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Abstract: The development of web information systems has led to new challenges
regarding the scalability and expressiveness of methods. In particular, as systems be-
come large, it becomes decisive to guarantee consistency and integrity of designs.
The paper introduces the challenges in a step-by-step way and indicates how to cope
with them. First, the conceptual model of a WIS as a collection of media types, i.e.
extended views, is introduced. In this context the adaptivity to users, channels and
devices will also be discussed. Secondly, WIS development is discussed on a higher
level of abstraction dealing with tasks, roles, user profiles and storyboards. At this
level equational reasoning can be applied. Finally, both levels of abstraction are com-
bined leading to further challenges by using dynamic and deontic logics.

1 Introduction

The development of web information systems has led to new challenges regarding the scal-
ability and expressiveness of methods. In particular, as systems become large, it becomes
decisive to guarantee consistency and integrity of designs. In this article we introduce the
challenges in a step-by-step way and indicate how to cope with them.

The starting point is the commonly accepted problem triplet according to which WIS
design addresses the content, navigation structure and presentation issues. This can be
approached in a naive way, but this will not lead very far. Thus the first step toward
a more sophisticated development methodology consists in abstracting from the content
using views on some underlying databases. In doing so data modelling becomes an im-
portant part of WIS design. In a second step the navigation structure can be integrated into
the views, which copes with the insufficiency of treating navigation as an add-on, but adds
the problem that view construction requires more powerful query languages.

The next step addresses the diversification of the views by allowing hierarchies, order,
measures, etc. In the same line of thought views can be further extended by presentation
options. Then a WIS can be abstractly described by a collection of extended views. In
order to cope with various user preferences, and restrictions arising from end-devices or
access channels it is further desirable to provide adaptivity. We discuss how cohesion can
solve this challenge.
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If WISs are to become active, users have to be offered more than navigation. This chal-
lenge can be dealt with by providing operations, which can be associated with the extended
views. Taking all these together we obtain the conceptual model of media types for WIS
design [ST05].

However, media types already reside on a very fine level of detail. In order to fully capture
the intentions and the anticipated usage of a WIS we provide abstraction through story
spaces and show how story algebras can be used to reason about story spaces. In particular,
they will enable personalisation already on a high level of abstraction.

As preferences relate to user profiles we briefly discuss user profiles. Then we extend
the usage model by roles and tasks focussing on the goals of the WIS and which classes
of users have to cooperate to achieve these goals. The role model immediately leads to
deontic constraints expressing obligations and rights, which can be modelled by deontic
logic.

In doing so, the challenge arises to reason about consistency, personalisation with respect
to preferences and goals and user cooperation also on the level of media types. In doing
so, we need proof obligations that can be expressed in dynamic and deontic logic. We will
indicate these proof obligations.

A final challenge concerns compositionality, i.e. that user profiles should be formulated
within the logic. However, this adds the request to deal with non-monotonic reasoning.

2 Related Work

Since the late nineties a lot of methodologies for the design of WIS have been published
such as ARANEUS [AGS98], OOHDM [SR98], WebML [CFB+03], HERA [HBFV03],
WSDM [DL98], and our Co-Design Approach [ST05]. By now there seems to be a com-
mon understanding that using extended views to model WISs is a good idea. Nevertheless
there are a lot of differences between the various approaches. For instance, in WebML
or WSDM navigation links are added, once the views have been defined, whereas in the
co-design approach the navigation structure is generated as part of the view construction,
which, however, requires much more sophistication for the query language. Furthermore,
the extended views in the co-design approach also cover operations.

While extended views capture in one way or the other aspects of content, functionality
(at least navigation) and presentation, the intention and usage of a WIS is only addressed
explicitly in WSDM [DL98] and the Co-Design Approach [ST05], and only the latter one
provides an explicit model for contextual information, which is based on an integration of
media types with the approach to contextual information basis [TACS98].

