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Abstract: The expiration-based caching model of the web is generally considered ir-
reconcilable with the dynamic workloads of cloud database services, where expiration
dates are not known in advance. In this paper, we present the Cache Sketch data struc-
ture which makes expiration-based caching of database records feasible with rich tun-
able consistency guarantees. The Cache Sketch enables database services to leverage
the large existing caching infrastructure of content delivery networks, browser caches
and web caches to provide low latency and high scalability. The Cache Sketch employs
Bloom filters to create compact representations of potentially stale records to transfer
the task of cache coherence to clients. Furthermore, it also minimizes the number of in-
validations the service has to perform on caches that support them (e.g., CDNs). With
different age-control policies the Cache Sketch achieves very high cache hit ratios with
arbitrarily low stale read probabilities. We present the Constrained Adaptive TTL Es-
timator to provide cache expiration dates that optimize the performance of the Cache
Sketch and invalidations. To quantify the performance gains and to derive workload-
optimal Cache Sketch parameters, we introduce the YCSB Monte-Carlo Caching Sim-
ulator (YMCA), a generic framework for simulating the performance and consistency
characteristics of any caching and replication topology. We also provide empirical ev-
idence for the efficiency of the Cache Sketch construction and the real-world latency
reductions of database workloads under CDN-caching.

1 Introduction

In today’s cloud data management, most database-as-a-service (DBaaS) systems are ex-

posed through REST/HTTP interfaces. REST APIs make it easy for applications to in-

teract with database services and allow service providers and application designers to

leverage the mature, well-researched HTTP protocol and infrastructure. This is partic-

ularly true for ”NoSQL” systems where the central operations create, read, update, delete

(CRUD) map well to REST and HTTP semantics. Yet today, to the best of our knowledge,

no DBaaS is capable of exploiting the expiration-based HTTP caching model and its rich,

globally distributed content-delivery infrastructure. The reason lies in the impossibility to

predict the correct expiration date for database records - any unexpected write operation

would entail reads from stale cached copies that did not yet expire. The key insight to the

Cache Sketch solution presented in this paper is that the task of cache invalidation can be
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shifted from the server to the client using an appropriate data structure.

Caching support in database REST APIs is not only critical for applications that are geo-

graphically distributed from the physical location of the database service. It is even more

important for mobile and web applications whose performance is governed almost exclu-

sively by latency. Large-scale web sites therefore allocate significant resources to manu-

ally optimize caching of static content like images, scripts and style sheets. However, since

the recent shift to smarter clients and single-page applications, dynamic database content

is increasingly requested in end devices directly, either through data APIs of custom ap-

plication servers or ”backend-as-a-service” systems. This makes data requests extremely

latency critical, as they block the user experience. Various studies have quantified the dra-

matic effects of latency on user satisfaction. For instance, Amazon has found that 100ms

of additional latency decrease revenue by 1%. Google similarly discovered that 500ms of

additional page load time decrease traffic by 20%1.

To tackle this problem of significant practical relevance, we introduce a DBaaS caching

methodology that employs automatic caching of database records requested through a

REST/HTTP API. Cache consistency is ensured using a dual approach: expiration-based

web caches (browser/device caches, forward proxy caches, ISP caches) are kept coher-

ent through client-side revalidations enabled by the Cache Sketch data structure, whereas

invalidation-based web caches are invalidated by purge requests issued by the database

service. The proposed caching methodology is applicable to any data-serving cloud ser-

vice, but particularly well-suited for database- and backend-as-a-service systems. The

client Cache Sketch is a Bloom filter of potentially stale records maintained in the database

service. To determine whether a record can safely be fetched from caches, clients query

the Cache Sketch before reads. If the record’s id is contained in the cache sketch, a reval-

idation request is sent, as intermediate caches might hold a stale copy. The issued HTTP

revalidation request instructs caches to check, whether the database record has a different

version than the locally cached copy. If a false positive occurs, a harmless revalidation on

a non-stale record is performed, which is similar to a cache miss.

Clients leverage the Cache Sketch for three different goals: fast application and session

starts (cached initialization), cached reads with consistency guarantees (bounded stale-

ness) and low-latency transactions (conflict-avoidant optimistic transactions). For cached

initialization, clients transparently store every fetched record in the client cache (usually

the browser cache). At the begin of a new session or page visit, the Cache Sketch is trans-

ferred, so clients can check which cached copies from the last session are still up-to-date.

The number of necessary requests is thus reduced to the cache miss ratio of intermediate

caches. To maintain ∆-bounded staleness, the Cache Sketch is refreshed in intervals of

∆. The interval constitutes a controllable upper bound on the staleness of loaded records.

Similarly, conflict-avoidant optimistic transactions load the Cache Sketch at transaction

begin. Subsequent transactional reads exploit cached records, reducing the overall dura-

tion and associated abort probability of the transaction.

By optimistically caching all records and employing the Cache Sketch to only revalidate

stale records, the same cache hit ratio is achieved as if the time to the next write was known

1see http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx (12/12/2014) for both claims
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in advance. A record can only be removed from the Cache Sketch once it is sure to have

been expired in all caches. Thus, precise estimations of expiration times impact cache hit

ratios after writes as well as the number of necessary invalidations. To tune the inherent

trade-off between cache hits, stale reads, invalidations and false positives towards a given

preference, we present the Constrained Adaptive TTL Estimator (CATE) that complements

the Cache Sketch by adjusting cache expiration to optimize the trade-off.

