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ABSTRACT

Communication in the internet today is transient by de-
fault. Because of this, whenever an application needs to
store data even for a moment, its provider needs to develop
an application-specific solution, which is often done using
client-server models. This is costly at scale, and generally re-
quires users to concede control over the data they generate to
allow application providers to generate revenue from the col-
lected data to finance the operation of these servers. This also
leads to a lock-in effect, which is prohibitive for new appli-
cations entering a market. To solve these issues, we propose
persistent streams, an application-agnostic communication
protocol that includes ephemeral and persistent storage and
is able to handle both discrete as well as continuous (stream-
ing) data. Including storage into the communication path
removes the need for application servers completely. Even
though the protocol relies on (cloud) servers as transmission
and storage proxies, we expect the emergence of new stor-
age technologies like non-volatile main memory to alleviate
some issues this introduces. We also show the general appli-
cability of this solution using different kinds of applications
as examples. Overall, persistent streams have the potential
to greatly reduce the burdens on application providers while
also enabling users to exercise increased control over their
data.

KEYWORDS

communication protocols, decentralization, interoperability,
federation, non-volatile memory

1 INTRODUCTION

Providing an application that communicates over the inter-
net today requires additional infrastructure to exchange data
between its users. Popular solutions include building upon
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an existing network or application, hosting dedicated servers,
or using peer-to-peer (P2P) networks. Each of these is associ-
ated with different kinds of drawbacks and expenses. In the
case of common client-server solutions, the critical issue for
users is a lock-in effect, in which certain services can only be
used as a user of its associated platform or application. Inter-
operability between services needs to be built explicitly and
relies on the platform owner either creating it or allowing
access to its data in a way that allows external extensions.
This also commonly prohibits users from choosing their in-
terfaces for communication based on personal preferences
or exercising control over their generated data.

Thus, even though the internet was built based on decentral-
ized ideals, today it is often not practically possible for users
to choose their preferred applications for communication
or even decide which third party has access to their data.
With E-Mail it is simple to select a provider. It is possible to
set up a server personally on arbitrary infrastructure, and
a multitude of front-end applications are available to send
and receive mail. This is independent of which provider and
application the other parties in a (group) communication are
using. The same is not possible for most modern communi-
cation platforms, which provide central servers and specific
applications that must be used exclusively in order to reach
people on their network.

This paper discusses current approaches to handle commu-
nication and data storage in distributed platforms in Section 2
and depicts prominent use cases and issues when implement-
ing solutions for these using current approaches in Section 3.
Then we describe a novel approach to amend these issues in
Section 4. Finally, general ideas for efficient handling of data
storage for reliable transmission are discussed in Section 5.

2 STATE OF THE ART

Currently, most architectures in large distributed platforms
are client-server based. In this paradigm the users obtain the
application from the provider and also send all communica-
tion to the provider’s servers, which distribute them. Figure 1
shows a simple workflow for a chat application being used
by two users. If user A wants to send a message to user B
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Figure 1: Abstract depiction of sending a message in a
common client-server oriented model.

using the browser-based chat application, they access the
application (1) hosted on the provider’s server, and send their
message (2) back to the server. The server then caches this
message until user B accesses the application (3) and retrieves
the message (4). This displays how users are required to re-
linquish control over their data and are completely reliant on
the provider for both availability and data protection, since
all steps of the process rely on the provider’s server being
accessible and able to fulfill their requests, making each one
a single point of failure in its respective application.

In recent years it has become evident that user data is not
properly protected in many cases [2] and even large providers
such as Zoom! and Twitter?, — amongst others — occasion-
ally suffer from availability degradation and failures. If one
such centralized service suffers from a global outage, all of
its users are cut off from using the applications. Even when
outages are regionally isolated, large numbers of users are
unable to utilize the services and access their data.