With respect to personalisation, i.e. customisation to preferences of users, the commonly
adapted approach is to label parts of a WIS specification with eligible user types. How-
ever, the co-design approach applies propositional reasoning techniques instead exploiting
Kleene algebras with tests (KATs). KATs have been introduced in [Ko97], and since then
they have been intensively studied. In addition, another line of propositional reasoning
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about WISs on a high level of abstraction using propositional deontic logic to reason about
obligations and rights is supported.

In [Sc04] a first step towards reasoning on the level of media types has been made. This
exploits higher-order dynamic logic [HKT00] and deontic logic [El97] to set up proof
obligations for personalisation and consistency.

3 Content and Functionality Modelling

Basically, if a user encounters a WIS, s/he navigates through a collection of web pages.
Thus, the ultra-naive approach would be to write HTML- or XHTML-code for each of
these pages. As soon as the system becomes larger, i.e. it exceeds a handfull of pages,
most of which contain similar content, this approach is no longer feasible. Thus, the first
challenge is to seek database support for content modelling: set up a database schema and
model the content of pages by views. So, in an abstract sense each page corresponds to
an object, called media object in [ST05]. Formally, a media object is no more than a pair
(i, v) consisting of an abstract identifier, e.g. a URI, and a value v of some type.

There are two different ways to obtain such media objects through views: Build a separate
view for each media object. That is, if S is the underlying database schema, then use a
query q, which transforms an instance of S into a value v of some type tq . In addition,
create an identifier to obtain the media object. Alternatively, build a view with a target
schema SV and a query qV that transforms each instance of S into an instance of SV .
So we obtain a set {v1, . . . , vn} of values. Creating identifiers results in a set of media
objects.

The co-design approach uses the the second alternative, which gives a set of possible
media objects of some type, while the actual media object that will be presented to a user,
is determined at run-time.

With respect to content modelling some methods stop here, take the collection of views,
preferably in the second sense, and manually associate navigation links. Again, if the
number of navigation links becomes large, the approach is not feasible anymore, so we
discover a second scalability challenge. Worse than scalability, the navigation links should
be links between individual media objects, i.e. the actual links are determined on instance
level. They may even become optional.

In order to cope with this problem, the co-design approach adopts an idea from object
oriented databases, and simply considers the collection of all possible media objects. By
incorporating the identifier j of some media object (j, w) into the value v of some other
media object (i, v), we set up a link between these two media objects. In fact, this view
was already present from the very beginning in semi-structured data [ABS00].

The challenge is then that the views that are used to define the media objects are no longer
independent from each other. Hence the query language must be powerful enough to create
complex values that contain identifiers, while at the same time these identifiers appear in
the result of other queries. In [ST05] it has been shown that IQL-like languages [AK89]
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or a rather complex query algebra can cope with this challenge.

Summarising this approach to link generation through views, we obtain the notion of an
interaction type:

An interaction type has a name M and consists of a content data type cont(M) with the
extension that the place of a base type may be occupied by a pair % : M � with a label % and
the name M � of an interaction type, a defining query qM such that ({tM}, qM ) defines a
view, and a set of operations. Here tM is the type arising from cont(M) by substitution of
URI for all pairs % : M �.

Finite sets C of interaction types define content schemata. Then a database D over the
underlying database schema S and the defining queries determine finite sets D(M) of
pairs (u, v) with URIs u and values v of type tM for each M ∈ C. We use the notion
pre-site for the extension of D to C. The pair (u, v) will be called an interaction object in
the pre-site D.

Note that this definition of interaction type also specifies operations. This aims at ad-
dressing another challenge, the one of providing active WISs, where a user does not just
navigate between media objects – to be realised by pages – but performs also actions,
which may involve entering data into the system. Thus, interaction types already address
functionality beyond navigation.

Formally, an operation on an interaction type M consists of an operation signature, i.e.
name, input-parameters and output-parameters, a selection type which is a supertype of
cont(M), and a body which is defined via operations accessing the underlying database.

