
Method Engineering: Theory and Practice

B. Henderson-Sellers

Faculty of Information Technology
University of Technology, Sydney

Australia
brian@it.uts.edu.au

Abstract: Method engineering promotes the idea of constructing methodologies
for information systems development by selecting and assembling method
fragments from a repository. This repository needs first to be populated with self-
contained fragments derived from industry best practice and compliant with a
given metamodel. A situational method is then constructed (by a method engineer)
to exactly match the requirements of the individual organization and/or project.
This paper briefly outlines both the theory of situational method engineering and
its application in terms of industry case studies carried out over the last 5 years in
Sydney, Australia in helping organizations to create agile and flexible
methodologies, capable of maturing and improving over the years.

1 Introduction to Methods and Method Engineering

Method engineering is a solution offered to the problem of the identification of the “most
appropriate” methodology for an organization and/or its projects. [Ly87] notes that
current methodologies are not well suited to practice, while [Av96] notes a backlash
against formal methodologies. Others see process adoption as a “waste of time” [BH03],
although [Co00] argues that it is both appropriate and necessary for an organization to
have available to it a suite of methodologies. Since the one-size-fits-all methodology is
now generally regarded as unattainable e.g. [Br87] [AW91] [KW92] [SB93] [VG94]
[SH96] [[FTF96] [HV97] [Gl00] [FRO03] [WK04], alternatives have to be sought,
particularly ones that take into account the human and organizational elements [CL94].
Method engineering, perhaps accompanied by method tailoring/customization, is the
current most optimistic route and forms the topic of this paper.

1.1 Terminology

In the field of process and method engineering, the terminology is often differently used
between authors. There are three “key” high-level terms: method, methodology and
process. While the etymology of “methodology” gives its definition as the study of
methods, its widespread and common usage to mean “method” [Ja94] [BGH04] gives it
credence in this second meaning (a meaning also given in many modern dictionaries e.g.

��

the American Merriam-Webster Dictionary: [Co00]). For the purposes of this short
paper, we will indeed take the words method and methodology as synonyms.

The difference in meaning between the words “process” and “method/methodology” is
harder to pin down. In general terms, a process is a way of acting, of doing something.
Thus the way you relocate yourself from home to the work environment follows some
(usually predefined – or least practised and often repeated) process. Thus, process is
intangible. However, to complement a process, there are other things that a software
developer must be cognizant of - in particular, the work products produced and
consumed and the people and tools involved in that production and consumption. Time
sequencing is also of significant interest and concern. The word we will use here for this
overall combination will be methodology or method. In other words, a methodology
encompasses absolutely everything needed for software development – [Co00] calls this
a “Big-M methodology”, [Gl00] the “capital-M Methodology”. Many authors use the
description of an overall methodology as having two (often intertwined – or at least
interdependent) aspects: product and process e.g. [RPB99].

Another viewpoint is that the process describes what is actually done in real time with a
real team on a real project. This is particularly the case in the capability assessment field
where the focus of a capability assessment is the process as it is performed e.g. [Pa93]
[Do93] [II98] – although often, for example in ISO12207 [II95], processes are at a
smaller granularity and are defined solely in terms of purpose and outcomes. Each
process focusses on what is input to the process and what is output. It should be noted
that there are both a static and dynamic aspect to such a notion of process i.e. the process
(static enactment) whereby real developer’s names, deadlines, deliverables replace the
generic placeholders in the process model and the dynamics of the process as it is
actually enacted. [Gr01] call the static enactment a “process model instance” and the
dynamic enactment “process performance”. In this approach, the formal description of
the “process” to be followed is usefully and frequently described as a process model e.g.
[FKN94] [Gn01] http://www.opfro.org. This is the information that is typically
documented in books, in reports or on a website and alternatively labelled as a
“method(ology)” e.g. [BGH04].

Method or Process Model

Metamodel

Process

Static
aspects

Dynamic
aspects

As enacted by
real people on a
specific project

As documented

As standardized

Method or Process Model

Metamodel

ProcessProcess

Static
aspects

Dynamic
aspects

As enacted by
real people on a
specific project

As documented

As standardized

Figure 1 Thee “layers” of process and method terminology

��

Together, this gives a multiple-layered model in which process, process model,
method(ology) and metamodel can be depicted as suggested in Figure 1.