A number of approaches to remove the strong coupling

between data and applications to solve common privacy is-
sues in client-server approaches have been created. However,
none of them is able to provide means of communication
for general application across a wide range of prominent
use cases, which include both discrete as well as continuous
(streaming) data.
ActivityPub [9] is one attempt at solving the issue of platform
lock-in of users. It does this by allowing multiple instances of
a platform to federate content created by users freely among
them. However, data generated by a user still lies in the cus-
tody of the instance administrators, requiring a certain level
of trust between them and their users. Additionally, since
its internal data structure, ActivityStreams [7], is based on
JSON-Linked Data, transferring arbitrary binary data can be
inefficient and open-ended stream transmission is impossi-
ble.

1TechHQ on the Zoom outage on Aug. 23rd, 2021: https://techhq.com/2021/
08/zoom-outage-due-to-overreliance-or-videoconferencing-fatigue/
2The Guardian on the global Twitter outage Oct. 16th, 2020:
https://www.theguardian.com/world/2020/oct/16/twitter-outage-social-
media-platform-goes-down-across-the-world
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The Solid platform [4] aims to remove the strong coupling
between the application provider and user data storage. Ap-
plications are required to request authorization to use spe-
cific parts of the user’s personal online datastore (pod) stored
independently at another provider. It is built with social web
applications in mind, but since it is able to handle arbitrary
data types, it can also be used in other contexts. However,
being based on RESTful APIs, it cannot be used for arbitrary
types of communication like streaming and similar push-
based contexts.

The InterPlanetary File System (IPFS) [1] is a distributed file
system based on a combination of well-known P2P and ver-
sion control technologies. Its aim is to create a single global
namespace of content distributed among peers all over the
world. This creates a few issues, since there needs to be an
incentive for hosters to provide peers capable of handling
potentially large amounts of storage and requests. Since it
is based on P2P technologies, it also experiences issues like
blocking from firewalls. Since files are internally represented
using immutable objects, streaming is not possible.

Live collaboration of multiple users is another central issue.
While it is possible to solve this in federated networks, as
shown using operational transformation in Google Wave [10],
the Wave protocol only supports static contents with atomic
modifications. Again, streaming of data is not supported.
Similarly, synchronization of actions in P2P networks has
proven to be a complex task. Results are usually also imper-
fect, since a solution always requires concessions in at least
one of partition tolerance, availability, or strong consistency,
and also needs to be able to handle long latencies between
peers [6]. On the issue of private storage of data in public
clouds, research has shown that it is possible in specific con-
texts [8]. However, the solution requires extensive setup and
resources on the user side, since encryption and decryption
need to happen outside of the cloud providers’ control. It
may also cause issues in performance and concurrent file
access and does not support streaming of open-ended data.
All of this previous research has led us to believe that a
general solution for private, user-controlled communication
needs to be a) a lightweight protocol, only handling binary
data without making assumptions on its structure, b) dele-
gate the task of integrating layers above transport encryption
to the applications, and c) support synchronization and live
streaming of data in addition to persistent storage.

3 DISTRIBUTED APPLICATIONS

To evaluate whether an approach for a general communi-
cation protocol is usable in everyday applications, we first
need to define use cases. While the current landscape of the
internet includes many different kinds of applications, this
section depicts only a few of them to display limitations
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and deficiencies of current solutions. It also contrasts popu-
lar client-server solutions with the distributed approaches
presented in Section 2.

The first application is a microblogging platform, where
users can post text and other static content for arbitrary
audiences to consume. Twitter solves this in a common client-
server model, where all data is stored on the application
servers and visibility is enforced by them. To give users more
control over their data, Mastodon is an ActivityPub-based
application, that was created as a replacement for Twitter
using federation. However, since federation utilizes instances
to distribute the content, it is not possible in Mastodon to
define arbitrary audiences without giving all instances of
users in the audience access to the content.

