
Using model-based analysis in certification of critical

software-intensive systems

Frank Ortmeier, Simon Struck and Michael Lipaczewski

Computer Systems in Engineering

Otto-von-Guericke University of Magdeburg

Abstract: Software is taking over more and more functionality in most technical sys-
tems, which leads to the term software-intensive or cyber-physical systems. Although
this offers many exciting new opportunities, it also makes precise analysis of safety
and reliability goals much more complicated. Well-known traditional techniques often
reach their limits. Model-based approaches on the other hand can be useful for solving
some of these problems.

However, in industrial practice answering the question alone is often not sufficient.
It is also necessary to explain how answers were found. In this paper, we will show so-
me of the capabilities of modern model-based analysis methods and highlight how they
possibly could be used in safety engineering resp. what obstacles need to be avoided.

1 Introduction

Safety critical applications need certification prior to system launch. Based on a safety

analysis the certification ensures that the system will not cause any harm to human beings.

Considering modern software-intensive systems the safety analysis is a challenging task.

Research developed new analysis methods to cope with the increasing complexity. Ho-

wever these methods and techniques face some difficulties in the traditional certification

process. In this paper we point out the current state, advantages and difficulties of the

application of modern model-based safety-analysis techniques in the certification process

of software-intensive safety-critical systems. Section 2 introduces software intensive sys-

tems. Section 3 gives an overview of the certification process and Section 3.1 points out

how the safety analysis is used during certification. After that Section 3.2 introduces chan-

ces and challenges of modern model-based safety analysis techniques. Finally Section 4

summarizes the content presented in the paper.

2 Software-intensive systems

A software-intensive system is a technical system in which important parts are realized in

terms of software and thus the software interacts with other systems, the environment and

human beings [WH06]. This especially implies embedded computer applications. Such

systems often consist of sensors, a programmable processing unit and actors. Besides the

155



basic physical model of the sensors and actors the behavior of the system is heavily de-

pendent on the programming of the control unit.

Along with decreasing costs and increasing capabilities of semiconductor technology,

software-intensive systems become more and more important in modern engineering. An

important aspect of many software-intensive systems is their nature as reactive systems.

Based on sensor values the system controls its actors so that it properly reacts on the in-

put values. If the system also covers an internal state its output not only depends on the

current input, but also on a history of input values. Reactive systems often cannot be ana-

lyzed in isolation, because their output typically influences their inputs via the systems

environment. Therefore it is mandatory to analyze the system together with its surroun-

ding components. The environment may cover other system components as well as the

surrounding nature.

3 Certification process

In general, the goal of certification is to ensure the correctness and safety of a system.

For successful certification a comprehensive a-priori statement about the system safety

is necessary. This means the safety of the system is demonstrated and documented in an

objective way prior to the system launch. Depending on the stakeholder there are different

reasons why (safety critical) systems require certification:

• The producer of a system (i.e. the company that develops and builds the system)

needs the certification as permission to sell/install/use the resulting product. Of cour-

se a company is also interested in the safety of their products (as this may have

impact on the reputation), but basically they get paid for the product and not its sa-

fety. So the main goal of producers is to minimize the risk of failing to successfully

certify their system.

• The certification body (usually in terms of a national agency) has to ensure the safety

of the society and especially all human beings. The main interest of the certification

body is in certifying only solidly safe systems. The secondary (but very important)

interest is to make an objective decision. In particular, a-posteriori (after an accident

has happened) certification bodies need to show how and why they approved the

system. So their main goal is to make legally solid and objective arguments as claims

for certification.

These are somehow contradictory interests from which different requirements can be de-

rived. The company has to demonstrate the safety of their products and wants to do this

by minimal costs. On the other hand there is the certification body which wants to see a

comprehensive and objective demonstration about the safety of the product in question.

Mathematically spoken, verification of software can be used to ensure the functionality of

a software system with respect to a specification (for example Hoare logic). This proves the

correctness of the system in a mathematical way and is thus absolutely correct. However,

156



deducing a mathematical proof is often very complicated and time consuming. In the case

of complex systems it even might not always be feasible. In any case, it is a very expensive

task and only done for small but highly critical system components.

In addition, mathematical verification of a system is often hard to understand. The lack of

traceability as well as high complexity of the (mathematical) reasoning makes understan-

ding of this type of safety arguments hard. This is especially a problem when the safety

case needs to be accepted by the certification body. Imagine that an accident with the sys-

tem happened and an a-posteriori analysis showed an error in the mathematical analysis.

Who takes responsibility then? The analyst (for making the error), the safety manager (for

not finding the error) or the certification body (for allowing hard to understand/evaluate

arguments). Things become even worse if arguments have been calculated (semi-) auto-

matically, so that the designer/producer of the tool can be held responsible (for distributing

erroneous software).

3.1 Safety analysis and certification

Safety analysis is the process of a-priori measuring/determining the safety of a system.

Certification bodies often rely on standardized tools and analysis techniques. Different

standards, with the focus on specific needs form different domains, exist. The IEC 61508

[Lad08] as a generic norm, DO178B/C [RTC92] for avionics and the upcoming ISO26262

[Int09] for automotive. However, in practice safety analysis is not only done by certificati-

on bodies nor only during certification.

Figure 1 depicts a certification process from the railroad domain. The system is developed

by the system engineers (not depicted in the figure) led by a technical project leader. The

quality manager observes the overall design and implementation process and organizes the

(software) tests. The validator evaluates the results of the (software) tests and compares the

results with hardware/system in the loop tests. More important for the context of this paper

is the safety manager. He coordinates the safety related processes within the project. The

technical project leader exchanges design documents and implementation plans with the

safety manager and in return gets early feedback on the system’s safety aspects. On the

other hand, the safety manager combines the quality management report and the design

related documentation into a safety case that is passed to the safety assessor. The safety

assessor evaluates the overall systems safety by examining the validation plan and valida-

tion report from the validator and the safety case from the safety manager. As a result the

safety assessor creates a safety assessment that is passed to the certification body. If the

safety assessment is accepted, the system gets certified.

The interaction between the technical project leader, the safety manager and the safety

assessor relates to the two different interests for certification mentioned in the last section.

The safety manager gives feedback to the system engineers and thereby helps to pass the

safety certification. On the other side the safety manager provides important input for the

safety assessment and thus fulfills the requirements from the certification body.

For the safety assessment to be accepted it must provide comprehensive information about

157



Abbildung 1: Interaction between all participants in the certification process

the systems safety. This implies that the used analysis techniques are comprehensible, even

to people who are not experts in safety analysis domain. Therefore safety engineers often

rely on common safety analysis techniques like fault tree analysis (FTA) [VDF+02] and

failure modes and effects analysis (FMEA) [MMB96]. Besides being standardized, these

analysis techniques have proved their use in numerous of applications and are easy to

understand.

3.2 Chances and challenges for model-based methods

However, traditional safety analysis methods have some disadvantages. They were mostly

developed decades ago. Thus they were designed for mechanical systems with only few or

no software and might no longer fit the needs of modern software-intensive systems.

Model-based safety analysis methods where developed to cope with software-intensive

systems. There are several modeling languages and safety analysis tools available, that we-

re already successfully applied during system development: COMPASS/SLIM[BCK+09]

and SCADE/Lustre1 and some others.

A clear advantage of the model-based analysis methods is that they are highly automated.

Thus they are performed very fast, and cost efficient. This is a great advantage in modern

1Feb. 2012: http://www.esterel-technologies.com/products/scade-suite/

158



software development processes, where the analysis/evaluation is not only applied once

at the end of the development. As a highly automated process, model-based analysis is

also less error prone and also leads to more accurate results. Finally the close relation

between the model and the design/implementation helps to improve the maintainability of

the model.

If model-based analysis methods are used during the system design time, they can give

very early and very precise feedback about the system safety and thus assist the design

process. Imagine a design related safety issue. If the issue is only found during the certifi-

cation (where safety analysis must be done), it is often very expensive to correct a failure.

However if model-based safety analysis points out that there is an issue, this can be con-

sidered in the design process and thus will not lead to complications in the certification

process. This fits with the interests of the project/company which wants to pass the certifi-

cation on the first approach.

The main challenge for the application of model-based analysis techniques is the demons-

tration of its cost-benefit ratio. Due to the deterministic and highly automated process more

accurate results are possible. These can even be gained at lower costs than with traditional

analysis methods. In contrast to the certification body the overall costs are one of the main

issues for the company developing the system.

Objectively measuring the safety of a system, also meets the demands of the certification

body. The main challenge for the application of model-based analysis during the certifi-

cation process is that they are hardly accepted by the certification body. On a long term

the model-based analysis techniques should be qualified as tool for safety certification.