Let us finally say a few words about the implementation of content schemata. Following
[SS00] it is no problem to define and implement views, and to maintain the active set of
interaction objects at any time. This has been used in industry projects, though not yet
in the complicated setting that links have to be maintained. So, we get another challenge
here. Yet, interaction objects can be mapped onto XML documents, while the operations
give rise to script specifications. We will see later that this rather simple view of the
implementation has to be enhanced, when the notion of interaction object will be extended
to media objects.

Once interaction types have been defined, we also have to take care of their presentation.
Doing this in an efficient way presents another challenge to WIS design. According to ex-
periences made in several large web site development projects it turns out that page layout
is rather standardised. In particular, we may exploit web page grids, which result a tiling
of the envisioned pages. Then we may associate style options with the interaction types.
Basically, a style option takes content data type cont(M), breaks it into components, and
associates each of these components with some tile in the grid. Furthermore, there may
be constant layout elements such as pictures associated with grid components. Finally, a
style option defines how the component is to be represented. Taking all these together we
have to design XSLT templates that can be used to translate the XML documents resulting
from interaction objects to actual HTML-pages.

207



4 Hierarchies and Adaptivity

While the use of interaction types abstracts nicely from the page level and provides ade-
quate means for coupling WISs with database technology, it is still a rather static approach,
as the information contained in an interaction object is independent from preferences and
changing needs of users. Similarly, it still ignores the fact that a WIS may be accessed
through various channels including TV and mobile nets, and that users may use a lot of
different devices such as PCs, PDAs, cellphones, TVs, etc. At least two challenges arise
from this diversity:

We have to allow for a presentation of the data at different levels of granularity, and al-
low a user to switch between different presentations. For this we use hierarchies as an
extension to interaction types. We have to be support adaptivity to users, channels and
end-devices, i.e. that in accordance with identified needs the system will adapt the content
automatically. For this we use cohesion as an extension to interaction types.

Both extensions exploit the concept of subtyping, which is defined by a partial order ≤
on the set of all types. In particular, if cont(M) is the content data type of an interaction
type M , we may consider the set S(cont(M)) of all its supertypes. Then cont(M) is the
smallest element in S(cont(M)).

For hierarchies we select a subset H(cont(M)) ⊆ S(cont(M)) with cont(M) ∈ H(cont(M)),
which forms a tree with respect to the order ≤. We call H(cont(M)) a set of hierarchical
versions. Then each interaction object of type M gives rise to several versions, one for
each element in H(cont(M)). The data content results from projections that are induced
by the subtyping relationship. Formally, if (i, v) represents the interaction object as defined
in the previous section, then v is a value of type cont(M). For t ∈ H(cont(M)) we have
cont(M) ≤ t, which induces a projection π

cont(M)
t : dom(cont(M)) → dom(t), so the

hierarchical version of (i, v) with respect to t is represented by the pair (i, πcont(M)
t (v)).

Then a user may walk up and down the hierarchy defined by H(cont(M)). Moving up-
wards means to present fewer information, which is achieved by applying a projection op-
eration as just described. Moving downwards means to select presentation that is richer in
information. By default we assume that the hierarchical version that is to be presented first,
is defined by cont(M). Alternatively, we may select an initial type I(M) ∈ H(cont(M))
and present (i, πcont(M)

I(M) (v)) instead of (i, v).

For cohesion we can either provide proximity values or a cohesion preorder [ST05]. In
both cases the information provided by an interaction object (i, v) will be divided up into a
sequence (i1, v1), . . . , (in, vn) such that each vi contains a link to a successor ii+1, each vi

contains information of higher relevance than vi+1, the cohesion between the information
represented by vi is larger than the cohesion between vi and vi+1, and v1, . . . , vn jointly
represent the same information as v.

The difference between the two approaches is that for proximity values the types of the
vi are fixed a priori, whereas in the case of cohesion preorders they are determined at
run-time, i.e. when the interaction object is actually created and activated.

