
cba

Steffen Becker et. al. (Hrsg.): Software Engineering und Software Management,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Supporting Semi-Automatic Co-Evolution of Architecture
and Fault Tree Models

Sinem Getir1, André van Hoorn2, Timo Kehrer3, Yannic Noller4, Matthias Tichy5

Abstract: In this work, we report about recent research results on “Supporting Semi-Automatic
Co-Evolution of Architecture and Fault Tree Models”, published in [Ge18]. During the whole
life-cycle of software-intensive systems in safety-critical domains, system models must consistently
co-evolve with quality evaluation models. However, performing the necessary synchronization steps is
a cumbersome and often manual task prone to errors. To understand this problem in detail, we have
analyzed the evolution of two representatives of system models and quality evaluation models, namely
architecture and fault tree models, for a set of evolution scenarios of a factory automation system
called Pick and Place Unit. We designed a set of intra- and inter-model transformation rules which
fully cover the evolution scenarios of the case study and which offer the potential to semi-automate
the co-evolution process. In particular, we validated these rules with respect to completeness and
evaluated them by a comparison to typical visual editor operations. Our results show a significant
reduction of the amount of required user interactions in order to realize the co-evolution.

Keywords: System architecture, fault trees, safety, model co-evolution, model transformation

Summary
A rigorous quality evaluation is among the key methods for the dependable engineering of
software-intensive systems in safety-critical domains. To that end, model-based approaches
have been proposed which use quality evaluation and system models to gain knowledge about
the quality of a system. In model-based quality evaluation, the consistency of the involved
models is of utmost importance. For example, the failures of an architectural component
must be adequately considered in an associated fault tree model. While this consistency
requirement can be reasonably met for a particular snapshot of a system, quality evaluation
models typically become outdated when the system evolves, i.e., quality evaluation models
and system models evolve in an inconsistent way. As a consequence, quality evaluation
leads to highly improper results. Hence, loosely inter-related models such as architectural
models and quality evaluation models like fault trees should consistently evolve in parallel,
a phenomenon to which we refer to as (consistent) model co-evolution.
Since loosely inter-related models are typically changed in isolation of each other, one
adequate approach to support developers is model synchronization, i.e., the task of adapting
a model in response to changes in one of its inter-related counterparts in order to achieve
consistent co-evolution. In general, however, achieving this kind of model co-evolution cannot
1 Humboldt-Universität zu Berlin. getir@informatik.hu-berlin.de
2 University of Stuttgart. van.hoorn@informatik.uni-stuttgart.de
3 Humboldt-Universität zu Berlin. timo.kehrer@informatik.hu-berlin.de
4 Humboldt-Universität zu Berlin. noller@informatik.hu-berlin.de
5 University of Ulm. matthias.tichy@uni-ulm.de

cba doi:10.18420/se2019-13

S. Becker, I. Bogicevic, G. Herzwurm, S. Wagner (Hrsg.): SE/SWM 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 57

https://creativecommons.org/licenses/by-sa/4.0/
getir@informatik.hu-berlin.de
van.hoorn@informatik.uni-stuttgart.de
timo.kehrer@informatik.hu-berlin.de
noller@informatik.hu-berlin.de
matthias.tichy@uni-ulm.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/se2019-13


2 Sinem Getir et al.

be fully automated as usually assumed by existing approaches to model synchronization. At
best, developers may be supported by recommending possible synchronization actions, as,
e.g., in the model-based (co-)evolution framework known as CoWolf [Ge15]. To achieve
consistent co-evolution, CoWolf follows a rule-based approach where incremental model
transformations are used to recommend both intra- and inter-model change actions. However,
since the adequacy of the recommendations strongly depends on the transformation rules
being used by the tool, the evolution problem is shifted to the engineering of proper
transformation rules.

We tackle this problem of engineering proper transformation rule sets for an important class
of models in the context of model-based hazard analysis, namely system architecture models
and fault tree models. We extend our previous work [Ge13] on the evolution of the so-called
Pick and Place Unit (PPU) [LFV13], a case study from the automation engineering domain.
To study co-evolution in terms of the PPU, we created consistent software architecture and
fault tree models for all safety-relevant evolution scenarios. Thereupon, we conducted a
thorough quantitative analysis of the evolution scenarios with respect to the co-evolution of
the models, i.e., how changes in one model affect changes in the other model. We show
that the models do not co-evolve in a systematic, automatable way and instead expertise
of the developer is required to achieve co-evolution. Moreover, we developed a set of
model transformation rules for 1) the independent evolution of software architecture and
fault tree models and 2) the synchronization of one model based on changes in another
model ensuring a correct co-evolution of both models. We show that the presented set of
model transformations is complete, i.e., it supports performing all co-evolutions of the
case study scenarios, and improves the task efficiency by reducing the amount of required
model transformation applications to realize the co-evolution by, on average, 52% compared
to visual editing operations and 85% compared to atomic model changes. Finally, we
implemented these rules in the tool CoWolf to enable the co-evolution of fault trees and
software architecture models.

References

[Ge13] Getir, S.; Van Hoorn, A.; Grunske, L.; Tichy, M.: Co-Evolution of Software
Architecture and Fault Tree models: An Explorative Case Study on a Pick and
Place Factory Automation System. In: NiM-ALP @ MoDELS’13. Pp. 32–40,
2013.

[Ge15] Getir, S.; Grunske, L.; Bernasko, C. K.; Käfer, V.; Sanwald, T.; Tichy, M.:
CoWolf–A generic framework for multi-view co-evolution and evaluation of
models. In: ICMT’15. Springer, pp. 34–40, 2015.

[Ge18] Getir, S.; Grunske, L.; van Hoorn, A.; Kehrer, T.; Noller, Y.; Tichy, M.: Supporting
semi-automatic co-evolution of architecture and fault tree models. Journal of
Systems and Software 142/, pp. 115–135, 2018.

[LFV13] Legat, C.; Folmer, J.; Vogel-Heuser, B.: Evolution in Industrial Plant Automation:
A case study. In: IECON’13. IEEE, pp. 4386–4391, 2013.

58 Sinem Getir et al.