The contributions of this paper are threefold:

• We propose the Cache Sketch as a data structure to enable the use of expiration-

and invalidation-based web caching for cloud data management systems to combine

the latency benefits of caching with rich consistency guarantees.

• We describe the Constrained Adapative TTL Estimation (CATE) algorithm that

computes record expiration dates to minimize stale read probabilities and invali-

dations while maximizing cache hits.

• We present the Monte-Carlo caching simulation Framework YMCA that allows to

analyze and optimize caching strategies and Cache Sketch parameters for pluggable

network, database and caching topologies.

The paper is structured as follows. Section 2 presents the Cache Sketch and its proper-

ties and effects. Section 3 outlines the TTL estimation problem and a possible solution.

Section 4 introduces the YMCA simulation frameworks and presents simulated and real

empirical results for the proposed combination of web caching and cloud data manage-

ment. Sections 5 examines related work and Section 6 concludes.

2 Staleness Avoidance through Cache Sketches

The expiration-based caching model of HTTP was deliberately designed for scalability

and simplicity. It therefore lacks cache coherence protocols and assumes a static TTL

(time to live) indicating the time span for which a resource is valid, allowing every cache

to keep a copy. This model works well for immutable content, for example a particular

version of JavaScript library. With the rise of REST APIs for cloud services however, this

model fails in its naive form - TTLs of dynamic content, in particular database records and

query results are not known in advance. This has lead to database interfaces that forbid

caching in the first place as otherwise staleness would be uncontrollable.

Figure 1 shows an architectural overview of how our Cache Sketch approach addresses

this problem. Every cache in the request path serves cached database records requested by

their key to the client, which can either be an end-user’s browser, a mobile application or an

application server. The Bloom filter of the client Cache Sketch is queried to send a request

either as normal request (record not contained) or a revalidation (record contained). The

revalidation forces caches to update their copy using an HTTP request conditioned over

the record’s version (Etag).
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Figure 1: Architectural overview of the client and server Cache Sketch.

The database service tracks the highest TTLs provided at a cache miss. On a subsequent

write, the record is added to the Counting Bloom filter of the server Cache Sketch and

removed when the record is expired. The database service is furthermore responsible for

purging records from invalidation-based caches (CDNs and reverse proxy caches), which

allows them to answer revalidations. To minimize invalidation broadcasts, purges are only

sent, if the server Cache Sketch reports a record as non-expired. It is important to note,

that this scheme does not require any modifications of the HTTP protocol or web cache

behavior. The proposed Cache Sketch approach is not specific to a particular database

service architecture and can be realized either directly in the nodes of database system or

as a tier of stateless REST servers exposing the database. We chose the latter approach,

building on the database-independent ORESTES middleware [GBR14].

There are several advantages of caching database records close to clients. First, cache

hits have lower latency and higher throughput than uncached requests, as TCP throughput

is inversely proportional to the round-trip time [Gri13]. Second, the database service is
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under lower load, as it only has to handle write requests and cache misses. Third, clients

profit from requests of other clients, as all caches except the browser/device cache are

shared. Fourth, flash crowds, i.e. load spikes caused by unexpected and sudden popularity,

are mitigated by caching and do not bring down the database service [FFM04]. Fifth,

temporary unavailability of the database service can be hidden for reads by letting CDNs

and reverse proxies serve cached records while the service is unreachable.

2.1 The Client Cache Sketch

For each potentially non-expired record x, the client Cache Sketch has to contain its key

keyx. For now, we will only consider key/id lookups - the most common access pattern

in key-value, document and wide-column stores - and discuss how the scheme can be

extended to query results, later. As shown in Figure 2, a read on a key is performed by

querying the Bloom filter bt of the client Cache Sketch cct that was generated at time t. The

key is hashed using k independent uniformly distributed hash functions that map from the

key domain to [1,m], where m is the bit array size of bt. If all bits h1(key), . . . , hk(key)
equal 1, the record is contained and has to be considered stale.

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1

h1

hk

...keyfind(key) Bits = 1

Client Cache Sketch

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

Figure 2: Database read using the Cache Sketch.

Theorem 1 deducts the central guarantee offered by the Cache Sketch using the time-based

consistency property ∆-atomicity [GLS11]. ∆-atomic semantics assert that every value

becomes visible during the first ∆ time units after the acknowledgement of its write.

Theorem 1. Let cct be the client Cache Sketch generated at time t, containing the key keyx
of every record x that was written before it expired in all caches, i.e. every x for which

holds that ∃ r(x, tr, TTL), w(x, tw) : tr + TTL > t > tw > tr where r(x, tr, TTL) is a

read (cache miss) on x at time tr, TTL is the TTL provided for that read and w(x, tw) is

a write on x at time tw.

A read on record x performed at time tx using cct satisfies ∆-atomicity with ∆ = tx − t,
i.e. the read is guaranteed to see only records that are at most ∆ = tx − t time units stale.

