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Abstract: Multimedia databases are increasingly common in science, business, enter-
tainment and many other applications. Their size and high dimensionality of features
are major challenges for efficient and effective retrieval and mining. Effective similar-
ity models are usually computationally far too complex for straightforward usage in
large high dimensional multimedia databases.

We propose efficient algorithms for these effective models that show substantially
improved scalability. Our index-based methods for efficient query processing and
mining restrict the search space to task relevant data. Multistep filter-and-refine ap-
proaches using novel filter functions with quality guarantees ensure that fast response
times are achieved without any loss of result accuracy.

1 Multimedia Databases

There is tremendous growth in multimedia data in application domains such as medicine,
engineering, biology and numerous others. New technologies such as computer tomog-
raphy or digital photography produce increasingly large volumes of data. At the same
time, decreasing storage prices allow archiving large amounts of multimedia data at rela-
tively low cost. For database technology, large multimedia databases require efficient and
effective strategies for accessing and processing of multimedia data. Examples of typi-
cal multimedia content are illustrated in Figure 1: stock data time series, music, medical
magnetic resonance images, shape and color images, as well as gene expression data.

Traditional database management systems have established themselves as reliable and
powerful techniques for archiving and retrieving textual or numeric data. Traditional meta
data information, however, is typically not adequate for multimedia applications. For ex-
ample, users typically search for images not with respect to their size on hard disk, but with
respect to content related features like color or shape. Consequently, multimedia database
systems should provide content-based access. Likewise, aggregating the content of mul-
timedia databases is not straightforward. Traditional reporting tasks query databases for
(aggregated) numbers. Aggregating multimedia objects, or, more precisely, their respec-
tive feature values, in such a way is not meaningful. Knowledge discovery techniques
aggregate multimedia data with respect to type of media and application focus such that
expedient summaries are formed.

Multimedia databases thus should provide (1) content-based access, (2) knowledge discov-
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Figure 1: Examples of multimedia data

ery methods, (3) scalability to large data volumes, (4) scalability to high dimensionality of
features, (5) good runtime performance.

In this work, we focus on efficient content-based retrieval and mining. Using multistep
filter-and-refine architectures, our novel algorithms and lower bounding filters yield sub-
stantial runtime improvements without loss of accuracy. The general idea is illustrated in
Figure 2. Efficient filters greatly reduce the number of objects relevant to a query to a
small set of candidates. These candidates are then refined to the actual result set. Fulfill-
ment of the ICES criteria ensures that the filter is indexable (works on multidimensional
index structures), complete (no false dismissals), efficient (fast one-to-one filter compar-
ison) and selective (small candidate sets). Moreover, we devise indexing techniques that
greatly reduce database access for similarity search or for data mining.

2 Similarity search and retrieval

Content-based retrieval searches for similar multimedia objects to a query object. Figure 3
gives an example for a small image database. Content-based retrieval requires efficient
algorithms on effective similarity models. Similarity models define the relevant character-
istics of multimedia objects, for example color distribution in images, or pixel frequencies
in shapes. Such histogram features can be compared via distance functions which assign
a degree of dissimilarity to any pair of histograms.

The type of distance function is crucial for the effectivity of the similarity search process,
as it models which multimedia objects are considered alike. For different types of features,
different similarity models have been proposed. One of the simpler models that is com-
monly used for both histograms and time series is the Euclidean distance, a distance from
the family of Lp norms. Based on the differences of corresponding histogram bins or time
series values, respectively, the overall dissimilarity between features is computed. Adapt-
able similarity models allow for incorporation of expert knowledge on application domain.

Figure 2: Multistep query processing
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Figure 3: Similarity search

The Earth Mover’s Distance, introduced in computer vision, computes an overall match on
two (histogram) features based on a ground distance in feature space. Likewise, Dynamic
Time Warping, originally from speech recognition, allows for stretching and squeezing of
time series to match time series features. We propose new efficient retrieval methods for
these models.

2.1 Histogram based search under the Earth Mover’s Distance

Content-based similarity search requires effective similarity models as well as efficient
query processing. Many multimedia features can be represented as histograms, i.e. vectors
of attributes. For meaningful comparison of histogram features, distance functions provide
dissimilarity values. Comparing image histograms using Lp-norms such as the Euclidean
distance is very sensitive to minor shifts in feature value distribution.

A recent approach from computer vision towards human similarity perception, the Earth
Mover’s Distance (EMD) [RT01] models similarity as the amount of changes necessary
to transform one image feature into another one. Formally, the Earth Mover’s Distance is
defined as a Linear Programming problem which can be solved using the simplex method
as in [Dan51, HL90]. Its computation, however, is too complex for usage in interac-
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Figure 4: Dimensionality, response time in seconds
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tive multimedia database scenarios. In order to enable efficient query processing in large
databases, we propose an index-supported multistep algorithm. We therefore develop new
lower bounding approximation techniques for the Earth Mover’s Distance which satisfy
high quality criteria including completeness (no false dismissals), index-suitability and
fast computation. High dimensions are problematic for most index structures; we there-
fore use a dimensionality reduction implicit in the averaging lower bound or explicit in
our Manhattan reduction. As this still leaves us with far too many candidates, two-phase
filtering that combines the power of the individual filters, ensures an efficient retrieval
procedure.

