
i
i

“proceedings” — 2017/8/24 — 12:20 — page 615 — #615 i
i

i
i

i
i

Maximilian Eibl Martin Gaedke (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Using Hypertree Decomposition for Parallel Constraint
Solving

Ke Liu1, Sven Löffler1 and Petra Hofstedt1

Abstract: Multi-core processors or many-core processors have become the standard configuration for
computers nowadays. Yet, the mainstream constraint solvers have not fully utilized these available
computation resources due to the intrinsic difficulty on decomposing constraint satisfaction problems
(CSPs). This paper reviews the previous research in parallel constraint solving and proposes a new
approach for mapping constraint networks on multi-core or many-core processors by means of
hypertree decomposition. We give theoretical considerations and our plans for future research.

Keywords: CSP, constraint networks, parallel constraint solving, hypertree decomposition

1 Introduction

The constraint programming (CP) community has been engaged in enhancing the perfor-
mance of solving constraint satisfaction problems (CSPs). The development of sequential
methods, e.g. sophisticated propagation algorithms or efficient search algorithms and
variable and value selectors, might have been matured. However, research in parallelism
in CP is still in its early stage, although much effort has been put into parallel constraint
solving.

We propose a structure-driven analysis method to statically decompose the constraint
network of a given CSP. Compared to prior dynamical decomposition [RRM13] which
allocates the work on demand, we use a statical decomposition method, and we try to
equally distribute workload to workers or processors at the beginning. Moreover, the need for
communication is reduced in contrast to parallel consistency [RK09] due to tree structure.

This paper is organized as follows. In Sect. 2 we review some background knowledge about
tree and hypertree decomposition. We explain how hypertree decomposition can be used to
partition a constraint network and we present a theoretical analysis and discussion of the
method in Sect. 3. Finally, in Sect. 4 we give a conclusion and discuss future work.
1 Brandenburg University of Technology Cottbus - Senftenberg, Programming Languages and Compiler Con-

struction, Konrad-Wachsmann-Allee 5, D-03044 Cottbus, {Ke.Liu, Sven.Loeffler, Petra.Hofstedt}@b-tu.de

cbe doi:10.18420/in2017_58

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 615

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_58

i
i

“proceedings” — 2017/8/24 — 12:20 — page 616 — #616 i
i

i
i

i
i

2 Ke Liu und Sven Löffler und Petra Hofstedt

2 Preliminaries

A constraint network R is a triple (X,D,C), which consists of:

• a finite set of variables X = {x1, . . . , xn},
• a set of respective finite domains D = {D1, . . . ,Dn}, where Di is the domain of the

variable xi , and

• a set of constraints C = {c1, ..., ct }, where a constraint cj is a relation Rj defined on a
subset of variables Sj , Sj ⊆ X .

Any constraint network can be graphically represented by a hypergraph. A hypergraphH is
a tuple (V, E), where V is a set of vertexes and E is a set of hyperedges. A hyperedge of a
hypergraph is composed of two or more vertexes, which makes hyperedges fundamentally
different from normal edges in a graph. Any constraint in a given constraint network
corresponds to a hyperedge in a hypergraph, and the variables of a constraint can be seen as
vertexes of a hyperedge.

A hypertree of a hypergraphH is a triple (T, χ, λ), where T = (VT , ET) is a tree, χ and λ
are labeling functions. We denote a set of variables for a given node (nodei) in a hypertree
by vi . Therefore, vi = χ(nodei) and vi ⊆ 2vertexes(H), where vertexes(H) are vertexes of
hypergraphH . Similarly, we denote a set of edges of nodei by ei . Therefore, ei = λ(nodei)
and ei ⊆ 2edges(H), where edges(H) are hyperedges of hypergraph H . By root(T) we
denote the root of a tree T , for every p ∈ VT , let Tp denote the subtree of T with root p.
The width of a hypertree is the maximum number of hyperedges among the nodes of it,
which is given by hw(T) = max | λ(p) |,∀p ∈ VT .