Proof. Consider there was a read issued at time tx using cct that returned a record x that

was stale for ∆ > tx − t. This implies that x must have been written at a time tw < t
as otherwise ∆ < tx − t. Now, if there has been no previous read r(x, tr, TTL) with
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tr + TTL > tx then x could not have been stale for at least tx − t time units. If there has

been such a read, by the construction of cct the record’s key would have been contained in

it and the read (a revalidation) could not have been stale.

Theorem 1 states, that clients can tune the desired degree of consistency by controlling the

age ∆ of the Cache Sketch: the age directly defines ∆-atomicity. This guarantee relies on

the linearizability of the underlying database system, i.e. writes are assumed to be directly

visible to uncached reads. If the database is only eventually consistent with ∆db-atomicity,

the guarantee is weakened to (∆ + ∆db)-atomicity2. Similarly, if the invalidation-based

caches only support asynchronous invalidations (which is typical for real-world CDNs

[PB08]) with ∆c-atomicity, the consistency guarantee becomes (∆ + ∆c)-atomicity3. If

∆c is an undesired source of uncertainty, ∆-atomicity can be established in two ways.

First, invalidation-based caches can be treated as pure expiration-based caches by not let-

ting them answer revalidation requests. The trade-off is that this increases read latency and

the load on the database service. Second, invalidations can be performed synchronously.

This is a good option for reverse-proxy caches located in the network of the database ser-

vice. Here, the trade-off is that cache misses have higher latency and can be blocked by

the unavailability of a cache node (no partition tolerance).

Definition 1. A client follows cached initialization, if all initial reads are performed using

the freshly loaded Cache Sketch cct . A read at tnow follows ∆-bounded staleness, if it only

uses cct if tnow < t +∆. A conflict-avoidant optimistic transaction started at ts uses ccts
for transactional reads.

Definition 1 introduces three client-driven age-control techniques for the Cache Sketch.

Cached initialization builds on the insight, that initially ∆ = 0 for a Cache Sketch pig-

gybacked upon connection. This implies, that every cached record can be used without

degrading consistency, i.e. loading the Cache Sketch is equivalent to loading all initially

required records in bulk, which may also include all static resources (images, scripts, etc.)

of the application or website.

∆-Bounded staleness guarantees ∆-atomicity by not letting the age of the Cache Sketch

exceed ∆. Updates may be performed eagerly or lazily. With eager updates, the client

updates cct in intervals of ∆. As this may incur updates despite the absence of an actual

workload, lazy updates only fetch a new Cache Sketch on demand. To this end, if a read

request is issued at tnow > t +∆, the request is turned into a revalidation instructing the

service to append the Cache Sketch to the result. Hence, at the mild cost of a cache miss

every ∆ time units, cct is updated without additional requests.

Similar to cached initialization, a conflict-avoidant optimistic transaction (COT) is started

by loading the Cache Sketch. The caching model is only compatible with optimistic trans-

actions as reads are performed in caches which cannot participate in a lock-based concur-

rency control scheme. By having clients collect the read-sets of their transactions con-

sisting of record ids and version numbers, the database service can realize the transaction

2Bailis et al. [BVF+12] have extensively studied the staleness of Dynamo-style systems. They found, that

with high probability ∆db is very low and for many configurations not perceivable at all.
3We are not aware of any scientific studies on CDN purge latencies. Anecdotally, the Fastly CDN used in

our evaluations employs the bimodal multicast protocol for invalidations with measured latencies typically much

lower than 200ms: fastly.com/blog/building-fast-and-reliable-purging-system
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validation using BOCC+, as shown in [GBR14]. The important alteration that COTs bring

to this scheme is that cached reads can drastically reduce the duration T of the transaction,

while the Cache Sketch limits staleness to T . Since the abort probability of optimistic

transactions has been shown to grow exponentially with T [Tho98], lowering T through

cache hits can greatly reduce abort rates4.
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Figure 3: An end-to-end example of the proposed Cache Sketch methodology.

Figure 3 shows an end-to-end example of Cache Sketch usage. First, the client fetches

the Cache Sketch. As x3 is not contained in it, the record is fresh and hence requested

normally, resulting in a cache hit. The next record x2 is contained and hence a reval-

idation is sent, causing the expiration-based cache to evict its cached copy. The server

returns x2 with a new TTL/expiration date t4, which is saved in both caches. Addition-

ally, the new expiration date is also reported to the server Cache Sketch, where expiration

state is tracked. On the subsequent write on x1, the server Cache Sketch adds x1 to the

Bloom filter, since its expiration date t1 has not yet passed. This also tells the server,

that invalidation-based caches need to be purged. Any later readers are therefore able to

revalidate x1 from an invalidation-based cache.

4We skip many details here. An extensive quantitative investigation is an important part of our future work.
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2.2 The Server Cache Sketch

The purpose of the server Cache Sketch cst is the efficient and correct generation of client

Cache Sketch defined in Theorem 1. This requires two important capabilities the client

Cache Sketch lacks. First, the server Cache Sketch must support removal of keys in order

to evict expired items. Second, it must support invalidation queries which report, whether

a write has to be propagated as an invalidation.

