
M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 89

SDN Malware: Problems of Current Protection Systems

and Potential Countermeasures

Christian Röpke1

Abstract: Software-Defined Networking (SDN) is an emerging topic and securing its data and con-
trol plane is of great importance. The main goal of malicious SDN applications would be to compro-
mise the SDN controller which is responsible for managing the SDN-based network. In this paper,
we discuss two existent mechanisms aiming at protecting aforementioned planes: (i) sandboxing of
SDN applications and (ii) checking for network invariants. We argue that both fail in case of sophis-
ticated malicious SDN applications such as a SDN rootkit. To fill the corresponding security gaps,
we propose two security improvements. The first one aims at protecting the control plane by isolat-
ing SDN applications by means of virtualization techniques. Compared to recent efforts, we thereby
allow a more stringent separation of malicious SDN applications. The goal of the second proposal
is to allow policy checking mechanisms to run independently from SDN controllers while mini-
mizing hardware costs. Thereby, we improve SDN security while taking into account that correct
functioning of policy checking can be manipulated by a compromised SDN controller.

Keywords: Software-defined networking, malicious SDN applications, SDN controller security.

1 Introduction

SDN is a new trend in the field of computer networking. It started in 2008 with Open-

Flow [Mc08] which is a protocol for managing programmable switches by third-party

control software. Since then, large companies such as HP, IBM and Brocade have intro-

duced SDN-enabled switches [Opb] and researchers as well as enterprises have devel-

oped SDN control software (also known as SDN controller or network operating sys-

tem) [Gu08, Fl, Po15, Sh14, Opc, ON, SDa, SDb, SDc]. Furthermore, multiple SDN

applications are available, e. g., in the industry’s first SDN app store which is run by

HP [HP13]. At the same time, a new research area has emerged including the use of

SDN to enhance network security [Al15, Sh13a] as well as securing the SDN architec-

ture [Po12, Sh13b, Sh14, RH15a, RH]. Nowadays, Gartner lists SDN as one of the top

10 strategic technology trends [Ga14a] and predicts that: “By the end of 2016, more than

10,000 enterprises worldwide will have deployed SDN in their networks” [Ga14b]. As

SDN has increasingly attracted attention in both academia and industry, SDN has evolved

from a research project to an emerging topic.

Technically, SDN decouples the control software, which decides where to forward net-

work packets (control plane), from the forwarding hardware, which solely forwards net-

work packets according to the made decision (data plane). As illustrated in Fig. 1, the

1 Ruhr-University Bochum, Chair for System Security, Universitätsstrasse 150, 44801 Bochum, Germany, chris-

tian.roepke@rub.de



90 Christian Röpke

SDN controller / NOS

SDN user

application

Basic functions

SDN user

application

SDN user

application

SDN kernel

applications

Southbound interface

Northbound interface

Fig. 1: SDN Architecture

NOS

Packet-in

Switch
6

2

Packet-out5
da
ta

SDN app1 , SDN app2 , �

da
ta

da
ta

da
ta

1

3

4

Host h1

da
ta

da
ta

Host h2

da
ta

+ Decision

Fig. 2: OpenFlow Reactive Programming

decoupled control software is typically called SDN controller or Network Operating Sys-

tem (NOS). It is a logically centralized system with the main purpose of implementing

network intelligence by programming the network. A SDN-based network thereby con-

sists of programmable network devices and the interface between such devices and the

NOS is typically called southbound interface. A popular southbound protocol is the afore-

mentioned OpenFlow protocol which allows programming of network devices as well as

requesting the network state. On top of a NOS, so called SDN applications implement

network functionality as required by a network operator. In addition to the southbound in-

terface, the interface between SDN controllers and SDN applications is called northbound

interface. Inside a NOS, basic functionality is often extended by components typically

also called as SDN applications. To distinguish between these two types of SDN applica-

tions, we call the ones using the northbound interface SDN user applications and the other

ones SDN kernel applications. We thereby follow the naming convention of previous stud-

ies [Sh14, RH15b, RH].