1.2 Method Engineering

Method Engineering (ME) was introduced by [BJO85] and then, more recently, by
[KW92] who named it methodology engineering; but [SB93] and [Br96] strongly
recommend changing this to method engineering, a term that has been generally
accepted. Brinkkemper’s [BR96] definition of method engineering is useful here:
“Method engineering is the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems.” When
applied to a particular situational context, it is often referred to as “situational method
engineering” or SME. Interestingly, [Gl00] equates the ME approach to an “ad hoc”
approach in that the correct meaning of ad hoc is “suited to purpose” or “tailored to the
problem at hand”.

Method engineering focusses not on the acquisition of a ready-made method from some
supplier (vendor or book-writing methodologist) but on the in-house construction of an
organization-specific or project-specific methodological approach. This construction is
accomplished by selecting pieces of method (method fragments or method chunks) that
have been already created and stored in a repository or methodbase. The source of these
stored fragments is not critical to the use of SME by practising software developers.
They may be “carved out” of other pre-existing methods e.g. [RR01] or instantiated from
a standardized metamodel e.g. [He02a].

2 The Role of an Underpinning Metamodel

The use of metamodels in general is recommended in [Ma91] [RSM95] [RP96] [TRL96]
[Ja98] [KBS00]; and was always the core underpinning the OPEN Process Framework
e.g. [He96] [GHY97] [FH02]. Indeed, [RDR03] refer to it as the “core technique in
SME”. Metamodels provide a means of defining the rules (for a modelling language or a
methodology) at a higher level of abstraction. Metamodels are created by a
metamodelling activity, supporting the formalism used by developers in their own
modelling of a system.

There are multiple dimensions to modelling. In particular, models can be “stacked” in
terms of their abstraction level. This is readily seen in the 4-layer metalevel hierarchy of
the OMG (see e.g. [OM01]) – although it should be noted that the inter-level relationship
of “instance-of” has recently been subject to some criticism e.g. [Se03a] [GH05].
Metamodels then became, within the OMG, the underpinning rationale not only for the
UML but also for the MOF, SPEM and MDA standards initiatives. More recent
standardization efforts in the use of metamodels for underpinning methodologies (and
hence ME/SME) have been seen in Australian Standard 4651 [SA04] and the embryonic
ISO 24744 standard. Both of these standards eschew the strict metamodelling approach
of the OMG because of the serious non-transitivity problems with “instance-of”

��

relationships e.g. [AK01], replacing it with powertype patterns [Od94] [GH05].
Although not fitting into a strict metamodelling mindset, powertypes (and their
associated set representation – Figure 2) provide a solution more aligned to people and
their endeavours (Figure 3). With these three layers (Endeavour, Method and (formal)
Metamodel – in which all conceptual, powertype models exist), attributes can be
assigned either to (i) the xxx element in the metamodel from which a method level
entity1 can inherit or (ii) the xxxKind element in the metamodel from which a slot value
can be instantiated in the method level entity. In the first case, the inherited attribute is
then given a slot value at the next level i.e. that of the Endeavour. In the second case, the
value given at the method level acts as a kind of Class Attibute. These ideas are
illustrated in Figure 4 where xxx Ł Document.

Figure 2 Powertypes expressed in (a) a UML-style diagram and (b) Venn diagrams

1 Actually this is a clabject [At98] [AK00], which is defined as having both an object facet and a class facet.

��

endeavour

method

metamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality tools

endeavourendeavour

methodmethod

metamodelmetamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality toolsmethodologiesmethodologies assessmentassessment qualityquality toolstools

Figure 3 Revised metalevel hierarchy based on practice rather than theory

endeavour

method

metamodel

“MySystem”
Requirements
Specification

“MySystem”
Requirements
Specification

DocumentDocument

Requirements
Specification
Document

Requirements
Specification
Document

Document
Kind

Document
Kind

Title
Version

Title
Version

Name
MustBeApproved
Name
MustBeApproved

Title
Version

Title
Version

Req. Spec. Document
Must be approved: yes
Req. Spec. Document
Must be approved: yes