Definition 2. The server Cache Sketch cst consists of a Counting Bloom filter cbt con-

taining all elements of cct and a mapping of keys to their maximum expiration date e =
{(ki, ti)|maxti=tr+TTL(r(x, tr, TTL) ∧ ti > tnow)}. When x is updated or deleted, kx
is added to cbt iff kx ∈ e. Similarly, an invalidation is only necessary, if kx ∈ e.

The employed Counting Bloom filter [BMM02] is an extension of the Bloom filter that

allows removals and can be implemented to materialize the corresponding normal Bloom

filter, so retrievals of cct do not require any computation. To make the retrieval of the Cache

Sketch efficient, the size m of the Bloom filter must be chosen carefully. The false positive

rate p is determined by the size m of the bit vector, the number of inserted elements n and

the number of hash functions k: p ≈ (1 − exp(−kn/m))k. The optimal number of hash

functions is k = ⌈ln(2) · (n/m)⌉, giving the size as m = −n · ln(p)/ln(2)2.

A simple model is to choose m so that transferring cct only requires a single round-trip,

even at connection startup. This is achieved, if the message size of m bits (and some

HTTP metadata) measured in TCP segments of 1,460 bytes does no exceed the initial TCP

congestion window size 10, i.e. m ≈ 10 · 1460 byte = 116800 bit. For a false positive

rate p ≤ 0.05, the filter could hence contain up to n ≈ 18732 distinct records. If n
increased to 50000, p would grow logarithmically to p = 0.326. If the Bloom filter is only

transferred over an already established connection (e.g., after loading an HTML page), it

can be significantly larger without incurring an additional round-trip5.

The server Cache Sketch represents shared state between all server nodes. It lies in the

critical request path as read, update and delete operations require modifying it. Previously,

we assumed a single cst of every tenant’s database. As a generalization, cst can be parti-

tioned and replicated based on tables (resp. buckets, collections, classes) by maintaining

a separate cst for each table. This solves two problems. First, updates to the Cache Sketch

scale horizontally, mitigating potential write bottlenecks. Second, if an aggregate Cache

Sketch for all tables is too large, clients can opt to fetch the Cache Sketch only for the

required tables. To expose the aggregate Cache Sketch, the database service assembles the

Cache Sketch by performing a union over the respective Bloom filters, which is a simple

bitwise OR over their respective bit vectors [BMM02].

To extend the Cache Sketch approach from cached records to cached query results, each

cacheable query q has to be identified by a key kq (e.g., a concatenation of the query and its

parameters), so it can be tracked in cst . The database service then evaluates for each record

update, whether a matching query q exists and treats it like an update to q itself6. An

5This is an effect of the TCP slow-start algorithm which continuously increases the congestion window.
6From an implementation perspective, this could for instance be achieved through distributed real-time pro-

cessing frameworks (e.g., Storm, S4, Samza) or well-known techniques for materialized view maintenance.
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alternative approach to query caching is to represent query results as lists of record keys,

which can then individually profit from caching. The trade-off between both approaches

are lower latency of cached results opposed to higher overall hit rates and reuse between

queries. Combining both approaches in a single method is part of our future work.

2.3 Quantifying (∆, p)-Atomicity for the Web Caching Model

For consistent databases, the Cache Sketch guarantees (∆+∆c)-atomicity, where ∆c is the

upper bound for the staleness of records read from invalidation-based caches. ∆c largely

overestimates staleness, since access is often local to geographic regions and seldomly

governed by worst-case delays. We therefore refine ∆c to (∆c, p)-atomicity7, which a read

satisfies if it is ∆c-atomic with probability p [BVF+12]. The probability p for (∆c, p)-
atomic semantics can be expressed through the round-trip latencies Tcc (client-cache), Tsc

(server-cache) and Ti (invalidation). A revalidation or cache miss hitting an invalidation-

based cache is ∆c-atomic, if the time for the corresponding write acknowledgement to

travel back to the sender plus the time for the read to reach the cache subtracted from the

invalidation latency is smaller than ∆c:

p = Pr[Ti − (Tsc/2 + Tcc/2 + Tcc/2) ≤ ∆c] (1)

We gathered real-world latency traces to quantify (∆c, p)-atomicity and to feed our later

simulations with realistic assumptions. The setup consists of a client located in the Ama-

zon EC2 California region, a server in EC2 Ireland and the Fastly CDN as an example of an

invalidation-based web caching system. We derived maximum-likelihood distribution fits

for Tcc and Tsc for different continuous distribution families as shown in Figure 4b and 4d,

after applying the Tukey-outlier criterion to account for measurement noise, such as the

the noisy-neighbor problem. Though there is consensus in the networking literature that

in the general case, network delays cannot be modeled using a single distribution [VM06],

the normal and Gamma distribution yield good fits for the described setup (goodness-of-fit

p-values 0.21 and 0.68 with the Cramér-von Mises test). This is illustrated in the QQ-plot

in Figure 4c, which shows that apart from the tails of the raw data (with outliers), the

normal distribution describes Tcc very accurately.