Let us concentrate only on proximity values. So, take a maximal anti-chain t1, . . . , tm
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in S(cont(M)). Then for each interaction object (i, v) of type M the values wi =
π

cont(M)
ti

(v) represent a maximal split satisfying the last of the desired properties. Now
define proximity values pi,j for 1 ≤ i < j ≤ m. These values indicate the cohesion
between the values wi and wj , i.e. they define, to what degree it is desired to keep wi and
wj together.

Then for each subset S ⊆ {1, . . . , m} compute pS =
�

i,j∈S,i<j pi,j and a value wS that
joins all wi with i ∈ S. Among these sets S choose the one with the largest value pS ,
provided wS satisfies the user preferences and the size restrictions arising from channels
and end-devices. This value wS will define v1. Then proceed in the same way with
{1, . . . , m} − S to determine v2, etc., which will finally result in the desired sequence.
Adding the links does not cause any problems.

An interaction type that is extended by hierarchies, cohesion, style options, measures and
ordering is finally called a media type. Thus, in the co-design approach the conceptual
model of a WIS consists of a media schema, i.e. a set of media types. A more formal
presentation is contained in [ST05].

5 Storyboarding

While a media schema is an adequate specification of a WIS that abstracts from the page
level, it still resides at a level of abstraction that is far too detailed to start development on
this level, in particular, if the WIS is expected to become large. Similarly, in “traditional”
information systems development conceptual data and interface modelling is embedded
in an analysis process that starts from business processes and the plan how the intended
system is to be used. The analogue for WISs development with the co-design approach is
storyboarding.

Thus, we have to face the challenge to specify the usage of the WIS, i.e. to build high-level
models how users will navigate through the system and which actions they will perform.
This will lead to the first component of storyboarding, the story space. In addition, we
would like to anticipate the behaviour of the users and as much as possible customise the
system to their preferences and goals. This so-called personalisation depends on user
profiles, thus another challenge is to define these profiles, to associate preference rules
with them, and to solve the personalisation problem.

In order to model story spaces we may view a WIS is a set of abstract locations. A user
navigates between these locations, and on this navigation path s/he executes a number of
actions. We regard a location together with local actions, i.e. actions that do not change the
location, as a unit called scene. Thus, a WIS can be decribed by a edge-labelled directed
multi-graph, in which the vertices represent the scenes, and the edges represent transitions
between scenes. The whole multi-graph is then called the story space.

A story is a path in the story space. At a finer level of details we may add a triggering
event, a precondition and a postcondition to each action, i.e. we specify exactly, under
which conditions an action can be executed and which effects it will have.
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Looking at the whole story space from a different angle, we may concentrate on the flow
of actions. Actions can be treated as being atomic, i.e. we are not yet interested in how
an underlying database might be updated. Then each action also belongs to a uniquely
determined scene. Actions have pre- and postconditions, so we can use annotations to
express conditions that must hold before or after an action is executed. Actions can be
executed sequentially or parallel, we must allow choice between actions, and actions can
be iterated.

This leads to a story algebra. Thus, we can describe a story space by an element of a
suitable story algebra. Such algebras have to be defined as being many-sorted in order to
capture the association of actions with scenes. Furthermore, we should reserve parallelism
to actions on different scenes, in which case we can replace parallel actions by commuting
sequential actions. As shown in [ST05] this gives rise to Kleene algebras with tests.

Using equations we may exploit the axioms of KATs to reason about story spaces. How-
ever, we do not just want to derive equations from the KAT axioms, which would mean
to exploit the equational theory of KATs, but we want to derive such equations under the
assumption of other equations that describe user preferences and other constraints for the
story space expression. In particular, we obtain the following types of equations:

• An equation of the form ϕ(α + β) = ϕα is a preference rule, as it expresses that a
user, who may choose between between actions α and β under the condition ϕ, will
prefer α. The special case ϕ = 1 expresses an unconditional preference.