“MySystem” Req. Spec.
Version 1.5

“MySystem” Req. Spec.
Version 1.5

endeavourendeavour

methodmethod

metamodelmetamodel

“MySystem”
Requirements
Specification

“MySystem”
Requirements
Specification

DocumentDocument

Requirements
Specification
Document

Requirements
Specification
Document

Document
Kind

Document
Kind

Title
Version

Title
Version

Name
MustBeApproved
Name
MustBeApproved

Title
Version

Title
Version

Req. Spec. Document
Must be approved: yes
Req. Spec. Document
Must be approved: yes

“MySystem” Req. Spec.
Version 1.5

“MySystem” Req. Spec.
Version 1.5

Figure 4 Application of the powertype pattern for Document/Kind in the context of the three levels
of Figure 3.

3 Method Engineering with the OPEN Process Framework
Approach

The OPEN Process Framework (OPF) [GHY97] [FH02] is defined by a metamodel that
supports the concepts of method engineering. It provides a rich repository of method
fragments, which can be used in different software projects, together with a set of
guidelines (Figure 5) offering advice on the fragment selection based on the notion of
possibility matrices linking each pair of method fragments [HLH02b].

��

instance of

OPEN Process Framework

Process Metamodel

Construction
Guidelines

uses

Process
Components
are instances
of

Repository of Predefined

Process Components

Methodology/Process

Process Instance

instance of

Step 1:
Methodologist selects

and
constructs Methodology

Step 2:
Project Manager creates

by
allocating specific resources

instance of

OPEN Process Framework

Metamodel

Construction
Guidelines

uses

Method
Fragments
are instances
of

Repository of Predefined

Method Fragments

Methodology/
Process Model

Process
(Method instance)

instance of

Step 1:
Methodologist selects
Method fragments and
constructs Methodology

Step 2:
Project Manager creates
Method Instance by
allocating specific resources

instance of

OPEN Process Framework

Process Metamodel

Construction
Guidelines

uses

Process
Components
are instances
of

Repository of Predefined

Process Components

Methodology/Process

Process Instance

instance of

Step 1:
Methodologist selects

and
constructs Methodology

Step 2:
Project Manager creates

by
allocating specific resources

instance of

OPEN Process Framework

Metamodel

Construction
Guidelines

uses

Method
Fragments
are instances
of

Repository of Predefined

Method Fragments

Methodology/
Process Model

Process
(Method instance)

instance of

Step 1:
Methodologist selects
Method fragments and
constructs Methodology

Step 2:
Project Manager creates
Method Instance by
allocating specific resources

Figure 5 Method engineering using the OPF (after [HH03])

In OPF’s process metamodel, there are elements to describe process fragments such as
Activities, Tasks and Techniques; people components such as Producers and Roles;
organizational components, such as Enterprise, Programme and Project, and product
fragments in the form of a whole range of Work Products including diagrams and
documents, supported by various kinds of languages (natural language, modelling
language and coding language). Method construction may be top down or bottom up.
Using the former as an example, the method engineering would select appropriate
activities from the OPF fragment repository and then, using the possibility (or deontic)
matrix approach, choose appropriate tasks, techniques, producers, work products etc.

Exemplar processes have been published to support, for example, web development
[HLH02a] and agility [He02b] and, more recently, for agent-oriented software projects
e.g. [He05].

4 Field trials

In order to evaluate empirically the value of the (situational) method engineering
approach to industry efficacy, two major action research (AR) studies e.g. [Av99] were
undertaken with Sydney-based organizations. Initially, a transition process was
engineered from fragments in the OPF repository [HS00]. Using this, an action research
project with a legal publisher identified both cultural (organizational and personal) as
well as technical issues that might inhibit the successful use of SME [Se02] [SH04a]
[HS05]. A second industry AR study was later conducted within the IT department of a
large state government department [SH04b] during their transformation to e-government.
This latter project successfully empowered the IT section within the governmental
department with a new constructed agile method, the Usage-Centered Design (UCD)

��

[CL99] approach and a core set of the UML for their e-government web development
initiative [SH04c] [SH04d].