We demonstrate the efficiency of our approach in extensive experiments on large image
databases. An important parameter for the performance of lower bounding approximations
is the size of the histograms involved. On a database of 200,000 color images, we varied
histograms from dimension 16 to 64. Figure 4 shows the corresponding response times.
With increasing dimensionality, the computation of the existing LBAvg [RT01] increases
in complexity. The response times of our LBMan are more closely related to its high
selectivity ratios. The overhead of our novel, more complex, lower bound LBIM is greater
than that of the other two lower bounds. Its combination with a low-dimensional LBAvg-
index yields the best performance improvements. We include the sequential scan Earth
Mover’s Distance computation as a baseline comparison. Note that the improvement for
64 dimensions comparing Earth Mover’s Distance and the best multistep concept is from
1000 seconds to less than one second, i.e. more than three orders of magnitude. These
efficiency gains do not come at the expense of accuracy. We prove completeness of our
approach (no false dismissals), and refine using the exact Earth Mover’s Distance (no false
alarms) [AWS06]. For further approaches to efficient similarity search under the Earth
Mover’s Distance see also [AWMS08, AKS07, WAKS08].

Figure 5: Similarity search video still

As a case study that demonstrates both the efficiency and effectiveness of this setup, we
built a video streaming demonstration. A video camera records people passing by, and
a monitor shows an alienated version, “mosaic” in real time. This system has been suc-
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Figure 6: Dimensionality, number of page accesses for RW1 time series

cessfully used on several occasions to demonstrate state-of-the-art similarity search in a
practical setting (see Figure 5) [AKS07].

2.2 Time Series Search and Retrieval

Continuous growth in sensor data and other temporal data increases the importance of
retrieval and similarity search in time series data. Efficient time series query processing
is crucial for interactive applications. Existing multidimensional indexes like the R-tree
provide efficient querying for only relatively few dimensions [Keo02]. Time series are
typically long which corresponds to extremely high dimensional data in multidimensional
indexes. Due to massive overlap of index descriptors, multidimensional indexes degener-
ate for high dimensions and have to access the entire data by random I/O. Consequently,
the efficiency benefits of indexing are lost.

We propose the TS-tree (time series tree), an index structure for efficient time series re-
trieval and similarity search. Exploiting inherent properties of time series quantization
and dimensionality reduction, the TS-tree indexes high-dimensional data in an overlap-
free manner. During query processing, powerful pruning via quantized separator and meta
data information greatly reduces the number of pages which have to be accessed, resulting
in substantial speed-up.

In thorough experiments on synthetic and real world time series data we demonstrate that
our TS-tree outperforms existing approaches like the R*-tree or the quantized A-tree. As
an example, we investigate the scalability and the query performance of the TS-tree on
synthetic and real world data sets using the L2 norm, i.e. Euclidean distance. Please not
that our approach also works very well for Dynamic Time Warping (DTW) [BC94]. To
analyze scalability, we report the number of pages read averaged over 25 nearest neighbor
queries. The more the dimensionality of a time series data set is reduced the more time
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series typically have to be refined. As they are usually very long, scalability in terms of
dimensionality is very important. Figures 6 illustrates the results for RW1 data (synthetic
random walk data of size 250,000), for time series length 256, reduced to dimensionality
16 to 32 using piecewise aggregate approximation. The TS-tree scales very well since
its overlap-free separator split is not impaired by effects of high dimensional data spaces
(“curse of dimensionality”). The R*-tree and A-tree, however, degrade with increasing
dimensionality. Overall, the TS-tree outperforms both A-tree and R*-tree by nearly one
order of magnitude [AKAS08].

3 Knowledge discovery in databases

Knowledge discovery in databases (KDD) extracts novel, potentially useful patterns from
databases for generation of knowledge about the database content as a whole. The KDD
process, depicted in Figure 7, consists of four steps from the original raw data to the
actual knowledge generation [HK01]. In the first step, the data is integrated and cleaned of
potential errors, then it is transformed and projected to the task relevant parts of the data.
The central step, the data mining step, extracts patterns from this task relevant data, which
is then visualized for human evaluation. In this work, we focus on automatic aggregation
of the data into meaningful groups, the so-called clustering. Clustering groups objects
such that similar ones are within the same group, whereas dissimilar ones are in different
groups. We study efficient and effective clustering for high dimensional large databases.

3.1 Subspace clustering

In high-dimensional data, clusters are typically concealed by irrelevant attributes and do
not show across the full space. Subspace clustering mines clusters hidden in subspaces
of high-dimensional data sets. Density-based approaches have been shown to success-
fully mine clusters of arbitrary shape even in the presence of noise in full space clustering
[EKSX96]. Direct extensions of density-based approaches to subspace clustering, how-
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and projection data mining visualization

and evaluation

raw data

integrated data task relevant data pattern knowledge

Figure 7: The knowledge discovery process
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Objects Dimensions Classes Source
Pendigits 7494 16 10 [AN07]
Vowel 990 10 11 [AN07]
Glass 214 9 6 [AN07]
Shapes 160 17 9 [KWX+06]

Table 1: Real world data sets

ever, entail runtimes which are infeasible for large high-dimensional data sets, since the
number of possible subspace projections is exponential in the dimensionality of the data.
Consequently, existing subspace clustering algorithms trade-off efficiency for accuracy.