Hypertree decomposition is a procedure, which converts a hypergraph into a hypertree. In
order to demonstrate hypertree decomposition on a given constraint network, assume we
have a simple problem over a set of variables {x1, . . . , x10} ⊆ X modeled by the following
constraints2

• atLeastNValues(x1, x2, x3)

• allDifferent1(x3, x4, x5, x7)

• allDifferent2(x1, x4, x6, x9)

• table1(x5, x8, x10)

• table2(x7, x8, x9)

• arithm1(x5, x6)

2 The name of the constraints is consistent with the name of constraints used in the Choco Solver [PFL16].

616 Ke Liu, Sven Löffler, Petra Hofstedt

i
i

“proceedings” — 2017/8/24 — 12:20 — page 617 — #617 i
i

i
i

i
i

Using Hypertree Decomposition for Parallel Constraint Solving 3

• arithm2(x6, x8)

The hypergraph for this constraint network is depicted in Figure 1, where the variables xi ,
i ∈ {1, . . . , 10} are the vertexes, while the edges are represented by the enclosing ellipses.
Figure 2 shows a possible hypertree decomposition of this hypergraph.

Given a hypergraph H and a constant k, deciding whether hw(T) ≤ k for a hypertree
T received by decomposition of H is NP-complete [Go05]. However, it is feasible to
determine, whether there exists a hypertree decomposition T for k, such that hw(T) ≤ k.
Furthermore, to compute a hypertree decomposition with width ≤ k for a given hypergraph
is in polynomial time [GLS99]. Herein, we do not go into details of hypertree decomposition
algorithm. For more details of the hypertree decomposition algorithm det-k-decomp, please
refer to [GS08].

Fig. 1: The Hypergraph for the Constraint Network. This graph is recomposed based on [GLS03]

3 Parallel Solving Constraint Satisfaction Problem

Constraint programming and its solvers are typically used to tackle NP-complete problems.
Thus, to obtain better performance, we naturally think of utilizing parallel computing
to gain performance improvements. Of course, the growth of the number of cores can
hardly overtake the growth of problem size which might be exponentially in the input
size. However, one possible way to deal with large CSPs is to decompose its constraint
networks into a number of connected sub-networks. This claim is based on the following

Using Hypertree Decomposition for Parallel Constraint Solving 617

i
i

“proceedings” — 2017/8/24 — 12:20 — page 618 — #618 i
i

i
i

i
i

4 Ke Liu und Sven Löffler und Petra Hofstedt

{allDifferent1, allDifferent2},{x1, x4, x6, x9, x3, x5, x7}

{atLeastNValues}, {x1, x2, x3} {table2, arithm1}, {x5, x6, x7, x8, x9}

{arithm2, table1}, {x5, x6, x10}
Fig. 2: Hypertree Decomposition for Hypergraph 1. This graph is recomposed based on [GLS03]

simple analysis. Let's assume a constraint network N with number of variables n, and the
maximum domain size among all variables is d. Thus, the worst case execution time is
O(dn). But if the constraint network could be divided into the number of s sub-networks,
the worst case execution time for the given problem would be s ∗ d

n
s , which can result in

much less computation work than the original problem. Moreover, the speedup of parallel
execution of s subproblems is o(dn(1− 1

s)), which is a significant performance improvement.
Note that this improvement is based on the assumption that the s subproblems are disjoint.
However, completely disjoint subproblems for a constraint network are uncommon in
practical problems. Thus, it is necessary to decompose the constraint network into a tree
network because the tree structure implies the network is tractable [Fr82, DP87, RVBW06].
After obtaining the decomposition tree T , backtrack-free search can be realized along a
topological ordering d of T , if T is directional arc-consistent relative to d [De03]. Each
node of the decomposition tree T consists of tuples that are the outcomes from solving
the subproblems. At the moment, the decomposition tree T can be viewed as a binary
representation of the original non-binary constraint network.

In short, we propose a procedure that solves constraint programming in parallel with the
following four steps:

1. Decompose the hypergraph of the original constraint network into a tree in which the
number of the tree nodes is equal to the number of cores on the processors.

2. Simultaneously solve the sub-network on each node of the decomposition tree.

3. Perform directional arc-consistency along a topological ordering of the decomposition
tree.

4. Combine all solutions starting from the root node along the topological ordering.

Alternatively, if the goal is to find one solution, the steps 3 and 4 can be replaced by a join
selection algorithm (eg., Hash Join) known from relational databases.