Based on this data, (∆c, p)-atomicity can be computed as shown in Figure 4a with Tcc/2 ∼
N(2.00, 0.06) and Tsc/2 ∼ N(86.54, 0.06) for two Ti distributions. For Ti ∼ N(80, 10),
which we found to be a good upper bound in our experiments, the probability of reading a

fresh value starts high and quickly converges to 1. For caches located nearer to the server,

p would converge even faster. In conclusion, with asynchronous invalidations exhibiting

(∆c, p)-atomicity, the Cache Sketch guarantees (∆+∆c, p)-atomicity. This allows precise

reasoning about the consistency trade-off for a given scenario of latency distributions and

eases the decision on whether invalidations should be allowed to be asynchronous.

7(∆, p)-atomicity is also referred to as t-Visibility.
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Figure 4: Analysis of exemplary latencies and their effect on (∆c, p)-atomicity.

3 Optimal Cache Expiration

The TTL for which caches are allowed to store records significantly affects cache hits,

stale reads, invalidations and false positives in the Cache Sketch. For instance, records that

experience a write-only workload but are cached with large TTLs would hurt performance,

as each write would entail an unnecessary invalidation. Likewise, read-heavy records

would suffer from small cache hit ratios, if assigned TTLs are too small. The usefulness of

the Cache Sketch depends on its false positive rate. Therefore, we introduce the concept

of TTL estimators which try to minimize costs.

Definition 3. A TTL estimator E(id, λid
m, λid

w ) → TTLid maps a record’s historic cache

miss rate λid
m and write rate λid

w to a TTL that minimizes the cost function:

cost = w1 ·
#cachemisses

#ops
+ w2 ·

#invalidations

#ops
+ w3 ·

#stalereads

#ops
+ w4 · p

The cost function is parameterized by weights wi that express the relative severity of each

condition. For example, in a setup with a slow single server, many invalidation-based
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caches and an application with low consistency requirements, w1 and w2 would be large

to protect the server, while w3 and w4 would be smaller.

The estimator is invoked for every cache miss to decide on the next TTL. As a baseline, we

propose the Static Estimator Estatic(id) = TTLmax that always minimizes cache miss

costs through a high static TTL. The trade-off is, that every write on record x happening

t seconds before the expiration causes an invalidation, opens the possibility of a stale

read caused by the asynchronous invalidation and forces the cache sketch to contain x
for the remaining t seconds, increasing its false positive rate. This implies, that the static

estimator should only be employed if the Cache Sketch is large enough to hold all records

that might be updated in a time window of TTLmax. A straight-forward improvement

is thus obvious: instead of always estimating very large TTLs, TTLs should rather be

correlated to the expected time to the next write on a record. Furthermore, TTLs should

also be lower if the workload is write-dominant and higher if it is read-dominant.

To make the improved TTL estimation feasible, some assumptions have to be made.

First, we assume, that the per-record workloads are readily available to estimators in

the form of cache-miss rates λid
m and write rates λid

w . Second, to estimate the proba-

bility of writes in certain time intervals, a continuous-time stochastic process of writes

{W (t), t ∈ T} is assumed where the random variables X(t) model the amount of writes

seen until time t. Intuitively, given that exactly one write happened in the interval [0, t],
the time of occurence should be uniformly distributed over [0, t]. This requirement is met

by the Poisson process, which is the most commonly used stochastic process for model-

ing arrival processes. It is characterized by increments that follow a Poisson distribution

Pr[W (t + s) − W (s) = k] = (λwt)
k/k!e−λwt, where λw is the write rate, i.e. the ex-

pected amount of writes in a time interval of length t is E[W (t)] = λwt. A very central

property for our TTL estimation problem is, that inter-arrival times between writes Tw are

exponentially distributed with mean 1/λw, i.e. Pr[Tw < TTL] = 1 − e−λwTTL. This

implies, that knowing an record’s write rate is sufficient information to derive the expected

time of the next write E[Tw] = 1/λw and the quantiles Q(p, λw) = −ln(1 − p)/λw. As

the stochastic process of reads is unobservable (hidden through caches), we specifically do

neither require knowledge about the workload mix, i.e. record-specific read-write ratios

nor the popularity distribution, i.e. the underlying distribution of record access frequen-

cies. Instead, the TTL estimator implicitly adapts to these conditions.

3.1 Constrained Adaptive TTL Estimation

The goal of the constrained adaptive TTL Estimator (CATE) is to minimize the cost func-

tion, while constraining the size of the Cache Sketch to meet a good false positive rate. To

this end, CATE adapts TTLs to the cache miss rate λr and write rate λw instead of merely

estimating the time to the next write. The estimation approach is illustrated in Figure 5a:

write and cache miss metrics are aggregated in the server and fed into the estimator for

each cache miss to retrieve a new TTL. The algorithm is based on four design choices:

1. Read-only records yield TTLmax and write-only records are not cached.
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2. If the miss rate λm equals the write rate λw, the record should be cached for its

expected lifetime expressed by the interarrival time median of writes Q(0.5, λw),
i.e. the TTL is chosen so that the probability of a write before expiration is 50%.