• An equation of the form α = ϕα expresses that the condition ϕ is a precondition
for the action α.

• An equation of the form α = αϕ expresses that the condition ϕ is a postcondition
for the action α.

• An equation of the form αϕ = ϕα is an invariance rule, as it expresses that the
condition ϕ (and so its negation ϕ̄) is invariant under the action α.

• An equation of the form ϕψ = 0 is an exclusion rule, as it expresses that the condi-
tions ϕ and ψ exclude each other.

• An equation of the form αβ = βα expresses parallelism, i.e. the order of the actions
α and β is irrelevant, hence they behave as if they were executed in parallel.

Then personalisation can be formalised by the following optimisation task.

Given a process p ∈ K that represents a story space, and a set Σ of equa-
tions on K that represents (among other constraints) user preferences and
a postcondition ψ ∈ B, we look for a minimal process p� ∈ K such that
Σ |= pψ = p�ψ holds.

That is, the resulting process p� is a personalisation of p according to the user intention
formalised by ψ. A more detailed discussion of story space personalisation including
meaningful examples taken from on-line loan applications was presented in [ST05].
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6 User Profiles and Roles

The preference rules used in the previous section depend on the profile of the user. Thus,
the challenge is to define these profiles. For this we may ask which properties characterize
a user and provide values for each of these properties. Each combination of such values
defines a profile [ST05], but usually the behaviour for some of these profiles is the same.

The dimensions used in user profiles depend on the application. Sources for such dimen-
sions can be the ability to search for solutions, solve problems, detect and resolve conflicts,
schedule work tasks, the communication skills and computer literacy, the knowledge and
education level regarding the task domain, the frequency and intensity of system usage,
the way information is handled, i.e. the direction of the information flow, the necessary
and optional input, the intended information usage, the amount and size of information
and the complexity of information, and the experience in working with the system and
with associated tasks.

Formally, in order to describe such user profiles, we start with a finite set ∆ of user di-
mensions. For each dimension δ ∈ ∆ we assume to be given a domain dom(δ). If
∆ = {δ1, . . . , δn} is a set of user dimensions, the set of user profiles over ∆ is gr(∆) =
sc(δ1) × · · · × sc(δn). A user type over ∆ is a subset U ⊆ gr(∆).

However, in the light of the approach to personalisation based on equational reasoning a
new challenge arises. Instead of first modelling user profiles and types, then assigning
preference rules to them, we might directly use the information about the user type as
antecedent for the preference rules. In this way we obtain implications.

The advantage is that we may dispense with classifying users, as the purpose of user
profiling is to obtain preference rules, and these can be captured without classification.
However, the challenging new problem is the increased complexity and non-monotonicity
of the reasoning process. So far, this has not yet been investigated.

A somehow related problem arises from modelling user roles [ST05]. Basically, the pres-
ence of roles indicates different purposes of the WIS. For instance, in a web-based con-
ference system we may have roles for the programme committee chair(s), the programme
committee members, and for authors. A role determines the set of actions that a user with
this role may execute. Thus, we first associate with each scene in the story space a set of
role names, i.e. whenever an actor comes across a particular scene, s/he will have to have
one of these roles. Furthermore, a role is usually associated with obligations and rights,
i.e. which actions have to be executed or which scenes are disclosed.

An obligation specifies what a user in a particular role has to do. A right specifies what
a user in a particular role is permitted to do. Both obligations and rights together lead to
complex deontic integrity constraints. Co-design uses the following logical language L for
this purpose. In this logic O do(r, α) means that a user with role r is obliged to perform
action α, P do(r, α) means that a user with role r is permitted to perform action α, and
F do(r, α) means that a user with role r is forbidden to perform action α.
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7 Reasoning about WISs

The high-level abstraction through storyboarding that we discussed in the previous two
sections leads to practical means to capture WIS requirements. The media schemata that
we introduced at the beginning then become means for reification in the sense that the
details of each scene in the story space will be modelled by some media type. However,
we have also seen that the introduction of story spaces opened a wide field for propositional
reasoning about WISs. To that end many quality criteria can be verified already at the level
of storyboarding.