618 Ke Liu, Sven Löffler, Petra Hofstedt

i
i

“proceedings” — 2017/8/24 — 12:20 — page 619 — #619 i
i

i
i

i
i

Using Hypertree Decomposition for Parallel Constraint Solving 5

3.1 Hypergraph decomposition

The purpose of hypergraph decomposition for a given constraint network in our approach is
twofold. First, hypergraph decomposition is a way to statically map the workload evenly to
the processors. Second, the tree structure of the resulting hypertree reduces the number of
communications in comparison to other mapping approaches. For example, the worst case of
a mapping approach for a constraint network requires

(n
2
)

communications (i. e. a complete
graph); in contrast, mapping with hypertree decomposition requires n − 1 communications,
where n is the number of edges in the communication graph after mapping.

Hypertree decomposition dominates all other decomposition methods (eg., cycle cutset,
hinge decomposition) [GLS00, Le13] because it is the most general decomposition algorithm.
Nevertheless, the original det-k-decomp algorithm [GS08] was not designed for executing
CSPs in parallel. Two reasons make it unsuitable for our application scenario. First of all,
if the width k is large and the hypergraph has many hyperedges, then the exact algorithm
may take long execution time [Go16]. Furthermore, the parameter k only guarantees the
width of a decomposition tree is k, which means k is the largest number of constraints
among all nodes of the decomposition tree. This also implies that the nodes may have
width from 1 to k − 1. However, k, fairly often, need to be larger than 10 in our case. For
instance, assume a constraint network is composed of 104 constraints. In order to map
104 constraints onto 8 cores, a good choice of k for load balancing could be 13. Our
experiments of decomposing hypergraph using det-k-decomp shows that it cannot avoid
generating a hypertree decomposition that has nodes with width smaller than k.

In order to map constraints to cores, we investigated a new procedure to merge nodes of a
hypertree decomposition on the basis of det-k-decomp. The outcome of the merge process
follows three basic principles: the acyclic property of the hypertree decomposition must not
be destroyed, the number of nodes of the new hypertree decomposition must be equal to the
number of cores (or logical cores), and the set of solutions for the two constraint network
must be equivalent.

3.2 Parallel Framework

In this subsection, we briefly sketch the parallel framework to run multiple constraint solvers
on different worker threads simultaneously. Our framework applies two means to coordinate
worker threads. Firstly, the main thread waits for all worker threads to finish their tasks, and
afterwards it begins to perform directional arc-consistency [De03]. This method allows
to deals with small constraint network problems, where waiting for all working threads
to finish is affordable. Yet, if the problem is non-trivial, then to wait for all solutions of
the single solving processes is unaffordable (e. g., it may take several hours). Therefore, it
is necessary to timely share partial solutions to the main thread which is responsible for
performing steps 3 and 4 (cf. Sect. 3.1). This synchronization is the second means for the
coordination of the worker threads.

Using Hypertree Decomposition for Parallel Constraint Solving 619

i
i

“proceedings” — 2017/8/24 — 12:20 — page 620 — #620 i
i

i
i

i
i

6 Ke Liu und Sven Löffler und Petra Hofstedt

1 lstart = current time ;
2 lend = ZE RO ;
3 INTERVAL = constant time interval ;
4 while solver still has a solution do
5 add the solution into the synchronized shared variable ;
6 lend = current time ;
7 if l_end -l_start ≥ INTERVAL then
8 pause this working thread ;
9 end

10 end
Algorithm 1: Working thread as a Producer

Algorithm 1 shows that the working threads as producers are synchronized by a timer. This
way might be better than, e. g., using a unified number of solutions to coordinate the working
threads because it is hard to predict the execution time for different solvers. In line 8 of
Algorithm 1, the working thread pauses itself if the time is up. Then the consumer thread
blocks itself by the same time interval rate, as shown line 2 of Algorithm 2, and gathers the
partial solutions from the working threads. Afterwards, the working threads are resumed
by the consumer thread. The advantage of this mechanism is that each solver can continue
searching at the same point of the backtracking search tree after resuming and enable the
consumer thread working without staying idle. The whole procedure can also be seen as a
two-stage pipeline.