This, however, is a difficult and long process. On shorter term, the model-based analysis

can be used in combination with traditional analysis methods. Imagine a FTA, where the

safety engineer has to decide how detailed the analysis is performed. This can be a serious

source of failure in the analysis. If the results of the FTA are evaluated with the results

from a model-based analysis, this could point out where the safety engineer abstracted to

far from the system. The FTA can then be corrected, and thus becomes more reliable. In

this scenario the certification body still gets a traditional analysis as safety case.

4 Conclusion

Safety analysis is used during the design time and for the certification of safety criti-

cal systems. Traditional analysis techniques do not cope with the complexity of modern

software-intensive systems. Thereto model-based analysis techniques where created. Ho-

wever, these methods are barely used in industrial practice.

Model-based analysis techniques can assist during the design of a system. Possible design

failures can be detected and corrected early in the development process. Thus the system

can pass certification without expensive corrections (in a late development phase). This

decreases production costs, and thus suits the economic interests of a company that is

producing safety-critical systems.

After the development of a safety critical system, certification is required as permission to

159



sell/launch the system. The certification process uses safety analysis to measure/determine

the system safety. Despite the advantages of model-based analysis techniques, they are

even less used in the certification process than during the system design. Qualifying mo-

del based analysis is a long and difficult process. An intermediate approach is to combine

model-based and traditional analysis methods. Thus the accuracy of the model-based ana-

lysis can be expressed in terms of traditional analysis methods, which are accepted by the

certification body.

Acknowledgments

Michael Lipaczewski is sponsored by the Deutschen Ministerium fr Bildung und For-

schung in the ViERforES project (BMBF, project-Nr.: 01IM08003C).

Simon Struck is sponsored by the German Research Foundation (DFG) within the ProMo-

SA project.

Literatur

[BCK+09] M. Bozzano, A. Cimatti, J.P. Katoen, V. Nguyen, T. Noll und M. Roveri. The COMPASS
approach: Correctness, modelling and performability of aerospace systems. Computer
Safety, Reliability, and Security, Seiten 173–186, 2009.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani und A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model
Checking. In Proceedings of the 14th International Conference on Computer Aided
Verification (CAV 2002), Jgg. 2404 of LNCS. Springer, 2002.

[Est11] Esterel Technologies, http://www.esterel-technologies.com/?id=13281, accessed Feb.
28. 2011. SCADE Suite, 2011.

[GO10] Matthias Güdemann und Frank Ortmeier. A Framework for Qualitative and Quantita-
tive Model-Based Safety Analysis. In Proceedings of the 12th High Assurance System
Engineering Symposium (HASE 2010), Seiten 132–141, 2010.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond und D. Pilaud. The synchronous data-flow pro-
gramming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, September
1991.

[Int09] International Organisation for Standardization. ISO 26262: Road Vehicles-Functional
Safety, Draft International Standard (DIS), 2009.

[KNP02] Marta Kwiatkowska, Gethin Norman und David Parker. PRISM: Probabilistic Symbolic
Model Checker. In T. Field, P. Harrison, J. Bradley und U. Harder, Hrsg., Proceedings
of the 12th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS 2002), Jgg. 2324 of LNCS, Seiten 200–204. Springer,
2002.

[Lad08] Peter B. Ladkin. An Overview of IEC 61508 on E/E/PE Functional Safety, 2008.

160



[MMB96] Robin E. McDermott, Raymond J. Mikulak und Michael R. Beauregard. The Basics of
FMEA. Quality Resources, 1996.

[ORS06] F. Ortmeier, W. Reif und G. Schellhorn. Deductive Cause-Consequence Analysis (DC-
CA). In Proceedings of the 16th IFAC World Congress. Elsevier, 2006.

[RTC92] RTCA. DO-178B: Software Considerations in Airborne Systems and Equipment Certi-
fication, December, 1st 1992.

[VDF+02] Dr. W. Vesley, Dr. Joanne Dugan, J. Fragole, J. Minarik II und J. Railsback. Fault Tree
Handbook with Aerospace Applications. NASA Office of Safety and Mission Assuran-
ce, August 2002.

[WH06] M. Wirsing und M. Holzl. Software intensive systems. Draft Report on ERCIM âBeyond
the Horizon Thematic Group, 6, 2006.

161