The main objective of these empirical evaluations was to evaluate the introduction of a
method engineering approach using the OPEN Process Framework (OPF) in order to test
the construction of an agile methodology for these two organizations, a construction
done in such a way that the methodology can be fully customized to suit individual
projects and can later be flexibly adapted as the organization’s process capability
matures – so-called dual agility [HS05]. Both organizations benefited from small
incremental process improvements – called a “small wins” strategy [Se02] [Se03b].

The method engineering and dual-agility approaches were strongly recommended to
both study organizations for the following reasons [HS05]:

x Each organization must develop its own way of working contrary to the
adaptation to an existing way [Co02].

x Based on previous experience, the idea of adopting an existing method, even
agile, was rejected due to people’s belief that they must adapt themselves to suit
the adopted method.

x The need for a method that provides manoeuverability to deal with requirement
changes.

x The need for a method that enables teams to deliver software products faster to
their customers.

x Dual-agility not only provides a better way of developing software but can be
enhanced by the use of SME to support method customization to best suit
people’s need.

x For both organizations, IT customers are internal and available most of the time
for immediate review and providing feedback.

x Getting customer involvement through the entire development lifecycle is a top
priority – as in the Agile Manifesto [Ag01].

5 Summary

This paper has described the “bare bones” of method engineering in both theory and
practice. Experience gained during the two action research projects showed that the
process of method engineering, with a rich repository of method fragments such as those
provided by the OPF, can change people’s perception of the main role of a software
development method that, in turn, can become a driving force for culture change and
resistance management.

6 Acknowledgements

The work described here was supported by several grants from the Australian Research
Council, whom we thank for financial support.

��

References

[Ag01] AgileManifesto, 2001, Manifesto for Agile Software Development.
[At98] Atkinson, C., 1998, Supporting and applying the UML conceptual framework. In

«UML» 1998: Beyond the Notation, Vol. 1618. Bézivin, J. and Muller, P.-A. (eds).
Springer-Verlag, Berlin, 21-36.

[AK00] Atkinson, C. and Kühne, T., 2000, Meta-level independent modelling. In International
Workshop on Model Engineering at 14th European Conference on Object-Oriented
Programming.

[AK01] Atkinson, C. and Kühne, T., 2001. Processes and Products in a Multi-level
Metamodeling Architecture. Int. J. Software Eng. and Knowledge Eng. 11(6), 761-783.

[Av96] Avison, D.E., 1996, Information systems development methodologies: a broader
perspective, in Method Engineering. Principles of Method Construction and Too
Support. Procs. IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering, 26-
28 August 1996, Atlanta, USA (eds. S. Brinkkemper, K. Lyytinen and R.J. Welke),
Chapman & Hall, London, 263-277

[Av99] Avison, D.E., Lau, F., Myers, M. and Nielsen, P.A., 1999, Making academic research
more relevant, Communications of the ACM, 42(1), 94-97

[AW91] Avison, D.E. and Wood-Harper, A.T., 1991, Information systems development research:
an exploration of ideas in practice, The Computer Journal, 34(2), 98-112

[BH03] Baddoo, N. and Hall, T., 2003, De-motivators for software process improvement: an
analysis of practitioners' views, Journal of Systems and Software, 66, 23-33.

[BJO85] Bergstra, J., Jonkers, H. and Obbink, J., 1985, A software development model for
method engineering, in ESPRIT’84: Status report of ongoing work (eds. J. Roukens and
J. Renuart), Elsevier Science Publishers .V., North-Holland

[BGH04] Berki, E., Georgiadou, E. and Holcombe, M., 2004, Requirements engineering and
process modelling in software quality management – towards a generic process
metamodel, Software Quality Journal, 12, 265-283

[Br96] Brinkkemper, S., 1996, Method Engineering: Engineering of Information Systems
Development Methods and Tools. Inf. Software Technol., 38(4), 275-280.