Turning back to media types another challenge arises, i.e. to achieve a more detailed level
of reasoning by combining the ideas for personalisation, obligation and rights with the
media types. Of course, in doing so we leave the grounds of propositional reasoning.
Instead of KATs we have to apply higher-order dynamic logic; instead of propositional
deontic logic we have to deal with higher-order deontic logic.

The major addition comes from adding assignments to the operations. Thus, we may
specify the body of operations on media types using abstract programs that are defined by
the following constructs:

• 1 and 0 are abstract programs meaning skip and fail, respectively.

• An assignment x := exp with a variable x and an expression of the same type as x
is an abstract program. The possible expressions are defined by the type system. In
addition, we permit expressions {P} with a logic program P that expresses a query,
assuming that P contains a variable ans. The expression {P} is interpreted as the
result of the logic program bound to ans.

• If p, p1 and P2 are abstract programs, the same holds for the iteration p∗, the choice
p1 + p2 and the sequence p1 · p2 = p1p2.

• If p is an abstract program and ϕ is a condition, then the guarded program ϕp and
the postguarded program pϕ are also abstract programs.

• If x is a variable and p is an abstract program, then the selection @x • p is also an
abstract program.

There are a few subtleties regarding variable scoping and restrictions to assignments that
have to be taken into account for operations on interaction types (see [ST05]), but for our
purposes here it is not relevant to discuss them.

With respect to the connection to the story space, the propositional conditions ϕ now have
to be refined to conditions on S ∪ C, while each action α on a scene s is refined by an
operations associated with the media type that supports s.

With the introduction of media types to support scenes we can no longe rely on simple
equational reasoning using KATs. Therefore we introduce a higher-order dynamic, where
the order comes from the intrinsic use of the set constructor and the logic programs in
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queries. In fact, instead of using logic programs with a semantics defined by inflationary
fixed-points, we could use directly higher-order logic enriched with a fixed-point operator.

As a consequence, we may consider a logic program P as a representative of a higher-
order logical formula, say ϕP . If {P} is used as the right-hand side of an assignment, then
it will correspond to a term Ians.ϕP denoting the unique ans satisfying formula ϕP . That
is, all conditions turn out to be formulae of a logic L, which happens to be a higher-order
logic with an inflationary fixed-point operator. From the point of view of expressiveness
the fixed-point operator is already subsumed by the order, but for convenience we do not
emphasise this aspect here.

Furthermore, by adding terms of the form Ix.ϕ with a formula ϕ and a variable x all
assignments in operations are just “normal” assignments, where the left-hand side is a
variable and the right-hand side is a term of L.

We now extend L to a dynamic logic by adding formulae of the form [p]ϕ with an ab-
stract program p and a formula ϕ of L. Informally, [p]ϕ means that after the successful
execution of p the formula ϕ necessarily holds [HKT00]. In addition, we use the short-
cut �p	ϕ ≡ ¬[p]¬ϕ, so �p	ϕ means that after the successful execution of p it is possible
that the formula ϕ holds. Rules for [p]ψ for a complex abstract program p and complex
conditions ψ are given in [HKT00].

With these preparations we can rethink the reasoning about the story space. In the sequel
we will discuss three applications of dynamic logic. We take a look at proof obligations
for the operations that result from the the specification of the story space. We take a look at
proof obligations for the operations that arise from static and dynamic integrity constraints
on the underlying database schema. We reconsider WIS personalisation in the light of
dynamic logic as opposed to KATs.

First let p denote the KAT expression that represents the complete story space. If all
conditions in p are replaced by conditions on the pre-site and all actions are replaced by
the abstract programs defining the realising operations, we obtain an abstract program,
which by abuse of notation shall still be denoted p.