We propose lossless efficient detection of subspace clusters via a new density-conserving
grid data structure which benefits from efficiency gains without losing any clusters. By
detecting clusters in a depth-first manner, our EDSC (efficient density-based subspace
clustering) algorithm avoids excessive candidate generation.

In thorough experiments on synthetic and real world data sets, we demonstrate that our
lossless approach yields accurate clusters and is faster than existing subspace clustering
algorithms by orders of magnitude. Real world data used in our experiments is character-
ized in Table 1. We evaluate the quality of EDSC by determining how accurate the hidden
structure of the data given by the classes is identified. For each data set efficiency and accu-
racy of each algorithm is presented in Table 2. We can see that the EDSC algorithm shows
the best quality for all real world data sets. Compared with SUBCLU [KKK04] the EDSC
algorithm shows significantly better runtimes. The grid-based SCHISM [SZ04] shows not
only worse quality in all data sets but in some also higher runtimes. In the shape data set
SCHISM only finds 2-dimensional clusters and thus cannot be compared with the other
subspace clustering algorithms which also detect the higher dimensional clusters. Our
experiments on large and high-dimensional synthetic and real world data sets show that
EDSC outperforms recent subspace clustering algorithms by orders of magnitude while
maintaining superior quality [AKMS08].

F1 time [s] F1 time [s] F1 time [s]
Pendigits 48% 5743 25% 5278 24% 43825
Vowel 35% 47 21% 88 17% 310
Glass 57% 3 47% 8 52% 10
Shape 51% 34 2% 0.2 40% 1079

SUBCLUSCHISMEDSC

Table 2: Quality and runtimes on real world data
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Figure 8: Cluster visualization for river data

3.2 MultiClustering

Environmental sensors produce data streams at successive time points which are often
archived for further analysis. Applications like stock market analysis or weather stations
gather ordered time series of different values in large temporal databases. Weather stations
for example use multiple sensors to measure e.g. barometric pressure, temperature, hu-
midity, rainfall. Many other scientific research fields like observatories and seismographic
stations archive similar spatial or spatio-temporal time series.

In a current project of the European Union on renaturation of rivers, the structural qual-
ity of river segments is analyzed. For German rivers, about 120,000 one-hundred-meter
segments were evaluated according to 19 different structural criteria, e.g. quality of the
riverbed [LUA03]. They were mapped to quality categories. The sequence order of the
segments is given by the flowing direction of the rivers. Hydrologists have devised pack-
ages of measures for different structural damages, formalized in rules specifying the at-
tribute value constraints and the attributes influenced positively. An example constraint
might be that a certain segment has good quality riverbed and riverbanks and poor river
bending. This could be improved by measures like adding deadwood to positively influ-
ence river bending. Finding and analyzing these patterns helps hydrologists summarize
the overall state of rivers, give compact representations of typical situations and review the
extent to which these situations are covered by measures envisioned. They can identify
those patterns which are problematic, i.e. have low quality ratings, but are not yet covered
by measures.

From a computer science point of view, finding the intrinsic structure of these multidimen-
sional time series is a two-fold task: (1) detect frequent patterns within time series for all
possible pattern lengths, (2) then detect parallel occurrences of these patterns.

Patterns are ranges of values (which correspond to several categories of river quality struc-
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ture) found in several (sub-)time series. Pattern analysis has to take into account that the
data is subjective and fuzzy, because structural quality of rivers was mapped by different
individuals. Our approach is based on weighting by kernel densities in a density-based
clustering approach. This effectively detects fuzzy time series patterns. These patterns
are clustered efficiently for arbitrary lengths using monotonicity properties. We transform
these time series pattern clusters into a cluster position space such that mining parallel
patterns can be reduced to efficient FP -tree frequent itemset mining.

Multiclusters are visualized in a geographical information system, as e.g. in Figure 8.
Those river segments which are part of the cluster are marked by dark lines. The corre-
sponding cluster summary is depicted on the left side. It indicates the cluster length of five
river sections (top to bottom) as well as the cluster range of ten out of nineteen attributes
(left to right). A more detailed discussion can be found in [AKGS06, AKGS08].

4 Conclusion

In this work, we propose efficient and effective retrieval and mining of multimedia data for
both histogram and time series data. Key techniques of our work are database methods.
Indexing organizes the data such that during query processing or mining, only relevant
parts of the data have to be accessed to allow for efficient runtimes. Coupled with multistep
filter-and-refine architectures, we are able to further enhance runtime performance by fast
generation of candidate sets in a filter step that is refined to ensure neither false negatives
nor false positives.
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