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Abstract

We give an overview over recent results
concerning rational points on hyperelliptic
curves. One result says that ‘most’ hyperellip-
tic curves of high genus have very few ratio-
nal points. Another result gives a bound on the
number of rational points in terms of the genus
and the Mordell-Weil rank, provided the latter
is sufficiently small. The first result relies on
work by Bhargava and Gross on Selmer groups
of hyperelliptic Jacobians, and both results use
Chabauty’s method.

Introduction

A hyperelliptic curve C of genus g > 2 over Q is given
by an equation of the form

9 2g+2 9g+1
C:y” = f(x) = fogaax™ @+ fogr1z™™ +.. .+ fiz+ fo,

where f(x) € Z[x] is of degree at least 2g + 1 and
squarefree. This equation defines a smooth irreducible
algebraic curve in the affine plane. We usually con-
sider its smooth projective model, which is obtained by
adding one or two points at infinity, corresponding to
the square roots of fo4,2 (so there is one such point
when fo,.2 = 0 and two points otherwise). The ratio-
nal points on C are the affine points (£,1) € Q x Q
satisfying the curve equation, together with the points
at infinity if fog.o is a square in Q. The set of rational
points on C' is denoted C'(Q).

In particular, for odd degree hyperelliptic curves,
meaning that deg(f) = 2g + 1, we always have a unique
rational point at infinity, which we denote oco.

Faltings’ [5] famous proof of the Mordell Conjec-
ture [7] implies that C'(Q) is always finite (recall that
we assume g > 2 throughout). This raises the following
question:

What can we say about #C(Q)?

Chabauty’s method

For a given individual curve C, Chabauty’s method [3,
4] can be used to produce a bound on #C(Q), un-
der a technical condition. To explain this, we have
to introduce the Jacobian variety J of C. This is an
abelian variety (a projective algebraic variety that car-
ries a group structure compatible with the geometric
structure; the group is then necessarily abelian) of di-
mension g defined over Q, and if Py € C(Q) is a ra-
tional point, then there is an embedding ¢:C — J de-
fined over QQ that sends Py to the origin of the group
law on J. Weil [13] proved (generalizing a result of
Mordell’s on elliptic curves that appeared in the pa-
per [7] mentioned above containing the conjecture) that
the group J(Q) of rational points on .J is a finitely gen-
erated abelian group. In particular, it has a well-defined
rank 7 = dimg J(Q) ®7 Q, which is called the Mordell-
Weil rank of J or of C'. The technical condition men-
tioned above is that r < g.

We fix a ‘base-point’ Py € C(Q) (if there is no such
point, we have #C'(Q) = 0). Chabauty’s method works
p-adically, so we now fix a prime p. We write Q;(Q))
for the space of regular (or invariant, this is here the
same) 1-forms on J defined over Q, and Q¢ (Q)) for
the space of regular 1-forms on C' defined over Q,,. Then
:Q5(Qp) = Qc(Qp) is an isomorphism, which in
fact is independent of the choice of the base-point, and
both sides are vector spaces over Q, of dimension g.
The group J(Q)) of p-adic points on .J carries a natural
p-adic topology and forms a p-adic Lie group. There is
a unique logarithm

log: J(@p) g TOJ(Qp) = Q;";

(where TpJ(Q)) denotes the tangent space of J(Q,)
at the origin), which is a local diffeomorphism and a
group homomorphism with finite kernel J(Qy )tors. The
space €.7(Qp) of differentials can be canonically iden-
tified with the cotangent space (TpJ(Qp))*. Putting
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these ingredients together, we obtain a pairing

J(Qp) X QJ(QP) g @p y

which is additive in the first component and Q,-linear
in the second. If r < g, then there will be a linear sub-
space V' of Q;(Q,) of dimension at least g — > 0 such
that (w,log P) =0 forallw e V and all P € J(Q).

Now we observe that the embedding ¢ maps C'(Q)
into J(Q), so we have for all P € C(Q) and all w € V
that (w,log¢(P)) = 0. Fixing some 0 # w € V, we
define a function

Awt C(Qp) - Qp )

Then C(Q) is contained in the zero set of \,,. Now lo-
cally C'(Qy) looks like a subset of Q,, and C(Q,) is
compact (recall that we work with the smooth projec-
tive model of the curve), so we can write C'(Q,) as a
(disjoint) union of finitely many residue disks, subsets
that are p-adically analytically isomorphic to the p-adic
unit disk. Pulling back A, to the parametrizing disk, we
obtain a power series converging on the disk, and using
the Newton polygon obtained from the valuations of the
coefficients, we can deduce bounds for the number of
zeros of )\, on the residue disk under consideration. If
one takes care to pick the ‘best’ w on each residue disk,
this leads to the following general bound [11].

(P,w) ~ (w,log P),

P (w,logt(P)).

Theorem 1 If C is a hyperelliptic curve over Q of
genus g and with Mordell-Weil rank 7 < g, then for each
prime p > 3, we have

i

where d(p) denotes the number of p-adic residue disks
in C'(Q,). We also have the bound

£C(Q) <2d(2) +3r.

2r

£C(Q) < d(p) +2r + [

The 2-Selmer group

Now the question is, how to determine or at least bound
the Mordell-Weil rank r. The most useful tool for this
in practice as well as in theory is the 2-Selmer group
Sels J. It is defined in terms of Galois cohomology, but
for us the only important properties are that it is com-
putable (see [10] for how to compute it) and that it fits
into a commutative diagram

Selp J

OO

I1

v

J(Qy)
2J(Qy)

J(Q)
2J(Q)

(where v runs through all places of Q, so that QQ, runs
through all p-adic fields Q, and R). Since

J(Q)
2J(Q)

dimp, = dimg, J(Q)[2] + 7,
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where J(Q)[2] denotes the 2-torsion

of J(Q), we have

subgroup

r< dimF2 Sely J — diIIl[F2 J(@) [2] .

The dimension of J(Q)[2] can easily be determined
from the factorization of the polynomial f(z) over Q.

We will now focus on odd degree hyperelliptic
curves. Because the degree of f(x) is coprime to the
degree of 32 in this case, we can always scale x and y so
that f(x) becomes monic. For a ring R of characteristic
zero, we write F,(R) for the set of all monic polyno-
mials f € R[z] of degree 2g + 1 with non-vanishing
discriminant, and we just write F, for F4(Z). For
f = 2%t 4 f29x29 +...+ fix + fo € Fy, we define
the height of f to be

H(f) = max{lfj|1/(29+1_j) : 0 S ] S 29} .

(This definition has the advantage that scaling  and y
while keeping the polynomial monic has the effect of
scaling the height.) We can then order the polynomi-
als f or equivalently, the curves y? = f(x), by increas-
ing height, which allows us to talk about the (lower) den-
sity of a set of odd degree hyperelliptic curves. First, for
X e R we set

Fox={feFy- H(f) < X}
Now let S c F,. Then the lower density of S is

#(f ’XﬁS) .

4(9) :liXHLinf AT, x

o0

In a similar way, we define the upper density 5(S). If
both coincide, their common value is the density 6(S).
If ¢: F; — R is a function, we can define the average
of ¢ as

Zfe]-'mx ¢(f)
#fg,X

provided the limit exists. Now Bhargava and Gross [1],
extending previous results by Bhargava and collabora-
tors on Selmer groups of elliptic curves, have shown the
following.

A(@) = lim ,

o0

Theorem 2 The average size of SelaJ, as J runs
through the Jacobian varieties of odd degree hyperellip-
tic curves of genus g, is 3.

This implies that the average of 2" is at most 3, and
so 7 is mostly small.

Actually, Bhargava and Gross prove a bit
more. Recall that there is a natural homomorphism
Sely J - J(Qp)/2J(Qp). The latter group is locally
constant on F,(Z,): over sufficiently small subsets, it
can be identified with a fixed group G. Then there is the
following equidistribution property.



Theorem 3 Let U c F4(Z,) be a subset such that for
all feU, J(Qp)/2J(Qp) = G as above. Then the av-
erage number of nonzero preimages in Sely J under the
map Sely J - J(Qp)/2J(Qp,) — G, when f ranges
through U n F,, is the same for each «y € G.

Most curves have few rational points

We continue to consider odd degree hyperelliptic
curves. Each such curve has at least one rational point,
namely the point at infinity. Heuristic considerations
lead to the expectation that most curves actually have
only this one rational point, in the sense that the subset
of f € F, such that C'(Q) = {oo} has density 1.

Now if we want to show that even a subset of pos-
itive (lower) density of odd degree hyperelliptic curves
of some fixed genus g has this property, then the gen-
eral Chabauty bound of Theorem 1 is not sufficient:
we would need d(p) = 1 (which is true for a subset
of positive density) and r = 0, but the results of Bhar-
gava and Gross are not strong enough to imply this for
a positive proportion of the curves. The reason why
the bound of Theorem 1 is too weak is that it does not
look at how J(Q) lies inside J(Qy); it just takes its
‘size’ (as measured by r) into account. If we know
something about the position of J(Q) inside J(Q)),
then this can be used to obtain more precise bounds.
If we know the 2-Selmer group together with the map
Sely J — J(Qp)/2J(Qy), this will at least provide us
with an upper bound for the image of J(Q)/2J(Q)
inside J(Q,)/2J(Q,). For odd p the latter group is
mostly small and does not give enough information on
the image of J(Q) in J(Q)). For p = 2, however, the
situation is different, and we get some sort of ‘first ap-
proximation’ to J(Q) inside J(Q3), which can be used
in the Chabauty setup. This idea goes back to McCal-
lum [6], who used it to prove results on the second case
of Fermat’s last theorem.

In our case, we obtain the following criterion. We
first pick an isomorphism of TpJ(Q,) with Qj so that
the image of log is Zj. Then we have the following
commutative diagram.

C(Qs) —> J(Qy) —E> 78 — — ~ P91(Qy)

RN

J(QQ) log ®F2 _
S (D

The maps represented by dashed arrows are only par-
tially defined (on all non-zero elements). We denote
the two partially defined maps C(Qz) -> P971(F3) and
Sely J -» P971(IF3) by plog and Po, respectively. If we
speak of their images, we mean the images of the maps
restricted to their maximal domain of definition.

Selz J

Lemma 4 For a subset of density 1 of the curves in F,
if o:Sely J — F} is injective and the images of plog
and Po are disjoint, then C'(Q) = {oo}.

The condition that o is injective guarantees that no
information is lost when mapping to F, whereas the
disjointness condition can be used to show that on each
residue disk, there is a suitable function A, that vanishes
only at the Weierstrass point (if present). The Weier-
strass points are the points with y = 0, together with the
point at infinity (in the odd degree case). For almost all
curves in the sense of density 1, oo is the only Weier-
strass point.

The equidistribution property of Theorem 3 tells us
that the average number of nonzero preimages under o
of an element v € F} is 2-(9-1), Applying this to v = 0
shows that ¢ is injective for a set of curves of density
1-2"(0-D_ Also, the image of Po is usually small and
varies rather randomly. It remains to show that the im-
age of plog is sufficiently small on average, so that it
is likely to miss the image of Po. To achieve this, we
bound the size of the image of plog on each residue
disk, and we prove a bound on the average number of
residue disks. We obtain the following.

Lemma 5

1. The average number of 2-adic residue disks on
curves in F is less than 3.

2. The average size of the image of plog is at most
6g +9.

Combining the two lemmas leads to the following
result [8].

Theorem 6 Fix g > 2. Then the lower density of odd

degree hyperelliptic curves C' over Q of genus g such
that C'(Q) = {oo} is at least 1 — (12¢g + 20)279.

So the proportion of such curves tends to 1 rather
quickly as g tends to infinity. In that sense, ‘most’ odd
degree hyperelliptic curves have the point at infinity as
their only rational point.

By looking at certain special subfamilies of curves,
we can also show that for all g > 3, the set of curves with
C(Q) = {00} has strictly positive lower density.

Extending the results of Bhargava and Gross and
our method sketched above, Shankar and Wang [9] have
shown that for curves y? = f(x) with f(x) monic and
of even degree, a proportion tending to 1 as g — oo in a
similar way as in Theorem 6 above have the two points
at infinity as the only rational points. For general hyper-
elliptic curves of genus g (such that f has even degree
and does not have to be monic), Bhargava, Gross and
Wang [2] have shown that, as g — oo, only a proportion
of 0(279) of all curves have rational points at all.

Bounds for the number of points in
terms of the rank and the genus

Now we consider general hyperelliptic curves again.
Heuristic considerations lead to the expectation that
there should be a bound in terms of g and r for the num-
ber of points P € C(C) such that ((P) is contained
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in any fixed finitely generated subgroup I' c J(C) of References

rank r. This is an open conjecture. It would imply that
#C(Q) is bounded in terms of g and the Mordell-Weil
rank r (taking I' = J(Q)). We will now sketch how
this weaker statement can be obtained in the case that
r < g — 3. For this, we will again use Chabauty’s ap-
proach. Theorem 1 gives bounds for #C(Q) in terms of
the rank r and the number d(p) of p-adic residue disks,
assuming that < g. The problem with that in view of
obtaining uniform bounds is that the number of residue
disks is unbounded. In the previous section, this was not
an issue, since we can show that the average number of
residue disks is small, which is enough for density re-
sults. But now we want a bound for all curves (with
fixed Mordell-Weil rank r).

The main idea for circumventing this problem is to
consider a more general decomposition of C'(Q,). In-
stead of just writing it as a disjoint union of disks, we
allow ourselves to use disks and p-adic ‘annuli’ (subsets
that are analytically isomorphic to an open disk minus a
closed subdisk). Then one can show that it is possible
to cover C(Q,) by a number of disks and a number of
annuli that both can be bounded in terms of g only.

The other main ingredient is to obtain a bound for
the number of rational points in a given annulus. It turns
out that for any given annulus A, there is a subspace V4
of 2;(Qp) of codimension at most 2 such that we can
prove a bound for the number of zeros of A, on A as
long as w € V4. Soif r < g — 3 and V is the subspace of
differentials killing the Mordell-Weil group, then V' nV4
will be nontrivial for every annulus A. Combining the
bounds for disks and the new bounds for annuli, we then
obtain the following result [12].

Theorem 7 Let C' be a hyperelliptic curve over QQ of
genus g and with Mordell-Weil rank r < g — 3. Then

#C(Q) <8(r+4)(g—1) +max{l,4r}-g.

More generally, there is a bound R(d, g, r) depend-
ing on the degree [ K : ], the genus g and the Mordell-
Weil rank r such that for every hyperelliptic curve C
of genus g over a number field K such that J(K') has
rank 7, we have #C(K) < R(d, g,r).
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