3. A ratio function f : R → [0, 1] expresses, how the miss-write ratio impacts the

estimated TTLs. It maps the imbalance between misses and writes to ptarget which

gives the TTL as the quantile Q(ptarget, λw). If for instance misses dominate writes,

p = 0.9 would allow a 90% chance of a write before expiration, in order to increase

cache hits. Using quantiles over TTLs for the ratio function has two advantages.

First, the probability of a write happening before the expiration is easier to interpret

than an abstract TTL. Second, the quantile scales with the write rate. The ratio

function and its parameters can be tuned to reflect the weights in the cost function.

4. Constraints on the false positive rate of the Cache Sketch and the number of invali-

dations per time period are satisfied by lowering TTLs.

Algorithm 1 Constrained Adaptive TTL Estimation (CATE)

1: procedure ESTIMATE(λm : miss rate, λw : write rate) → TTL

2: constants: TTLmax, slope, f : ratio function

3: if λw = NIL then return TTLmax

4: imbalance =







λm/λw − 1 if λm ≥ λw

−(λr/λw − 1) else

5: pmax ← Pr[Tw < TTLmax] = (1− e−λwTTLmax)

6: if f is linear then ptarget ← 0.5 + slope · imbalance

7: else if f is logistic then ptarget ← pmax/(2pmax · e−slope·imbalance)

8: else if f is unweighted then ptarget ← λm/(λm + λw)

9: if Cache Sketch capacity exceeded then

10: Decrease ptarget by a penalty proportional to false positive rate

11: if Invalidation budget exceeded then

12: Decrease ptarget

13: TTL =















0 if ptarget ≤ 0

TTLmax if ptarget ≥ pmax

Q(ptarget, λw) else

14: return TTL

Algorithm 1 describes CATE. The ESTIMATE procedure is invoked for each cache miss. It

requires three constants: the maximum TTL TTLmax, the ratio function f and the slope
which defines how strongly f translates the imbalance between misses and writes into

smaller or greater TTLs. First, the miss-write imbalance is calculated. We define it to be

0 if λm = λw, x if λm is x times greater than λw and −x if λw is x times greater than λm.

Next, the ratio function maps imbalance to the allowed probability ptarget of a write (and

invalidation) before the expiration date. ptarget is capped at pmax = Pr[Tw < TTLmax],
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Figure 5: Constrained Adaptive TTL Estimation.

so that the estimated TTL never gets larger than TTLmax. We consider three types of ratio

functions shown in Figure 5c: a linear and a logistic function of the imbalance, as well as

the unweighted fraction of misses in all operations.

In order not to overfill the Cache Sketch, its current false positive rate is considered. If

it exceeds a defined threshold, ptarget is decreased to trade invalidations on non-expired

records against revalidations on expired records. By lowering the probability of writes on

non-expired records, Cache Sketch additions decrease, too. Invalidations are treated sim-

ilarly: if the budget of allowed invalidations is exceeded, ptarget is decreased. This way,

Cache Sketch additions and invalidations are effectively rate-limited. Optimal decrements

depend on the severity a of a violation and can be computed as ptarget = ptarget∗(1−f)a,

where f is the degree of violation, for example the difference between the allowed and ac-

tual false positive rate. Last, the TTL derived as the quantile Q(p, λw) is returned.

Figure 5b gives an example of estimated TTLs for a read-heavy scenario, as well as the

corresponding probability Pr[Tw < TTL] of a write before expiration. By construction,
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all three ratio functions yield a TTL that is higher than the median time between two writes

in order to drive cache misses down. The magnitude of this TTL correction is determined

by the ratio function and its slope. This makes it obvious, that minimizing the cost func-

tion requires tuning of the ratio function in order to meet the relative weights between

misses, invalidations, stale reads and false positives. As finding the right TTLmax and

slope in running system is a cumbersome, manual and error-prone process, we introduce

a framework in Section 4 that chooses parameters using Monte-Carlo simulations to find

the best solution under a given workload and error function. Figure 5d shows the effect of

different miss- and write rates as a contour plot of the linear ratio function. In the upper

left area, writes clearly dominate misses, so the estimator opts to not cache the record at

all - frequent invalidations would clearly outweigh seldom cache hits. In the bottom right

area on the other hand, misses dominate writes, so the record is cached for TTLmax. The

area in between gradually shifts to higher TTLs (values of ptarget), with the steepness of

the ascent varying with the slope.

As explained above, estimating TTLs requires each database service node to have approx-

imations of write and miss access rates for each record. To this end, inter-arrival times

are monitored and averaged over a time window using a simple moving average (SMA) or

exponentially-weighted moving average (EWMA). The space requirements of the SMA

are high, as potentially many arrival times for each record have to be tracked, whereas the

EWMA only requires a single value. If the space requirements are still too high, sampling

is applied. More specifically, exponentially-biased reservoir sampling is an appropriate

stream sampling method that prefers newly streamed values over older ones. The reser-

voir is a fixed-size stream sample, i.e. in this case a map of record ids to their write and

miss moving averages. In the approach of load-balanced middleware service nodes, ev-

ery server already sees an unbiased sample of operations, whereas in the case that Cache

Sketch maintenance is co-located with each partitioned database node, only local records

have to be tracked, mitigating the space requirements.