As a WIS has a general purpose, this can be formalised by some post-condition ψ. Thus,
[p]ψ describes the weakest condition, under which the purpose of the system can be
achieved. If ϕ characterises a precondition that should be sufficient for the achievability
of the WIS purpose, then we obtain ϕ → [p]ψ as a general story space proof obligation.
In most cases we should expect ϕ ≡ 1.

Similarly, we may concentrate on fragments p� of the story space expression of the form
ϕpψ, which corresponds to a Hoare triplet {ϕ}p{ψ} and thus gives rise to a special story
space proof obligation ϕ → [p�]ψ.

A static constraint on the underlying database schema S is a condition ζ, in which the free
variables are among the R ∈ S . Such constraints give rise to the request that whenever an
operation is started in a database satisfying ζ, then the database reached after successfully
completing the execution of the operation, must necessarily satisfy ζ, too.

That is, for all operations p that are defined on a pre-site and all static constraints ζ we
obtain a static consistency proof obligation ζ → [p]ζ.

213



A dynamic constraint on the underlying database schema S = {R1, . . . , Rn} is a con-
dition ζ, in which the free variables are among in S ∪ S � with S � = {R�

1, . . . , R
�
n} and

each R�
i having the same type as Ri. The additional variables R�

i are used to distinguish
between S-databases db, on which an operation p is started, and S �-databases db� resulting
after p has been successfully executed.

Obviously, a dynamic constraint ξ has to be interpreted on a pair (db, db�) of databases.
Following a standard approach to dynamic consistency we associate with ξ an abstract
program

p(ξ) = @R�
1, . . . , R

�
n • ξ R1 := R�

1 . . . Rn := R�
n.

Then dynamic consistency of an operation p with respect to ξ means that p must “spe-
cialise” p(ξ), i.e. we require that [p(ξ)]ψ → [p]ψ for all conditions ψ on S . Fortunately,
this proof obligation can be rephrased using a renaming p� of p(ξ) given by

@R�
1, . . . , R

�
n • ξ{R1/R��

1 , . . . , Rn/R��
n} R��

1 := R�
1 . . . R��

n := R�
n.

If this is denoted p�, the dynamic consistency proof obligation for p with respect to ξ
becomes

([p�]�p	(R1 = R��
1 ∧ · · · ∧ Rn/R��

n)){R��
1/R1, . . . , R

��
n/Rn}.

Finally, the general approach to personalisation that was outlined in Section 5 is still the
same, i.e. we can assume a set Σ containg general constraints on S ∪ C and specific con-
straints that refer to preferences of a particular user type. Furthermore, personalisation
assumes a postcondition χ that expresses the goals of the particular user. Then personali-
sation of story space p aims at a simpler story space p� such that [p]χ ↔ [p�]χ holds.

8 Conclusion

In this article we presented a brief overview of the co-design approach to WIS development
focussing on the challenges that arise from large systems with unknown users in diverse
environments, and to show how the approach copes with these challenges. In particular,
we outlined that it is not sufficient to take only a data-driven approach, i.e. to model
some underlying database schema, from which views are derived that capture the content
of the WIS. We argued that this is only the first step, and that generation of navigation,
hierarchies that enable different granularity for the presentation, and adaptivity to users
and environment have to be handled as well.

We also argued that in order to capture the mission of a WIS and to match the anticipated
usage by its users, an approach on a higher level of abstraction is needed. This is dealt with
by storyboarding. One of the advantages of the co-design approach is the tight coupling
of storyboarding with the data-oriented modelling of a WIS using media types. This also
enables sophisticated reasoning about personalisation, task consistency, and obligations
and rights of users.
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A remaining challenge for future work is to extend the reasoning approach and to combine
it with the data-oriented level of abstraction. First steps in this direction have been made
in [Sc04].
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