1 INTERVAL = constant time interval ;
2 while !awaitTermination(INTERVAL) do
3 gather solutions from working threads ;
4 resume all unfinished working threads ;
5 end

Algorithm 2: Main thread as Consumer

4 Conclusion and Future Work

In this paper, we have presented a new approach on parallel solution of constraint problems
using hypergraph decomposition. Up to now, we have just implemented and verified parts of
the project. Therefore, future work will, first of all, focus on completing implementation and
on verification of the theoretical analysis by more experiments. Furthermore, the following
questions should be addressed. First, what is the best algorithm for the join operation to get
solutions in the last step; can we, possibly, directly port join algorithms from the database
community? Second, which is better between the tight constraint or loose constraint for each
solver? In other words, more jobs are assigned to constraint solver or more jobs are left to
join selection step? Third, how to cope with memory explosion when several solvers execute
simultaneously and generate a huge amount of intermediate solution tuples? Should we

620 Ke Liu, Sven Löffler, Petra Hofstedt

i
i

“proceedings” — 2017/8/24 — 12:20 — page 621 — #621 i
i

i
i

i
i

Using Hypertree Decomposition for Parallel Constraint Solving 7

apply data compression techniques? If so, how do we find the trade-off between performance
and compression ratio?

References
[De03] Dechter, Rina: Constraint processing. Morgan Kaufmann, 2003.

[DP87] Dechter, Rina; Pearl, Judea: Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34(1):1–38, 1987.

[Fr82] Freuder, Eugene C: A sufficient condition for backtrack-free search. Journal of
the ACM (JACM), 29(1):24–32, 1982.

[GLS99] Gottlob, Georg; Leone, Nicola; Scarcello, Francesco: Hypertree decompositions
and tractable queries. In: Proceedings of the eighteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS).
ACM, pp. 21–32, 1999.

[GLS00] Gottlob, Georg; Leone, Nicola; Scarcello, Francesco: A comparison of struc-
tural CSP decomposition methods. Artificial Intelligence, 124(2):243–282,
2000.

[GLS03] Gottlob, Georg; Leone, Nicola; Scarcello, Francesco: Robbers, marshals, and
guards: game theoretic and logical characterizations of hypertree width. Journal
of Computer and System Sciences, 66(4):775–808, 2003.

[Go05] Gottlob, Georg; Grohe, Martin; Musliu, Nysret; Samer, Marko; Scarcello,
Francesco: Hypertree decompositions: Structure, algorithms, and applications.
In: International Workshop on Graph-Theoretic Concepts in Computer Science.
LNCS 3787. Springer, pp. 1–15, 2005.

[Go16] Gottlob, Georg; Greco, Gianluigi; Leone, Nicola; Scarcello, Francesco: Hyper-
tree decompositions: Questions and answers. In: Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS). ACM, pp. 57–74, 2016.

[GS08] Gottlob, Georg; Samer, Marko: A backtracking-based algorithm for hypertree
decomposition. Journal of Experimental Algorithmics (JEA), 13, 2008.

[Le13] Lecoutre, Christophe: Constraint Networks: Targeting Simplicity for Techniques
and Algorithms. John Wiley & Sons, 2013.

[PFL16] Prud’homme, Charles; Fages, Jean-Guillaume; Lorca, Xavier: Choco Docu-
mentation. 2016. http://www.choco-solver.org.

Using Hypertree Decomposition for Parallel Constraint Solving 621

http://www.choco-solver.org

i
i

“proceedings” — 2017/8/24 — 12:20 — page 622 — #622 i
i

i
i

i
i

8 Ke Liu und Sven Löffler und Petra Hofstedt

[RK09] Rolf, Carl Christian; Kuchcinski, Krzysztof: Parallel Consistency in Con-
straint Programming. In: International Conference on Parallel and Distributed
Processing Techniques and Applications, (PDPTA). pp. 638–644, 2009.

[RRM13] Régin, Jean-Charles; Rezgui, Mohamed; Malapert, Arnaud: Embarrassingly
parallel search. In: International Conference on Principles and Practice of
Constraint Programming. LNCS 8124. Springer, pp. 596–610, 2013.

[RVBW06] Rossi, Francesca; Van Beek, Peter; Walsh, Toby: Handbook of constraint
programming. Elsevier, 2006.

622 Ke Liu, Sven Löffler, Petra Hofstedt