[Br87] Brooks, F.P. jr., 1987, No silver bullet: essence and accidents of software engineering,
IEEE Computer, 20(4), 10-19

[Co00] Cockburn, A., 2000, Selecting a project's methodology, IEEE Software, 17(4), 64-71.
[Co02] Cockburn, A., 2002, ‘An interview with Alistair’, The Cutter Consortium,

http://www.cutter.com/consultants/cockburna.html accessed on the 23rd of February,
2004

[CL94] Constantine, L.L. and Lockwood, L.A.D., 1994, One size does not fit all: fitting practices
to people, American Programmer, 7(12), 30-38

[CL99] Constantine, L.L. and Lockwood, L.A.D., 1999, Software for Use, Addison-Wesley
Do93] Dorling, A., 1993, SPICE: Software process improvement and capability determination,

Information and Software Technology, 35(6/7), 404-406
[FTF96] Fayad, M.E., Tsai, W.T. and Fulghum, M.L., 1996, Transition to object-oriented

software development, Communications of the ACM, 39(2), 108-121
[FKN94] Finkelstein, A., Kramer, J. and Nuseibeh, B., 1994, Software Process Modelling and

Technology, Research Studies Press Ltd., John Wiley & Sons Inc., Taunton, England
[FH02] Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. An

Introduction, Addison-Wesley, 330pp 2002
[FRO03] Fitzgerald, B., Russo, N.L. and O’Kane, T., 2003, Software development method

tailoring at Motorola, CACM, 46(4), 65-70
[Gl00] Glass, R.L., 2000, Process diversity and a computing old wives’/husbands’ tale, IEEE

Software, 17(4), 128-127

	

[Gn01] Gnatz, M., Marschall, F., Popp, G., Rausch, A. and Schwerin, W., 2001, Towards a
living software process development process based on process patterns, Software
Process Technology, Proceedings of the 8th European Workshop, EWSPT 2001 (ed. V.
Ambriola), LNCS 2077, Springer-Verlag, Berlin, 182–202

[GH05] Gonzalez-Perez, C. and Henderson-Sellers, B., 2005, A Powertype-Based
Metamodelling Framework. Software and Systems Modelling, 4(4), DOI
10.1007/210270-005-0099-9

[GHY97]Graham, I., Henderson-Sellers, B. and Younessi, H., 1997, The OPEN Process
Specification, Addison-Wesley, UK, 314pp

[Gr01] Greenwood, R.M., Balasubramaniam, D., Kirby, G., Mayes, K., Morrison, R., Seet, W.,
Warboys, B. and Zirintsis, E., 2001, Reflection and reification in process system
evolution: experience and opportunity, Software Process Technology, Proceedings of the
8th European Workshop, EWSPT 2001 (ed. V. Ambriola), LNCS 2077, Springer-Verlag,
Berlin, 27–38

[He02a] Henderson-Sellers, B., 2002, Process metamodelling and process construction: examples
using the OPEN Process Framework (OPF)}, Annals of Software Engineering, 14, 341-
362

[He02b] Henderson-Sellers, B., 2002, Agile or rigorous OO methodologies – getting the best of
both worlds, Cutter IT Journal, 15(1), 25-33

[He05] Henderson-Sellers, B., 2005, Creating a comprehensive agent-oriented methodology -
using method engineering and the OPEN metamodel, Chapter 13 in Agent-Oriented
Methodologies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group, 368-397

[HH03] Henderson-Sellers, B. and Hutchison, J., 2003, Usage-Centered Design (UCD) and the
OPEN Process Framework (OPF), Performance by Design. Procs. forUSE2003, Second
International Conference on Usage-Centered Design (ed. L.L. Constantine), Ampersand
Press, Rowley, MA, USA, 171-196

[HS00] Henderson-Sellers, B. and Serour. M.K., 2000, Creating a process for transitioning to
object technology, Procs. Seventh Asia-Pacific Software Engineering Conference,
APSEC2000, IEEE Computer Society Press, Los Alamitos, CA, USA, 436-440