The second use case is public live streaming of video con-
tent. As an example of a common client-server implementa-
tion, Twitch is a popular solution, controlling all data trans-
mitted through the platform. This cannot be implemented
in any of the previously discussed frameworks, as none of
them natively support streaming of data directly. A partial
expansion of this would be real time video communication.
In this use case, the differentiation between producers and
consumers of content is removed, as all active participants
receive and send data to all others. This is a more complex
case, as it not only requires the application to distribute
each individual stream to all but one participants, it also
needs to synchronize the streams to prevent common in-
terferences in the flow of the conversation. Again, this is
solvable in a client-server architecture, though it requires
substantial resources to scale. However, it is not possible
in the distributed frameworks, due to missing support for
(synchronized) streams.

The third application is a file drop used for digital exam
submissions in an educational context. A teacher distributes
a digital exam sheet to students to fill out during a specified
time frame. When they are finished, they send in their solu-
tions, though they must not be able to overwrite their sheets
once submitted. However, submitting multiple sheets per
student is allowed. This acts as simple version control, giv-
ing the students more possibilities to work around possibly
unstable internet connections and hardware and software
failures on their end. Teachers may select the most recent
usable file, while students have the option of requesting a
grading of another file in case they suspect issues in the
latest upload. A solution to this is possible in a client-server
model, although reliable distribution of the sheets and au-
thentication of the students could pose some challenges. The
previously mentioned decentralized frameworks are insuf-
ficient for this use case, as none of them is able to forcibly
distribute the sheets to the students in a reliable and account-
able fashion, and they do not allow the teacher to configure
a write-once location.
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Figure 2: Sending a message in an application using
persistent streams. Simplified workflow; coloring indi-
cates ownership/control.

4 PERSISTENT STREAMS

To mitigate these issues we propose persistent streams, a
communication protocol that augments the internet with
ephemeral storage. It builds upon the idea of streams, — low-
overhead data transmission between one source and one
target — and removes the dependency on simultaneous avail-
ability of both parties. The protocol is aimed for use in a
wide range of scenarios and applications, from resource-
constrained devices in the Internet of Things to end-user
applications that previously required a client-server based
approach. Therefore, it must be implemented on top of —
or integrating — a transport layer protocol such as QUIC
streams [3]. This section describes the general idea and cen-
tral concepts, as the development of the protocol is currently
in progress and requires further expansion and refinement.

When applications use persistent streams, communication
flows through agents controlled by their users, as depicted
in Figure 2. In this example user A sends a message with a
single recipient, user B, using a chat application. Similar to
communication using E-Mail, agent A forwards the message
to the agent of user B, where it resides until user B opens
the chat application and retrieves the message. The agents
may run on infrastructure the users control or as a service
in a cloud, depending on each user’s choice.
By using these agents as proxies, the protocol enables com-
pletely decoupling the distribution of the application from
user communication and data storage. The provider of the
application only handles distributing the application itself,
without needing to provide additional resources to handle
communication. Since the agents are responsible for data
distribution, the protocol supports first-class group commu-
nication and allows scalability by design. This way, the sin-
gle point of failure for the whole network, which is present
in client-server models, is removed and replaced by a dis-
tributed structure where a node failure only impacts a sin-
gle user’s communication, as long agents are independently
hosted.

However, in contrast to E-Mail, persistent streams also
support streaming data, enabling their use in a multitude of
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Figure 3: Abstract depiction of communication in two
applications using persistent streams. Coloring indi-
cates ownership/control.

additional scenarios. Agents are also agnostic to both the ap-
plications a user utilizes to access them as well as the kind of
data that is transmitted through them. While in the example
above, user B may have obtained the application from the
same provider as user A, they could also use another (e.g.
web) application using the same data structure. As Figure 3
shows, an agent is also not bound to a single application. In
this example, while user A sends a message to user B, user B
shares a file with user A. The agents handle all transmission
and storage of data.

The core idea of the protocol is to enable asynchronous

communication on an internet level, without specific ap-
plications needing to solve this issue independently. To do
this, data may be persistent or ephemeral on either agent.
Persistent data is accessible as long as it is present, while
ephemeral data is only accessible once per user. The source
agent is additionally able to distinguish which data is kept
private and which is served to recipients.
In the examples above, the applications are clients. While they
are actively operated by the user, this is not a requirement. A
client may also be an online service that acts autonomously
on behalf of the user. Either way, each client must be actively
authorized by the user to access certain parts of their data.
Clients inform an agent of their identity, which could be
used to indicate a specific application or a certain (social)
network. This way, clients may also be addressed directly,
indicating to the agent which application a stream should be
pushed to.

Streams are cohesive segments of binary data with mini-
mal metadata and constitute the basic data unit of the pro-
tocol. A stream can be either discrete (enclosed data) or
continuous, and only be modified by the user it was created
by. Agents only keep minimal metadata for each stream, and
streams cannot be stored or addressed on their own. They
reside in bundles, which are sharable groups of streams en-
riched with extended metadata. Each bundle has an identifier
that is unique for the user owning it, and recipients of the
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bundle can be defined explicitly. Once the recipients are de-
fined or modified, the agent informs each of them (once),
so they can accept or reject the bundle. All recipients that
have accepted the bundle will receive updates to any stream
inside that bundle pushed to their agent automatically. This
scheme reduces communication overhead by accepting only
once per bundle per recipient instead of each stream inde-
pendently. Since all data inside streams is handled as binary
and the user can decide which bundles a client may access,
the protocol inherently allows for arbitrary interoperability
between services. They only need to be able to parse and
interpret the data received from the agent and be authorized
as a client by the user.

Addresses in persistent streams are based on the scheme
used in E-Mail. This should be both intuitive for most users,
as well as practical, since it allows for utilization of the ex-
isting DNS to locate agents. However, persistent streams
requires another optional field to specify a client application
so it can be addressed directly. While further research is re-
quired to determine the final scheme, the basic structure is:
[<client>:]<user>@<agent>
Since this addressing scheme should feel familiar to most
users, they should be able to exchange addresses in the same
ways used currently. Additionally, since persistent streams
is a data structure agnostic protocol, it can also be leveraged
to host user directories. Hosting a client at a well-known
location, where users can opt in to be listed in the direc-
tory, allows other users to discover them. This seems most
practical on an application- or community-level, where the
address of the directory would be included in the application
or distributed publicly.

4.1 Application

While the protocol is still in early design stages, we can show
some drafts for solutions to the use cases in Section 3. For
example, these basic functionalities already support a simple
microblogging application. The application creates a bundle
per group of recipients and pushes messages as individual
streams to distribute them among followers. In Figure 4 we
call this application decentralized social network (DeSN). User
A creates a post addressed specifically to DeSN clients of
users B and C and pushes it to their agent in a stream. The
agent distributes the post to the recipients’ agents, who in
turn forward the data to the target applications. While user C
simultaneously uses another unrelated application utilizing
persistent streams, that application is unaware of this post,
as the agent only forwards the stream to DeSN. It is also
possible to provide a timeline of public posts in the same
way user directories can be implemented: A user sends an
opt-in to a client at a well-known address. This client then in
turn collects and lists public posts of this user for others to
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Figure 4: User A creates a post in a microblogging ap-
plication (DeSN). Users B and C receive the post. Only
the relevant application of user C receives the data.

find. Other users can query this client for posts and receive
the related addresses and bundle IDs.

The public streaming use case could be implemented sim-
ilarly to this. However, the group video chat application
additionally requires strict synchronization of streams us-
ing timestamps, where one participant’s agent could be des-
ignated as authoritative, determining the order of stream
frames. The end user applications could then synchronize
their state to this using local lag as described in [6]. Provided
that agents are hosted on reliable servers, re-synchronization
should not be required often. To support the file drop ap-
plication, the creator of a bundle needs to be able to allow
students to create streams in their bundle. Figure 5 shows
how a teacher (A) could allow students (B and C) to submit
their solutions into a bundle that is under the teacher’s con-
trol. To prevent editing uploads, the teacher must be able to
define that newly created streams are internally persistent
and externally ephemeral. This way students would only be
able to upload solutions once, without being able to change
their submissions afterward. A solution to achieve this in
persistent streams are owner-definable default permissions
for newly created streams in a bundle. When the students
upload their solutions, the permissions are automatically
applied so they are no longer accessible to anyone but the
teacher.

