified error condition is met. Although specified for height fields, they also applied their
algorithm to gray-scale images, showing that the approximation looks much better using
their triangulation instead of a triangulation that distributes the same number of vertices
uniformly over the domain.

Furthermore they modified their algorithm, dropping the Delaunay constraint for the tri-
angulation, and using a locally optimal data-dependent triangulation instead, further im-
proving the results.

The approach discussed in [SHB+01] is similar. They are using a Sobolev norm to calcu-
late the distance between the approximation and the original data, which emphasizes the
regions of high curvature. In each iteration, they subdivide the triangle with the largest
error. For this triangle, they detect “significant points” (data sites with high distance to
the triangulation) near the midpoints of the edges and insert these into the triangulation,
subdividing the selected triangle and its neighbors.

Since both approaches are greedy algorithms, they tend to get stuck in local optima. The
approach described in [Ped01] attempts to improve this behavior. It uses Delaunay trian-
gulations, and calculates a first triangulation by adding vertices at the site with largest dis-
tance from the current triangulation, just in the same way as in [GH95]. After falling below
an error threshold, another greedy method is used to remove vertices, until the threshold is
exceeded again. Some iterations of these refinement and decimation procedures are per-
formed. This way, an approximation with less triangles is found, that also meets the error
threshold. Often the iterations quickly fall into a loop, adding exactly those vertices that
were removed in the last step, limiting the improvement of this approach over [GH95]. Its
restriction to Delaunay triangulations is another drawback.

4 Decimation Algorithms

Decimation algorithms start with a very fine triangulation with a lot of triangles, and iter-
atively remove elements from it. The set of candidates to select the next triangulation is
the set of all triangulations that can be created from the current triangulation by removing
one element.

One example of a greedy decimation algorithm are the progressive meshes, described in

181



[Hop96]. Although defined for 2-manifolds, in [Hop96] it is also applied to images. Start-
ing with a full triangulation that has a vertex at every pixel position of the image, one
vertex after the other is removed using the edge collapse operation (see Fig. 1). From the
set of triangulations that result from collapsing one of the edges of the current triangula-
tion, the one with the best approximation quality is selected. A priority queue can be used
to optimize this selection process: For every edge ei of the triangulation the change in
approximation quality Δ(ei) is computed and stored. The edge e with the smallest change
(∀i : Δ(e) ≤ Δ(ei)) is collapsed. Δ(ei) has to be recomputed only for those ei that are
incident to a triangle that was changed by the edge collapse operation.

Figure 1: An edge collapse operation. The thick edge is collapsed to the unfilled vertex, the marked
triangles are removed.

One example of the application of this approach to an image is shown in Fig. 4(f), the
numerical results are presented in Table 1.

The inverse operation of the edge collapse is the vertex split. If the information for revers-
ing the edge collapse is stored in a list, a progressive mesh can be defined as a series of
triangulations, each having one vertex more than the previous one. This data structure can
be used to provide a fine-grain set of triangulations with different approximation quality,
and also other methods like selective refinement are possible.

5 Modification Algorithms

The class of modification algorithms starts with an arbitrary initial triangulation, and im-
proves the approximation quality by performing a number of modification operations. The
algorithms differ in the set of modification operations they utilize and the type of decision
finding what operation to perform next.

In [Law77] the theoretical basis for algorithms that use an edge swap as the only modifica-
tion operation was presented. An edge swap operation replaces two triangles (va, vb, vc)
and (vb, vd, vc) that share the edge (vb, vd) and that form a convex quadrilateral with the
triangles (va, vb, vd) and (va, vd, vc) that share the other diagonal (va, vd) of the quadri-
lateral (see Fig. 2). This operation keeps the number and position of the vertices fixed,
and only modifies their connectivity. It is discussed in [Law77], what conditions must be
met to guarantee the validity of the triangulation after performing the edge swap opera-

182



tion. Furthermore, the following general algorithm is discussed in detail: From the set of
edges E an edge e ∈ E is selected that fulfills a specified predicate. e is swapped, and this
procedure is repeated until there is no e ∈ E that satisfiesfulfills the predicate. It is shown
in [Law77] that this algorithm always terminates when the predicate is the circumcircle
criterion, and that the final triangulation is the Delaunay triangulation of the sites.

Figure 2: An edge swap. The thick edge is swapped.

In [DLR90] a set of fixed samples (vertices) of a scalar function f : R2 → R is given,
and the triangulation connecting these vertices is sought, so that the piecewise linear ap-
proximation induced by the triangulation fits f best. Different cost functions are defined
that judge the quality of the representation. To find the best triangulation with respect to
the cost function, an arbitrary starting triangulation is improved iteratively: An edge of
the triangulation is chosen randomly, and if swapping that edge (if possible) reduces the
global cost function, it is swapped. This edge is then called “locally optimal.” This pro-
cedure is repeated until every edge in the triangulation is locally optimal. An edge may
be swapped several times, because swapping an edge of an incident triangle can lead to
the edge being not locally optimal any more. The algorithm is guaranteed to stop, because
every swapped edge reduces the cost which has a lower bound of 0, and there is only a
finite set of triangulations. If f is known, choosing the L2 distance between approxima-
tion and f as the cost function achieves results that are superior to cost functions that do
not take f into account and use angles between triangles instead. Since this method is a
greedy method, only making moves that reduce the cost function, it easily falls into a local
minimum of the cost function, where all the edges are locally optimal, but which is not
the global minimum of the cost function. Furthermore, the result depends on the order of
edges that are tested for swapping.

In [Sch93], a simulated annealing approach (see Section 2.1) is used to improve the results
of [DLR90] and to find a lower local (and hopefully the global) minimum of the cost
function.

The methods in [Law77], [DLR90], and [Sch93] all have the number and position of the
vertices fixed. Even better approximations can be found, if also the position of the ver-
tices can be modified during the optimization procedure. In [KH01] a single simulated
annealing approach is used to optimize both the vertex positions and their connectivity at

183



the same time. Additionally to the edge swap operation, a vertex move operation is used to
change the position of one vertex of the triangulation (see Fig. 3). For each iteration of the
simulated annealing loop the type of operation (edge swap or local vertex move) is chosen
randomly. The algorithm is applied to scattered data problems, and also to color images.

Figure 3: A local vertex move. The unfilled vertex is moved, the gray edge is swapped to prevent a
degenerate triangle.

The approach of [PK03] specializes on images. It simplifies the modification operations
of [KH01]. Furthermore, it uses the following greedy refinement strategy to start with
a good initial triangulation: Starting with a primitive triangulation of the image domain,
consisting of two triangles, the next site is added within the triangle with the largest ap-
proximation error. The position of the inserted site is the error barycenter of the pixels
of that triangle, i.e., the average of all pixel coordinates weighted by their approximation
error. This process is iterated until the specified number of sites is reached.

Further improvements are implemented by the authors and described in [LUH07]. In that
approach, additionally to the position and connectivity of the vertices, also the number of
triangles in the triangulation is modified. For this, a total approximation error is specified
by the user, and the algorithm adds or removes vertices during the simulated annealing
process to achieve this error as good as possible. So this approach is the first to include
all three factors that have an influence to the approximation quality into the optimization
process. The approximation quality is measured using the CIEL*a*b* color space that
takes the reception of the human eye into account.

Furthermore, we implemented so-called guides, heuristics to improve the convergence of
the simulated annealing, and with this speeding up the calculation significantly. The guides
assign higher probabilities for being selected for edge swap and vertex move to edges /
vertices in regions of high approximation error, because modifications in these regions are
more likely to improve the approximation. The selection guides assign higher probabilities
to be selected to edges for edge swap operation and to vertices for vertex move operations,
respectively. The placement guides assign probabilities to the destination position for
vertex move operations. Experiments show that the number of iterations can be reduced
by a factor of 8.

We also defined a file format for storing the information necessary to reconstruct the ap-
proximation, and compared the compression ratio of this method with the well-known
image compression standards JPEG and JPEG2000. We showed that the image compres-

184



sion method using a data-dependent triangulation can compete with these standards for a
large variety of color images. Fig. 4 shows the results of image compression using dif-
ferent data-dependent triangulations (Figs. 4(b), 4(c) and 4(f)), with JPEG (Fig. 4(d)), and
with JPEG2000 (Fig. 4(e)). All compressed images have a file size of ∼ 5 750 bytes.

Table 1 shows some numerical results of the comparison for the images in Fig. 4. The
approximation error is measured as the RMSE error of the approximation, measured in the
CIEL*a*b* color space. Only for comparison of our method to the method of [PK03] we
measured the error in the RGB color space that was employed in the original paper. The
method of [LUH07] has the best approximation quality of the five methods. Especially
JPEG compression gives poor results for this high compression ratio of 1:140 (0.18 bits
per pixel).