The big benefit of SDN is that network operators can implement and adapt network func-

tionality such as switching or routing independently from the network hardware vendor.

For example, if a switch does not provide a feature which is needed or desirable by a

network operator, such a feature can be implemented easily by using SDN to program

network devices accordingly. In fact, industry is currently adopting SDN (17% of firms

surveyed by Gartner already use SDN in production [Ga14b]) and large companies such

as Google already benefit from OpenFlow to improve backbone performance as well as to

reduce backbone complexity and costs [Hö12].

In SDN-based networks, a NOS plays a major role. It is responsible for programming net-

work devices which can be achieved pro-actively as well as re-actively in case of Open-

Flow. Proactive programming means that before a switch receives a specific type of net-

work packets, the NOS (possibly triggered by a SDN application) adds one or more flow

rules to this switch. Such flow rules tell the switch in advance how to forward matching

network packets. In contrast, re-active programming works as illustrated in Fig. 2. This

figure shows a typical SDN setup including an OpenFlow switch, which is controlled by

a NOS and connects two hosts h1 and h2. In case host h1 sends a packet towards host h2



SDN Malware: Problems of Current Protection Systems and Potential Countermeasures 91

while the switch is missing a corresponding forwarding decision (e. g., a flow rule telling

the swich to forward the packet to host h2), this packet (or only its headers) is delegated

to the NOS via a so called packet-in message. In a next step, the NOS processes this

packet typically by passing it to the set of SDN applications which have registered for

such events. Depending on the NOS’s implementation, each of these SDN applications

inspects this packet-in message, for example, in a sequential order, aiming to determine

an adequate forwarding decision. Finally, the NOS informs the switch of this decision via

a so called packet-out message and, according to this decision, the switch forwards the

packet to host h2. Thus, this illustrated network programming highlights the central role of

a NOS. From a security perspective, this essential SDN component is also an interesting

place for SDN malware, for example, in the form of a malicious SDN application.

In this paper, we give an overview of existing SDN malware, describe already proposed

countermeasures and reveal problems which can arise when using those. Furthermore, we

propose improvements aiming at filling the resulting security gaps. In particular, we focus

on two security mechanisms, namely, sandboxing and policy checking. Current sandbox

systems restrict SDN applications to access only a certain set of critical operations while

access to all other (non-critical) operations is not controlled. Thereby, SDN applications

can be prohibited to perform operations which can harm the NOS, for example, by crash-

ing the NOS or manipulating internal data structures. We also discuss policy checkers

which can intercept network programming attempts in order to check if the consequent

network state would violate a security policy. This mechanism allows to drop harmful

programming attempts and, thereby, keeps the network policy-conform. Since both ap-

proaches have issues which can lead to security breaches, we present security mechanisms

to improve protection of a NOS against malicious SDN applications. In particular, we dis-

cuss how SDN applications can be isolated from the NOS in a stronger way by means

of virtualization techniques. We also propose a mechanism which allows for robust pol-

icy checking, meaning that it runs completely independent from a NOS while minimizing

hardware costs.

2 Background

Before we go into details, we outline the existing SDN malware to give an insight about

the current state of malicious SDN applications and their capabilities. Furthermore, we

briefly describe the basic functioning of security mechanisms which are able to counteract

the SDN applications with malicious logic (i. e., sandboxing and policy checking).

2.1 Malicious SDN Applications

To the best of our knowledge, no SDN malware has been found in the wild yet. However,

researchers have already demonstrated what kind of attacks can be performed by malicious

SDN applications [Po12, Po15, Sh14, RH15a, RH, RH15b].

In [Po12, Po15], a new technique is presented allowing attackers to evade flow rules which

are existent in an OpenFlow switch. By adding specially crafted malicious flow rules,



92 Christian Röpke

the authors demonstrate that an attacker can reach a network host although an existing

drop rule explicitly denies such a connection. This technique is called dynamic flow rule

tunneling and is based on standard OpenFlow instructions, i. e., set and goto.

Other malicious SDN applications [Sh14, RH15a, RH] misuse critical operations on the

system level in order to harm a NOS. For example, malicious SDN applications can easily

crash SDN controllers, modify internal data structures or establish remote channels to

retrieve shell commands from a C&C server, which in turn are executed on behalf of

the NOS. In another example a malicious SDN application downloads and executes an

arbitrary file with root privileges.

Recently, a SDN rootkit has been published [RH15b] for OpenDaylight which serves as

a basis for multiple enterprise solutions [SDc]. This SDN rootkit heavily manipulates in-

ternal data structures and, thereby, gains control of the parts which are responsible for

programming the network and reading the network’s state. As a result, the authors demon-

strate that an attacker is able to add and hide malicious flow rules as well as to remove

legitimate flow rules without showing it to the administrator. Furthermore, an OpenFlow-

based mechanism is presented which enables attackers to remotely communicate with the

rootkit component running inside the NOS. This is interesting since a communication be-

tween hosts running on the data plane and the control plane is not a part of the SDN

architecture.

2.2 Sandbox Systems

Currently, two sandbox systems for SDN controllers have been proposed. The first one

runs SDN applications in separate processes and controls access to system calls [Sh14].

The other system utilizes Java security features to confine SDN applications inside of Java

sandboxes [RH15a, RH, SDa]. The basic protection mechanism is illustrated in Fig. 3 and

remains the same for both proposals.

Sandbox

Critical

operations

Non-critical

operations E
x
e
cu
te
O
p
e
ra
ti
o
n

SDN

app

Access

control

Policies

Fig. 3: Sandboxing

Link / switch

up / down

SDN

controller

Agent
Policy

checker

Add /

remove

rule

Update

Check result

Fig. 4: Policy Checking

Each SDN application runs in a separate sandbox and access to critical operations (i. e.,

system calls or sensitive Java operations) is controlled by a NOS. The sandbox configu-

ration, i. e., which SDN application is allowed to perform which critical operations, must

be provided by a network administrator. In case he/she grants access to a critical opera-

tion, the corresponding SDN application can perform this operation while access is denied

otherwise.



SDN Malware: Problems of Current Protection Systems and Potential Countermeasures 93

2.3 Policy Checking

Several studies introduce policy checking mechanisms for SDN-based networks [Ma11,

KVM12, Kh12, Ka13]. The basic idea is to check whether the network state is conform

to a given set of policies, for example, by looking for black holes, loops or security viola-

tions. While prior proposals struggle with performance issues, newer ones [Kh12, Ka13]

provide the ability to perform policy checking at real time. This allows to intercept net-

work programming attempts in order to check for policy violations first. Only in case of

absent violations, corresponding flows rules are added to or removed from a network de-

vice. Fig. 4 illustrates this behavior for a policy checker called NetPlumber [Ka13] which

is tested in Google’s SDN-based WAN. In particular, a so called NetPlumber agent sits

between the NOS and the programmable switches. This agent recognizes network state

updates and in turn updates NetPlumber’s internal model of the network. Such updates are

triggered when a NOS adds or removes a flow rule and when a link or switch gets up or

down. On each of these events, policy checks are initiated aiming at alerting an adminis-

trator in case a given policy is violated. Note that such an alert can occur before a policy

violation takes place (i. e., when adding or removing a flow rule) or soon after it (i. e., when

a link/switch gets up/down).

3 Problems of Current Protection Systems

3.1 Sandbox Systems

Concerning sandbox systems, malicious SDN applications can use potentially harmful

operations only if access to them is granted explicitly. Current systems [Sh14, RH15a],

however, support only low-level critical operations, i. e., system calls and sensitive Java

operations. This means that an administrator must have special knowledge in system secu-

rity especially regarding operating system functioning and the Java programming language

in order to estimate security-related consequences of granting access to a critical opera-

tion. Thus, the use of low-level based sandbox systems may lead to security breaches in

practice as network administrators are rather experts in network than in system security

and 50% to 80% of network outages are caused by misconfigurations [Ju08].

A recently proposed sandbox system [SDa] includes not only low-level but also high-level

critical operations such as reading the network topology or receiving a packet-in message.

Such operations are rather easy to understand by network administrators and correspond-

ing security issues can be estimated more easily. However, supporting high-level critical

operations does not mean that access to low-level critical operations can be denied by

default. For example, SDN applications may depend on accessing the file system (e. g.,

writing temporary files or reading configuration files), establishing network connections

(e. g., retrieving information stored on another network host) or using runtime capabilities

such as creating processes or threads (e. g., for concurrent programming or parallel execu-

tion). Denying access to such low-level critical operations by default would heavily limit

SDN application developers in the way of implementing network functionality – which



94 Christian Röpke

is the main purpose of a SDN application. In the best case, a sandbox system can deny

access to a pre-configured set of low-level critical operations while allowing the adminis-

trator to decide on the remaining critical operations separately. However, this also limits

SDN application developers to a level which may not be feasible in practice.

Even if we assume that network administrators are experts in both network and system

security, it is difficult to determine the way (i. e., benign or malicious) a critical operation

is used in. But access to a critical operation can only be denied by default if it is exclusively

used in a malicious way. To illustrate the problem, let us have a look at Java reflection. It

can be used to read or manipulate internal data structures of a Java-based NOS. Because

of this, one might guess that access to corresponding critical operations should be denied

by default. In fact, Java reflection has already been used maliciously to implement a SDN

rootkit [RH15b]. However, legitimate SDN applications may also use Java reflection but

in a benign way. In particular, we have analyzed several SDN kernel applications provided

by the HP app store. At the time of writing, we find that 6 out of 11 examined SDN

applications also use Java reflection. At a first glance, we could not find a single Java

reflection related critical operation which is used by the aforementioned SDN rootkit but

never by the benign SDN applications.

Consequently, configuration of current sandbox systems with malicious logic prevention is

rather difficult. Taking this into account, network administrators may require more effec-

tive systems in order to improve protection of a NOS against malicious SDN applications.

3.2 Policy Checking

With regard to policy checking, adverse network manipulations (e. g., a malicious flow

rule) can be prohibited by checking at real time if a network event (e. g., adding a new flow

rule) violates one or more given security policies. Current real time policy checkers run

either inside [Kh12] or outside a NOS [Ka13]. Since malicious SDN applications (such as

a SDN rootkit) can compromise a NOS including its security checks [RH15b], we focus

on policy checking performed outside the NOS.

For example, NetPlumber [Ka13] is implemented as a network service which is exter-

nally triggered by a NetPlumber agent to perform policy checks. Where this agent should

be implemented is not discussed in detail by the authors. In fact, they simply use local

files instead of network connections in order to load network updates into the NetPlumber

system during evaluation. In general, there are several options where such an agent can

be implemented: (i) inside a NOS, (ii) outside a NOS but running on the same host and

(iii) outside a NOS and running on a separate host. In the first case only a few additional

changes within a NOS are necessary for triggering policy checking before a flow rule is

sent to a switch. Obviously, this can be achieved easily and cost-effective. The second

option is more complicated but still does not require additional hardware as a separate

proxy process or network packets interception on kernel level can achieve network pro-

gramming interception. Most complex and expensive is the last option: running the agent

on a separate hardware. For example, a backup component for a NOS is required to handle



SDN Malware: Problems of Current Protection Systems and Potential Countermeasures 95

breakdowns or maintenance-related shutdowns. Another cost-driving factor is the network

interface connecting SDN switches and a NOS, which must handle network events at high

speed [Ka09]. Furthermore, in case of long distance networks, SDN controllers must run

at different locations to avoid latency issues [HSM12]. Additional hardware for such sce-

narios and extra complexity in terms of additional operational costs can cause additional

expenses.

As a major goal of SDN is cost degression, such additional expenses may not be an option

for network operators. However, running policy checks independently from the NOS is

highly desirable for security reasons.

4 Potential Countermeasures

In order to fill the security gaps caused by the aforementioned problems, we propose the

following countermeasures.

4.1 Strong Isolation of SDN Applications

Considering the issues described in Section 3.1, we need a mechanism which counteracts

malicious SDN applications while assuming that sandboxing is insufficient in practice.

In order to compensate that, we propose the following NOS architecture which is based

on isolation of SDN applications by means of virtualization techniques. This is new with

respect to SDN controllers and it enables a more stringent way of separating SDN appli-

cations compared to existing systems.

Our architecture is illustrated in Fig. 5 and includes several protection domains each run-

ning separately, for example, in a virtual machine. Inter-domain communication is only

allowed between the SDN controller domain and each application domain while this com-

munication is restricted to high-level and SDN-related operations. Assuming that virtual-

ization presumes domain isolation, the big benefit of this architecture is that critical low-

level operations are executed within each protection domain, thus, negative consequences

are limited to the affected domain only.

Virtualization layer

HW

SDN controller

domain

U-app

domain

K-app

domain

Northbound

interface

Southbound

interface

AuthACRC

NetI/OMemCPU

K-app

interface

Fig. 5: Strong Isolation of SDN Apps

NOS

U-app

1

K-

app

Pro-active

programming

Re-active

programming

2

3

4

NOS

U-app

4

K-

app

3

2

1 8

5

6

7

Fig. 6: Critical Data Path



96 Christian Röpke

In particular, we run one or more SDN applications in a separate application domain in-

stead of starting them in separate processes. Thereby, SDN user applications (U-apps)

communicate via the northbound interface with the SDN controller, SDN kernel appli-

cations (K-apps) use a NOS-specific interface (K-app interface) for communication with

the NOS, and the SDN controller uses the southbound interface to interact with the SDN-

based network. In addition, a virtualization layer provides Authentication (Auth), Resource

Control (RC) and Access Control (AC) mechanisms allowing to authenticate components,

assign hardware resources to each domain and control access to operations related to the

aforementioned interfaces. In case of the malicious use of critical operations, this architec-

ture limits negative consequences in a way not available in current systems. For example,

if a SDN rootkit uses Java reflection and the corresponding sandbox allows such critical

operations, today’s Java-based SDN controllers can be compromised despite the use of

sandboxes. Given our architecture, this is not possible while SDN application developers

remain unrestricted in inventing new applications.

The main challenge in this respect is to implement network programming efficiently as this

is the main purpose of a NOS. Therefore, Fig. 6 shows the critical data paths for pro-active

and re-active network programming, separately. In case of pro-active programming, a flow

rule generated by a SDN user application must be transferred from an application-domain

to the controller-domain (➀). Depending on the SDN controller, a SDN kernel application

may be used to receive this flow rule (➁), encapsulate it in a southbound protocol depen-

dent format and send it back to the NOS (➂). Then, the NOS must transmit this packet to

the affected switch(es) (➃). In case of re-active programming, the critical data path con-

sists of some additional steps. When a network packet is delegated to a NOS (➀), the NOS

must pass it to the component which implements the southbound protocol, for example, a

SDN kernel application (➁). After extracting the needed information, it must be passed to

the SDN user applications which are registered for such tasks (➂ and ➃). Next, after de-

termining an adequate forwarding decision it must be sent to the affected switches which

works similar to pro-active programming (➄, ➅, ➆ and ➇). As performance of network

programming is of high importance, the biggest challenge is to reduce the overhead in

order to achieve practicable results.

4.2 Robust Policy Checking

Checking the network state against policy violations at real time is challenging especially

in case of a compromised SDN controller. Besides running policy checker agents on sep-

arate hardware as described in Section 3.2, we propose an alternative aiming at saving the

hardware costs. As illustrated in Fig. 7(a) and 7(b), we introduce a policy checking mech-

anism which is completely independent from a NOS, thus, robust against a compromised

NOS. The basic idea is to treat a new flow table entry as inactive until a policy checking

instance signals that no policy is violated.

Fig. 7(a) illustrates the work flow of adding a flow rule. In this case, a SDN controller

programs network devices as usual, for example, via OpenFlow (➀). However, the cor-

responding programming command not only adds a flow table entry but also marks it as



SDN Malware: Problems of Current Protection Systems and Potential Countermeasures 97

SDN

controller

Policy

checker

Add rule1

Mark flow table entry as inactive2

Activate / remove inactive entry5

Check3

Check result4

Rule activated / error6

Flow table
active

-r1 ...

(a) Add Rule

SDN

controller

Policy

checker

Remove

rule
1

Remove inactive / keep active entry2

Remove / keep active entry5

Check3

Check result4

Rule removed / error6

Flow table
active

√r1 ...

(b) Remove Rule

Fig. 7: Robust Policy Checking

inactive (➁). In the next step, a switch acts as a policy checker agent and triggers a pol-

icy checker to validate the absence of policy violations when adding a new flow rule (➂).

Depending on the check result (➃), the switch either activates the flow table entry or re-

moves it from the flow table (➄). In the final step, the switch responds either by an error

message or by a flow activated message telling the NOS that the programmed flow rule

is policy-conform (➅). In case of removing a flow rule, the work flow remains similar as

shown in Fig. 7(b). Receiving a command to remove a flow rule (➀), the switch checks

if the corresponding flow table entry is active or not (➁). In case of inactive entry, the

switch removes it and returns a flow removed message to the NOS (➅). In the opposite

case, the flow table entry remains active until policy checker signals no policy violations

by removing the flow rule (➂ and ➃). After this confirmation, the active entry is removed

(➄) and a flow removed message is sent to the NOS (➅). In case of a policy violation, the

corresponding flow entry remains active and a corresponding error message is sent to the

NOS (➅).

In contrast to current real time policy checkers, the mechanism does not need extra hard-

ware in order to run completely independent of a NOS. In case of OpenFlow, however, this

mechanism requires several changes: (i) OpenFlow must support roles not only for SDN

controllers (e. g., master and slave) but also for policy checkers; (ii) flow table entries must

be extended by a field indicating active vs. inactive entries; (iii) processing of network

packets must be adapted such that only active flow table entries are considered when find-

ing a matching flow table entry; and (iv) OpenFlow switches must interact with a policy

checker in order to process network programming. For reliability reasons, a switch should

be able to interact with multiple policy checkers to avoid single points of failures.

5 Related Work

The problem of malicious SDN applications was first addressed by Porras et al. [Po12].

The authors present a new technique called dynamic flow rule tunneling which enables

attackers to bypass existent flow rules by exploiting standard OpenFlow instructions. Later

on, Shin et al. [Sh14] and Röpke et al. [RH15a] present SDN applications with rudimentary



98 Christian Röpke

malicious logic. For this purpose, the authors exploit the fact that many SDN controllers

allow a SDN application to execute any kind of critical operations without limiting access

to them. Recently, Röpke et al. [RH15b] demonstrate how a sophisticated SDN malware

can compromise SDN controllers. In particular, the authors provide a SDN rootkit for

the popular OpenDaylight controller which serves as a foundation for several enterprise

solutions.

Despite the fact that no malicious SDN application has been found in the wild yet, we take

the findings of previous studies as examples of upcoming attack scenarios. This motivated

us to examine current protection mechanisms regarding their efficiency against sophis-

ticated malicious SDN applications. Sandboxing as well as policy checking have been

already discussed by Röpke et al. [RH15b], but we discuss the potential problems in detail

and present valuable solutions.

Our first proposal is mainly motivated by security systems such as Qubes [RW10] and

Bromium [Br] which use virtualization techniques to isolate applications from common

operating systems like Linux and Windows. Note that using such a technique does not

provide isolation properties by default as it was shown recently [XE]. However, vulner-

abilities which allow attackers to break out of a VM are rather rare while escaping from

a process environment is commonly used by malware, for example, to infect other pro-

cesses. Our second proposal is motivated by the fact that a compromised SDN controller

can manipulate policy checking [RH15b]. We therefore extend OpenFlow [Opa] in order

to trigger policy checks independently from a SDN controller. One may think that adding

functionality to a network device is against the paradigm of SDN which aims at decou-

pling control functions from such elements. However, the OpenFlow specification already

includes functions like checking for overlapping flow rules. Moreover, adding security

functions on the data plane has been implemented efficiently before [Sh13b].

6 Conclusions

In this paper, we discuss problems of state-of-the-art security mechanisms which help in

protecting SDN controllers against malicious SDN applications. We argue that current

sandbox systems and policy checking mechanisms indicate problems when considering

sophisticated SDN malware such as a SDN rootkit. In order to fill the corresponding secu-

rity gaps, we propose two improvements. On the one hand, we introduce a SDN controller

design based on virtualization techniques which enables a strong isolation of SDN appli-

cations from a SDN controller. On the other hand, we present an enhanced way of policy

checking which runs independently from the SDN controller and remains robust even if a

NOS gets compromised. Each of our proposals improves the security of SDN-based net-

works especially against malicious SDN applications. This is particularly important as we

believe that SDN malware will appear soon considering the fast development of SDN.



SDN Malware: Problems of Current Protection Systems and Potential Countermeasures 99

References

[Al15] Ali, Syed Taha; Sivaraman, Vijay; Radford, Adam; Jha, Sanjay: A Survey of Securing
Networks using Software Defined Networking. IEEE Transactions on Reliability, 2015.

[Br] Bromium: , Bromium. www.bromium.com.

[Fl] Floodlight project: , Floodlight. floodlight.openflowhub.org.

[Ga14a] Gartner: , Gartner Identifies the Top 10 Strategic Technology Trends for 2015. http:
//www.gartner.com/newsroom/id/2867917, 2014.

[Ga14b] Gartner: , Predicting SDN Adoption. http://blogs.gartner.com/andrew-lerner/
2014/12/08/predicting-sdn-adoption/, 2014.

[Gu08] Gude, Natasha; Koponen, Teemu; Pettit, Justin; Pfaff, Ben; Casado, Martı́n; McKeown,
Nick; Shenker, Scott: NOX: Towards an Operating System for Networks. ACM SIG-
COMM Computer Communication Review, 2008.

[HP13] Hewlett-Packard: , HP Open Ecosystem Breaks Down Barriers to Software-Defined
Networking. www8.hp.com/us/en/hp-news/press-release.html?id=1495044#
.Vh-AbR_HnCI, 2013.

[HSM12] Heller, Brandon; Sherwood, Rob; McKeown, Nick: The controller Placement Problem.
In: ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. 2012.

[Hö12] Hölzle, Urs: , OpenFlow @ Google. Open Networking Summit, 2012.

[Ju08] Juniper Networks: , What’s behind network downtime? www-935.ibm.com/services/
au/gts/pdf/200249.pdf, 2008.

[Ka09] Kandula, Srikanth; Sengupta, Sudipta; Greenberg, Albert; Patel, Parveen; Chaiken, Ron-
nie: The nature of data center traffic: measurements & analysis. In: Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference. 2009.

[Ka13] Kazemian, Peyman; Chang, Michael; Zeng, Hongyi; Varghese, George; McKeown, Nick;
Whyte, Scott: Real Time Network Policy Checking Using Header Space Analysis. In:
USENIX Symposium on Networked Systems Design and Implementation. 2013.

[Kh12] Khurshid, Ahmed; Zhou, Wenxuan; Caesar, Matthew; Godfrey, P: Veriflow: Verifying
Network-Wide Invariants in Real Time. ACM SIGCOMM Computer Communication
Review, 2012.

[KVM12] Kazemian, Peyman; Varghese, George; McKeown, Nick: Header Space Analysis: Static
Checking for Networks. In: USENIX Symposium on Networked Systems Design and
Implementation. 2012.

[Ma11] Mai, Haohui; Khurshid, Ahmed; Agarwal, Rachit; Caesar, Matthew; Godfrey, P; King,
Samuel Talmadge: Debugging the Data Plane with Anteater. ACM SIGCOMM Com-
puter Communication Review, 2011.

[Mc08] McKeown, Nick; Anderson, Tom; Balakrishnan, Hari; Parulkar, Guru; Peterson, Larry;
Rexford, Jennifer; Shenker, Scott; Turner, Jonathan: OpenFlow: Enabling Innovation in
Campus Networks. ACM SIGCOMM Computer Communication Review, 2008.

[ON] ONOS Project: , Open Network Operating System. onosproject.org.

[Opa] Open Networking Foundation: , OpenFlow Switch Specification, Version 1.4.0. www.
opennetworking.org.



100 Christian Röpke

[Opb] Open Networking Foundation: , SDN/OpenFlow Products. www.opennetworking.
org/sdn-openflow-products.

[Opc] OpenDaylight Project: , OpenDaylight. www.opendaylight.org.

[Po12] Porras, Philip; Shin, Seungwon; Yegneswaran, Vinod; Fong, Martin; Tyson, Mabry; Gu,
Guofei: A Security Enforcement Kernel for OpenFlow Networks. In: ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. 2012.

[Po15] Porras, Phillip; Cheung, Steven; Fong, Martin; Skinner, Keith; Yegneswaran, Vinod: Se-
curing the Software-Defined Network Control Layer. In: Symposium on Network and
Distributed System Security. 2015.

[RH] Röpke, Christian; Holz, Thorsten: On Network Operating System Security. To appear in
International Journal of Network Management.

[RH15a] Röpke, Christian; Holz, Thorsten: Retaining Control Over SDN Network Services. In:
International Conference on Networked Systems (NetSys). 2015.

[RH15b] Röpke, Christian; Holz, Thorsten: SDN Rootkits: Subverting Network Operating Sys-
tems of Software-Defined Networks. In: Symposium on Recent Advances in Intrusion
Detection. 2015.

[RW10] Rutkowska, Joanna; Wojtczuk, Rafal: Qubes OS architecture. Invisible Things Lab Tech
Rep, 2010.

[SDa] SDN security project: , Secure-Mode ONOS. sdnsecurity.org.

[SDb] SDxCentral: , Comprehensive List of SDN Controller Vendors & SDN
Controllers. www.sdxcentral.com/resources/sdn/sdn-controllers/
sdn-controllers-comprehensive-list/.

[SDc] SDxCentral: , SDN Controllers Report. www.sdxcentral.com/reports/
sdn-controllers-report-2015/.

[Sh13a] Shin, Seungwon; Porras, Phillip; Yegneswaran, Vinod; Fong, Martin; Gu, Guofei; Tyson,
Mabry: FRESCO: Modular Composable Security Services for Software-Defined Net-
works. In: Symposium on Network and Distributed System Security. 2013.

[Sh13b] Shin, Seungwon; Yegneswaran, Vinod; Porras, Phillip; Gu, Guofei: AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-Defined Networks. In:
ACM Conference on Computer and Communications Security. 2013.

[Sh14] Shin, Seungwon; Song, Yongjoo; Lee, Taekyung; Lee, Sangho; Chung, Jaewoong; Por-
ras, Phillip; Yegneswaran, Vinod; Noh, Jiseong; Kang, Brent Byunghoon: Rosemary: A
Robust, Secure, and High-Performance Network Operating System. In: ACM Confer-
ence on Computer and Communications Security. 2014.

[XE] XEN project: , Security Advisory XSA-148. xenbits.xen.org/xsa/advisory-148.
html.