In all of these scenarios, the application providers need
to contribute distinctly fewer hosting resources in order to
maintain the networks between users of their services than
would be required in fully client-server based solutions. Since
the data is under the users’ control, they may also choose
whichever user interface they like, as long as it supports the
data format.
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Figure 5: Teacher A creates a bundle and assigns write
permissions for one new stream to each of the students
(B and C). After B and C submit their solutions they
are no longer able to edit them.

5 EFFICIENTLY HANDLING DATA
STORAGE

Funneling all communication and user data through the
agents controlled or owned by their users helps increasing
privacy and data sovereignty of the users. However, that
means agents can be bottlenecks for all communication of a
user.

In contrast to current network infrastructure, which gen-
erally only forwards or drops traffic, agents must be able
to (temporarily) store data so it can be distributed at a later
time. Data that was received and acknowledged by an agent
must not be lost unless the user instructs it to. To achieve
this, agents require non-volatile storage to prevent data loss
in failure scenarios. However, non-volatile storage has tra-
ditionally been too slow to handle the large amounts of
incoming and outgoing network traffic present in busy in-
frastructure. This required advanced algorithms and complex
architectures to balance both speed and reliability.

Non-volatile main memory (NVRAM) changes this, as it
provides response times and throughput closer to DRAM
than to solid state storage, while being resistant to power
loss. [5] However, machines hosting busy agents might still
require storage capacities in excess of what is practically
available to them. We expect a few factors to influence this
issue in the agent-specific use case positively:

(1) Firstly, real-time communication can be expected to re-
quire no longer caching than needed to receive and forward
the data to their destination. This allows agents to discard
this data quickly.

(2) Furthermore, data that is cached for long periods of time
can be assumed to not be time-critical. As such, pushing it
down in the storage hierarchy towards slower but larger
storage tiers is a feasible solution if it has not been accessed
for some time.
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Adding NVRAM lowers the requirements on algorithmic
solutions to fault tolerance significantly in this use case, as
data that is not directly forwarded can be moved into non-
volatile regions quickly. Given the first assumption above, it
seems reasonable to expect systems to be able to hold enough
data in NVRAM to cache communication for at least a few
minutes. Even if all data would have to be cached in NVRAM,
we could start moving the oldest blocks down another tier
in the hierarchy. Following the second assumption, data that
was not retrieved in the first minutes can be pulled from
slower storage later without large impact on the requesting
application.

Even though these are just general assumptions, we be-
lieve they provide an indication of feasibility to accelerate
the storage system in a way that reduces the negative impact
of the system on speed in regards to user experience. While
this is not the only part showing possible optimizations, it
is a central element with large consequences, especially if
fault tolerance is required.

6 CONCLUSION AND OUTLOOK

In this work we explained how current approaches to asyn-
chronous communication based on client-server models place
large burdens on providers, how existing decentralized ap-
proaches fall short of general applicability, and how a novel
approach — persistent streams — could provide a path to solve
these issues in an efficient, resilient and privacy-preserving
manner.

However, further research is required to ensure that persis-
tent streams are generally usable as a protocol for most com-
mon use cases in distributed communication. For example,
to ensure that interactive applications work without degra-
dation through higher latency, a proof of concept needs to be
built in order to evaluate real-world impacts of the changed
routing. In this context we are currently investigating ways
to minimize delays in processing on the agent. It should also
be investigated whether it is possible to reduce overhead in
storage by allowing a single stream to be part of multiple
bundles. Furthermore, investigation is needed to determine
if recipients should be able to select which streams in a bun-
dle they are interested in, or whether proper utilization of
bundles to separate streams is sufficient.

Overall we believe that the general structure of persistent
streams is better fit for the task of solving decentralization
and decoupling of user data from applications than existing
approaches portrayed in Sections 2 and 3.
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