4 Evaluation

We have implemented a Yahoo! Cloud Serving Benchmark (YCSB) wrapper for Monte-

Carlo simulation (YMCA) for arbitrary caching architectures, which runs completely in

memory. YCSB [CST+10] is a widely-adopted standard benchmark for CRUD data stores.

As shown in Figure 7, YMCA consists of a client that implements the YCSB interface

for basic CRUD operations, an arbitrary number of cache layers and additional modules

for collecting metrics, in particular stale reads, cache misses and invalidations. Cache

layers are stacked onto each other and can model any caching topology (e.g., a CDN

or a reverse proxy). Latencies between layers are drawn from pluggable distributions,

assuming symmetric latencies.

Overall, YMCA provides a toolbox to analyze caching behavior of multi-layered database

infrastructures. The YMCA client tracks and reports stale reads. A read is considered

stale, if there was an acknowledged write with a version that is newer than the version the

client read and the timestamp from the begin of the read is newer than the write (i.e., the
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read started after the write was acknowledged to the client). Apart from stale reads and

invalidations, YMCA also keeps track of cache hits and misses reported by each cache.

In order to simulate long durations, YMCA implements a time scaling mechanism: all

latencies and TTL estimations can be scaled by a defined factor. In the following, we

assume the setting from Section 2.3 that includes an infrastructure consisting of a client, a

CDN and the database service. The database service employs the server Cache Sketch to

decide, if an update requires an invalidation and passes cache misses to the TTL estimator

to assign the record-specific TTL.

4.1 Parameter Optimization for the TTL Estimators

As discussed above, adaptive TTL estimation depends on the slope of the ratio function,

as well as TTLmax. In order to optimize these parameters, we use a variation of max-

imum descent hill climbing. Initial slopes of the ratio function are drawn uniformly at

random in the [0, 1] range. The algorithm then tests if increasing or decreasing the slope

provides an improvement of the simplified cost function (w ·#cachemisses+ (1− w) ·
#invalidations)/#ops that is to be minimized. Since the number of invalidations is an

approximate indicator of stale reads as well as a measure of the Bloom filter population,

we have found the simplified cost function to be a well-working simplification of the orig-

inal cost function. Depending on the cost of cache misses compared to invalidations (and

the subsumed false positive and stale read rate), terms are weighted with w ∈ [0, 1].

Testing directions of TTLmax and slope constitutes a super-step, which concludes by

persisting the maximum direction of change (towards a lower cost) for the next super-step

to start with. The algorithm terminates after maximum number of super-steps (50) or when

it cannot improve costs. Optimizations were performed for YCSB workloads A (write-

heavy; read/write balance 50%/50%) and B (read-heavy; read/write balance 95%/5%) with

a Zipfian popularity distribution. Each simulation step was run on 100,000 operations for

10 threads, with a targeted throughput of 200 and a time scaling factor of 50, on the

default amount of 1000 records. We ran the hill climbing algorithm from 25 starting

points. Figure 7a and 7c show the resulting costs as a function of w for the optimized

parameters of CATE, with a linear ration function compared to the static TTL estimation
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with a high TTLmax. The results demonstrate, that CATE performs significantly better

than static estimation for applications that do prefer high cache hit rates (workload A).

Unsurprisingly, read-heavy workloads leading to many cache hits perform slightly better

with a static (maximum) TTL estimation (unless cache misses are weighted very low).

As page load time is arguably the most important web performance metric, we analyzed

the gains of cached initialization for different browser cache/CDN cache hit rates and two

Cache Sketch false positive rates, assuming an average web page with 90 resources using

6 connections [GBR14] and that the Cache Sketch is used for every resource. The results

shown in Figure 7b are as drastic as expected: for instance, for the 66%/20% cache hit

rate described for Facebook photos [HBvR+13], the speedup is over 320% for p = 0.05.

The development of the Cache Sketch false positive rate is shown in Figure 7d for 100k

records, workload B, a slope optimized for 100k operations and the Bloom filter configured

to contain 1k elements with p = 0.05. As expected, CATE achieves lower false positive

rates by decreasing TTLs, when p grows too large. Even though the Cache Sketch is

provisioned to only hold 1/100 of all records, the static estimator performs surprisingly

well, as long as the number of operations is smaller than the number of total records.
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Figure 8: Performance and consistency metrics for YCSB with CDN-caching.

4.2 YCSB Results for CDN-Cached Database Workloads

To validate the results in a real-world setup, we conducted the YCSB benchmark for the

described setup on Amazon EC2, using c3.8xlarge instances for the client (northern Cal-

ifornia region) and server (Ireland), while caching in the Fastly CDN. We took the docu-

ment store MongoDB as a baseline and compared it to an ORESTES server running on the

MongoDB machine to add the Cache Sketch and the REST API. The benchmark was per-

formed with the same configuration as the simulation, but using the static TTL estimator.