[HS05] Henderson-Sellers, B. and Serour, M.K., 2005, Creating a dual agility method - the value
of method engineering, J. Database Management, 16(4), 1-24

[He96] Henderson-Sellers, B. and Graham, I.M. with additional input from C. Atkinson, J.
Bézivin, L.L. Constantine, R. Dué, R. Duke, D. Firesmith, G. Low, J. McKim, D.
Mehandjiska-Stavrova, B. Meyer, J.J. Odell, M. Page-Jones, T. Reenskaug, B. Selic,
A.J.H. Simons, P. Swatman and R. Winder, 1996, OPEN: toward method convergence?
IEEE Computer, 29(4), 86-89

[HLH02a] Henderson-Sellers, B., Lowe, D. and B. Haire, 2002, OPEN process support
for web development, Annals of Software Engineering, 13, 163-201

[HLH02b] Henderson-Sellers, B., Haire, B. and Lowe, D., 2002, Using OPEN's deontic
matrices for e-business}, Engineering Information Systems in the Internet Context (eds.
C. Rolland, S. Brinkkemper and M. Saeki), Kluwer Academic Publishers, Boston, USA,
9-30

[II95] ISO/IEC, 1995, Software Life Cycle Processes. ISO/IEC 12207: International Standards
Organization / International Electrotechnical Commission.

[II98] ISO/IEC, 1998, TR15504 – Information Technology: Software Process Assessment,
Technical Report, International Standards Organization / International Electrotechnical
Commission.

[Ja98] Jarke, M., Pohl, K., Weidenhaupt, K., Lyytinen, K., Marttiin, P., Tolvanen, J.-P. and
Papazoglou, M., 1998, Meta modelling: a formal basis for interoperability and
adaptability, Chapter 9 in Information Systems Interoperability (eds. B. Krämer and H.-
W. Schmidt), Research Studies Press Ltd./John Wiley & Sons Inc., 229-263

	�

[Ja94] Jayaratna, N., 1994, Understanding and Evaluating Methodologies, NIMSAD: A
Systemic Approach, McGraw-Hill

[KBS00] Kraiem, N., Bourguiba, I. and Selmi, S., 2000, Situational method for information
system project, presented at SSGRR 2000, L'Aquila, Jul 31 - Aug 06 2000
(http://www.ssgrr.it/en/ssgrr2000/papers/283.pdf)

[KW92] Kumar, K. and Welke, R.J., 1992, Methodology Engineering: a Proposal for Situation-
Specific Methodology Construction. In (Cotterman, W.W.; Senn, J.A. Eds.) Challenges
and Strategies for Research in Systems Development. John Wiley & Sons: Chichester,
UK, 257-269

[Ly87] Lyytinen, K., 1987, Different perspectives on information systems: problems and
solutions, ACM Computer Surveys, 19(1), 5-46

[Ma91] Madhavji, N.H., 1991, The process cycle, Software Eng. J., 6(5), 234-242
[Od94] Odell, J.J., 1994, Power types. Journal of Object- Oriented Programming, 7(2), 8-12.
[Om01] OMG, 2001, OMG Unified Modelling Language Specification, version 1.4. OMG

documents formal/01-09-68 through 80 (13 documents). http://www.omg.org, accessed
12th July 2002.

[Pa93] Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C.V., 1993, The capability maturity
model: Version 1.1, IEEE Software, 10(4), 18-27

[RR01] Ralyté, J. and Rolland, C., 2001, An approach for method engineering, Procs. 20th Int.
Conf on Conceptual Modelling (ER2001), LNCS 2224, Springer-Verlag, Berlin, 471-
484

[RDR03] Ralyté, J., Deneckère, R. and Rolland, C., 2003, Towards a generic method for
situational method engineering, Advanced Information Systems Engineering. 15th
International Conference, CAiSE 2003, Klagenfurt, Austria, June 16-18, 2003,
Proceedings (ed. J. Eder and M. Missikoff), Springer-Verlag, LNCS 2681, 95-110

[RP96] Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering.
In (Brinkkemper, S.; Lyytinen, K.; Welke, R.J. Eds.) Method Engineering. Principles of
Method Construction and Too Support. Procs. IFIP TC8, WG8.1/8.2 Working
Conference on Method Engineering, 26-28 August 1996, Atlanta, USA, Chapman &
Hall, London, 191-208.