(a) Lena image. (b) Method of [LUH07]. (c) Method of [PK03].

(d) JPEG. (e) JPEG2000. (f) Progressive Meshes [Hop96].

Figure 4: Original image (∼770 kB) (a), and approximations (∼5 750 bytes) using Simulated An-
nealing [LUH07] (b), Simulated Annealing [PK03] (c), JPEG (d), JPEG2000 (e), and Progressive
Meshes [Hop96] (f), (courtesy USC SIPI)

185



Sim. Anneal. Sim. Anneal. Prog. Meshes JPEG JPEG
[PK03] [LUH07] [Hop96] 2000

Colormodel RGB RGB Lab Lab Lab Lab
RMSE 17.26 16.45 6.00 6.16 10.38 6.81

Table 1: Numerical results of approximation error (Root Mean Square Error, RMSE) for different
algorithms for data-dependent triangulations, and for JPEG and JPEG2000 compression.

6 Work in Progress

The authors are currently working on extending the concept introduced in [LUH07] to
video clips and video streams. They apply the image approximation technique to the
frames of a video clip, and gain a speed-up by using the data-dependent triangulation of
one frame as initial triangulation for the next one.

Furthermore, they extend the concept of [LUH07] to tetrahedrizations for approximating
a scalar field defined over a 3-dimensional domain. This could be applied to a video clip
or stream, where two dimensions are the x- and y-coordinates of the image, and the third
dimension is time, i.e., the frame index.

Acknowledgments This work was supported by the DFG IRTG 1131 “Visualization of
Large and Unstructured Data Sets”, University of Kaiserslautern, and NSF contract ACI
9624034 (CAREER Award) and a large ITR grant. We thank the members of the Visual-
ization and Computer Graphics Research Group at IDAV, and the Geometric Algorithms
Group at the University of Kaiserslautern.

References

[DLR90] Nira Dyn, David Levin, and Shmuel Rippa. Data Dependent Triangulations for Piece-
wise Linear Interpolations. IMA J. of Numerical Analysis, 10(1):137–154, Jan 1990.

[GH95] Michael Garland and Paul Heckbert. Fast Polygonal Approximation of Terrains
and Height Fields. Technical report, CS Department, Carnegie Mellon University,
September 1995.

[Hop96] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96, pages 99–108, 1996.

[KCDGV83] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Anneal-
ing. Science Magazine, pages 671–680, may 1983.

[KH01] Oliver Kreylos and Bernd Hamann. On Simulated Annealing and the Construction of
Linear Spline Approximations for Scattered Data. IEEE TVCG, 7(1):17–31, 2001.

[Law77] C. L. Lawson. Software for C1 surface interpolation. In Mathematical Software III,
pages 161–194. Academic Press, New York, 1977.

[LUH07] B. Lehner, G. Umlauf, and B. Hamann. Image Compression Using Data-dependent
Triangulations. In G. Bebis et al., editor, International Symposium on Visualization

186



and Computer Graphics (ISVC) 2007, Part I, LNCS 4841, to appear, Lecture Notes
on Computer Science, pages 351–362. Springer, 2007.

[Ped01] H. Pedrini. An improved Refinement and Decimation Method for Adaptive Terrain
Surface Approximation. In Proceedings of WSCG, pages 103–109. Czech Republic,
2001.

[PK03] Vid Petrovic and Falko Kuester. Optimized Construction of Linear Approximations
to Image Data. In Proc. 11th Pacific Conf. on Comp. Graphics and Appl., pages 487–
491, 2003.

[Rip92] Shmuel Rippa. Long and thin triangles can be good for linear interpolation. SIAM J.
Numer. Anal., 29(1):257–270, 1992.

[Sch93] Larry L. Schumaker. Computing Optimal Triangulations Using Simulated Annealing.
Computer Aided Geometric Design, 10(3-4):329–345, 1993.

[SHB+01] Rene Schaetzl, Hans Hagen, James Barnes, Bernd Hamann, and Kenneth Joy. Data-
Dependent Triangulation in the Plane with Adaptive Knot Placement. In Guido Brun-
nett, H. Bieri, and Gerald Farin, editors, Geometric Modelling, Comp. Suppl. 14,
pages 199–218. Springer, 2001.

187