Figure 8 shows latency, throughput, cache hit ratios and stale reads for 32 to 1024 threads

(i.e. YCSB clients). The results reveal the expected behavior: latency and throughput are

considerably improved in both workloads, although a slight non-linearity between 512 and

1024 threads occurs, caused by thread scheduling overhead of the limited single-machine

design of YCSB. MongoDB achieves the same latency and throughput in both workloads,

since all operations are bound by network latency. The very few stale reads show consider-

able variance and were largely independent from the number of threads, as seen in Figure

8d, supporting our argument that (∆c, p)-atomicity is an appropriate consistency measure

and CDNs well-suited to answer Cache Sketch-triggered revalidations.
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4.3 Efficient Bloom filter maintenance

The server Cache Sketch requires an efficient underlying Counting Bloom filter. For this

purpose, we developed a Bloom filter framework available as an already widely-used

open-source project8. It supports normal and Counting Bloom filters as in-memory data

structures as well as shared filters backed by the in-memory key-value store Redis. The

library supports the table-based sharding and replication introduced in Section 3 for high-

throughput workloads. The Redis Bloom filter uses the capabilities of Redis to maintain

an efficient bit vector for the materialized Bloom filter and relies on pipelining and batch

transactions to ensure performance and consistency. The choice of Redis is motivated by

its tunable persistence complemented with very low latency.
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Figure 9: Analysis of the Redis-backed Bloom filters.

Figure 9 shows selected performance characteristics of the Redis Bloom filters. The uni-

formity of implemented hash functions for random Strings is evaluated in Figure 9a using

the p-values for 100 χ2-goodness-of-fit tests. For random inputs (e.g., UUID record keys)

all hash functions perform reasonably well - including simple checksums. However, for

keys exhibiting structure, the best trade-off between speed of computation and unifor-

mity is reached by Murmur 3. Figure 9b plots the throughput of the unpartitioned, non-

replicated Redis Bloom filters for a growing amount of connections with m = 100000 and

k = 5 on an Intel quad-core server with 16GB RAM. Read operations (querying, pulling

the complete filter) achieve roughly 250k ops/s, while write operations (adding, removing)

that require some overhead for counter maintenance and concurrency still achieve over 50k

ops/s resp. 100k ops/s. This illustrates, that even a single-server Redis Cache Sketch is not

likely to become a bottleneck in a database service.

8Available at https://github.com/Baqend/Orestes-Bloomfilter along with much more detailed results.
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5 Related Work

Expiration-based web caching of static content has been researched from many perspec-

tives. Huang et al. give an up-to-date analysis of the Facebook photo serving architecture

which includes browsers caches, CDNs, custom edge caches and data store-level caching

[HBvR+13]. The Summary Cache project [FCAB00] is another example for the use of

Bloom filters in caching, where they are employed as metadata digests in cooperative web

caches. Candan et al. [CLL+01] pioneered the idea of exploiting invalidation-based web

caching for databases with the CachePortal system that detects changes of HTML pages

based on underlying SQL queries and triggers corresponding invalidations.

An alternative approach to low latency applications are geo-replicated database systems,

where a wealth of new systems and protocols have recently been proposed, including

PNUTS, Walter, COPS, Megastore, Spanner, F1 and MDCC [KPF+13]. Some of the

earlier approaches like DBCache and DBProxy [APTP03] also relied on caching, however

in the form of dedicated database proxies. Geo-replicated approaches explore different

positions in the consistency vs. performance trade-off-space, but usually require multiple

synchronous wide-area round-trips for a consistency guarantee. Consistency in distributed

and replicated storage systems has been studied in both theory [GLS11] and practice: PBS

[BVF+12] has a similar approach to YMCA, using Monte-Carlo simulation to determine

average staleness of reads in Dynamo-style quorum systems.

Our focus in this paper is different from previous work on web caching and geo-replication,

since we aim to enable the use of expiration-based caching for database workloads with

tunable ∆-atomicity, relying only on readily available infrastructure and client capabilities.

6 Conclusions

In this paper, we addressed the problem of enabling database services to serve data from

the globally-distributed caching infrastructure of the web. The problem is motivated by

the observation, that web performance and user-perceived latency are a key differentiator

for cloud service and application providers. More specifically, we designed the Cache

Sketch, a data structure that allows clients to control their desired degree of consistency in

the form of ∆-atomicity, while being able to read every non-stale record from expiration-

based caches (e.g., browser caches). To this end, the database service maintains the Cache

Sketch as a Bloom filter of potentially stale records, while additionally employing it to

decide, whether an update operation requires purging of invalidation-based caches (e.g.,

CDNs). To minimize the Cache Sketch size, invalidation costs and cache misses, we pro-

posed the concept of TTL Estimators that produce access-dependent expiration dates. To

reason about the resulting performance and consistency, the YCSB Monte-Carlo Caching

Simulator offers a generic framework for analyzing different workloads, caching archi-

tectures and Cache Sketch parameters. The evaluation of CDN-cached workloads and

Counting Bloom filter performance supports our claim, that the Cache Sketch is a feasible

approach for large latency reductions in database services.
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Our work leaves a number of questions for future investigation. One important area is the

combination of the Cache Sketch with optimistic transactions, in particular a quantitative

analysis of the abort rate reduction that can be achieved. Another important area is im-

proving the efficiency of the Cache Sketch even further by designing the TTL estimator to

learn optimal decisions online, without previous training in simulations, perhaps through

techniques of time-series analysis and reinforcement learning.
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