[RPB99] Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-model view of process
modelling, Requirements Eng. J., 4(4), 169-187

[RSM95] Rolland, C., Souveyet, C. and Moreno, M., 1995, An approach for defining ways-of-
working, Information Systems, 20(4), 295-305

[Se03a] Seidewitz, E. 2003, What models mean, IEEE Software, 20(5), 26-31.
[Se03b] Serour, M.K., 2003, The Effect of Intra-Organisational Factors on the Organisational

Transition to Object Technology, a PhD Thesis, University Technology, Sydney.
[SH04a] Serour, M.K. and Henderson-Sellers, B., 2004, Introducing agility: a case study of

situational method engineering using the OPEN Process Framework, Procs. 28th Annual
International Computer Software and Applications Conference. COMPSAC 2004, IEEE
Computer Society Press, Los Alamitos, CA, USA, 50-5

[SH04b] Serour, M.K. and Henderson-Sellers, B., 2004, Empowering a software development
team with a new methodology: a case study of e-government in Australia, Proceedings.
IBIMA, Amman, Jordan, 4-6 July 2004

[SH04c] Serour, M.K. and Henderson-Sellers, B., 2004, Organizational aspects of transformation
to e-business: a case study, Procs. IADIS International Conference e-Society 2004 (eds.
P. Isaias, P. Kommers and M. McPherson), IADIS Press, Volume 2, 751-758

[SH04d] Serour, M.K. and Henderson-Sellers, B., 2004, OPEN for agility: an action research
study of introducing method engineering into a government sector, Procs. 13th Int. Conf.
on Information Systems Development. Advances in Theory, Practice and Education (eds.
O. Vasilecas, A. Caplinskas,W. Wojtkowski, W.G. Wojtkowski, J. Zupancic and S.
Wrycza), Vilnius Gediminas Technical University, Vilnius, Lithuania, 105-116

		

[Se02] Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D. and Chow, L., 2002,
Organizational transition to object technology: theory and practice, in Object-Oriented
Information Systems (eds. Z. Bellahsène, D. Patel and C. Rolland), LNCS 2425,
Springer-Verlag, Berlin, 229-241

[SA04] Standards Australia, 2004, Standard Metamodel for Software Development
Methodologies, AS 4651-2004, Standards Australia, Sydney.

[HV97] ter Hofstede, A.H.M. and T.F. Verhoef, 1997, On the feasibility of situational method
engineering. Information Systems. 22(6/7), 401-422

[TRL96] Tolvanen, J.-P., Rossi, M. and Liu, H., 1996, Method Engineering: current research
directions and implications for future research, in Method Engineering. Principles of
Method Construction and Too Support. Procs. IFIP TC8, WG8.1/8.2 Working
Conference on Method Engineering, 26-28 August 1996, Atlanta, USA (eds. S.
Brinkkemper, K. Lyytinen and R.J. Welke), Chapman & Hall, London, 296-317

[SB93] van Slooten, K. and Brinkkemper, S., 1993, A method engineering approach to
information systems development, in Information Systems Development Process Procs.
IFIP WG8.1, (eds. N. Prakash, C. Rolland and B. Pernici), Elsevier Science Publishers
B.V., North-Holland

[SH96] van Slooten, K., Hodes, B., 1996, Characterizing IS development projects, in Procs. IFIP
TC8 Working Conf. on Method Engineering: Principles of method construction and tool
support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain,
29-44

[VG94] Vessey, I. and Glass, R.L., 1994, Application-based methodologies: development by
application domain, Information Systems Management, Fall 1994

[WK04] Wistrand, K. and Karlsson, F., 2004, Method components – rationale revealed, 2004,
Advanced Information Systems Engineering 16th International Conference, CAiSE
2004, Riga, Latvia, June 7-11, 2004, Proceedings (eds. A. Persson and J. Stirna), LNCS
3084, Springer-Verlag, 189-201

	�

