
Andrea Kienle et al. (Hrsg.): Die 19. Fachtagung Bildungstechnologien (DELFI),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 115

The Impact of Guidance and Feedback in Game-Based
Computational Thinking Environments

Sven Manske 1, Alexia Feier, Philip Frese, Pia Hölzel, Maurice Iffländer Rodriguez,
Joshua Körner, Aron Lichte, Lena Otto de Mentock, Melinda Kocak, Natalia Szymczyk,
Dilan Temel, Mathis Haefs, Nina Kersting, Rebekka C. Liewald, Daniel Bodemer 2,

Abstract: In this paper we investigated the impact of feedback and guidance on the development of
computational thinking skills. To achieve this, we extended a game-based learning environment that
aims to foster computational thinking by teaching programming in self-regulated learning scenarios.
The learning environment has been enriched with multiple mechanisms to guide learners and
provide feedback that is directed towards the development of computational thinking skills,
particularly specific abstractions in programming among algorithmic thinking. To assess the impact
of guidance and feedback, we conducted an empirical study with 57 participants. The findings
indicate that feedback on the logical artifacts can reduce certain code smells and increase the
motivation on the part of the learners.

Keywords: Computational Thinking, Game-Based Learning, Programming, Guidance.

1 Introduction

In her fundamental work, Wing [Wi06] defined Computational Thinking (CT) as an
“fundamental skill for everyone, not just for computer scientists.” According to Wing
[Wi14], it is the “thought processes involved in formulating a problem and expressing its
solution(s) in such a way that a computer ... can effectively carry out”. Due to the
increasing popularity of CT as a concept in education throughout the last decade [PSB17,
GP13], visual block-based programming emerged as the predominant paradigm in
teaching CT skills [Gr17], with Scratch being one of the most prominent representatives
of this domain [Re09]. In the tradition of the educational programming language Logo
[Pa80], Scratch has many facilities for learners to express themselves through
programming and to create logical artifacts that solve real problems without the difficulty
to learn a big set of syntactical constructs. Still, it conveys relevant concepts of computer
science and programming, such as events, scene graphs, abstractions such as loops, and
message passing. Scratch projects consist of a microworld (“stage”) with sprites that can
be programmed by the learners. However, prior research has shown that Scratch might
even foster bad programming habits [Me11], which can be improved with well-designed
feedback and assessment mechanisms [Mo15]. Particularly for Scratch projects, the Dr.

1 University Duisburg-Essen, Duisburg, sven.manske@uni-due.de, https://orcid.org/0000-0002-5098-1682
2 University Duisburg-Essen, Duisburg, daniel.bodemer@uni-due.de, https://orcid.org/0000-0003-2515-

683X

https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097

116 Sven Manske et al.

Scratch system has been developed to assess CT skills based on the automatic analysis of
learners’ programming artifacts, namely the scratch projects created [Mo15]. The
importance of guiding learners has been emphasized since the early years of Logo which
is underpinned by research in promoting constructivist learning [LT97, Ma04, Da01].

Fig. 1: The game environment of ctGameStudio consists of a microworld and a programming tool.

However, the last year of distant teaching in the COVID-19 situation has shown that self-
regulated learning environments can overcome some of the burdens in the educational
system. The game-based environment ctGameStudio aims at introducing CT concepts in
a playful and guided way based on visual block-based programming [WMH18, We18]. In
contrast to Scratch, the environment is not an open sandboxed, but it guides learners
through an already fixed scenario with a pre-structured learning trajectory. Each stage
focuses systematically on building a specific abstraction (such as variables, conditions,
loops, events, or functions). Figure 1 shows the environment that is split into the code
editor with the block-based visual programming language and the microworld with a
virtual robot and a virtual companion on the right-hand side. This follows Logo’s turtle
graphic regarding the "ego-body-syntonic approach” [Pa80, AD86].

For this work, we extended ctGameStudio with a feedback component to support reflection
on and evaluation of the logical artifacts created by the learners. Following the approach
of Dr. Scratch, we developed a set of automated indicators that are used to assess
computational thinking skills and to support learners’ reflection. The automated
assessment is based on the analysis of code artefacts, whereas the guidance is intended to
support evaluation processes to foster computational thinking skills. Finally, we present
the results of an empirical study with 57 participants.

2 Guidance and Feedback in ctGameStudio

The conceptualization of the guidance and feedback in the extension of ctGameStudio for
this work is based on the (1) introduction of the environment with an interactive tutorial,
(2) the feedback tool, and (3) prompts to support learners when they are stuck (i.e., cycles,
restarting on “overshooting” the goal).

Impact of Guidance on the Development of CT Skills 117

The feedback tool appears as soon as a level has been successfully completed. It consists
of three components with performance- and CT-oriented indicators. The first component
is the overview component which is presented after successfully completing a level. A CT
score as an aggregative measure comprised of the different metrics was developed to give
an overall understanding of the performance and to provide comparability between
learners for the study. The metrics include among others the number of code smells
detected, e.g., dead code or duplicated blocks. In addition, the feedback contains dynamic
measures that are evaluated at runtime, such as the time to solve a level, the number of
tries, or the number of blocks visited. The latter indicates the runtime behaviour in analogy
to the vLOC metric (“visited lines of code”) [Ma2014]. To support the evaluation of the
own artefacts, each of the metrics is connected to the logical artefact. Thus, the learner
might explore the metrics and get immediate feedback on the specific portion of the code
through highlights and (textual) explanations. Fig. 2 shows the connection between
metrics (left), highlighted code (middle) and the explanations (right).

Fig. 2: The feedback tab supports learners’ reflection and introspection on their code artefacts.

3 Evaluation

The aim of this exploratory evaluation is to measure the effect of the feedback and
guidance components described above on certain performance parameters. The
experimental group (labelled “1”), had access to the feedback component and prompts,
while for the control group (labelled “0”), all guidance components were disabled. We
hypothesize, that the learners of the guided version of ctGameStudio show increased
performance parameters compared to those of the control group.

The experiment was conducted in an online setting, where 57 people participated in this
experiment (21 men; 36 women; mean age: M = 22.23, SD = 3.98). Participants were
given the task to interact with the learning environment for 45 minutes. Each participant
had the possibility to contact the test instructor if they encountered technical problems
during the study. However, additional hints on how to solve the tasks were not given. For
the control group, all the guidance components were removed. However, participants of

118 Sven Manske et al.

both groups had the opportunity to get additional information about the individual
programming blocks and predefined methods in the block lexicon.

To measure the performance of the learners, the following features were extracted from
each code artefact: number of dead blocks, number of duplicate blocks, number of levels
completed, time to solve a level, runtime, number of tries to solve a level and the ctscore.

4 Results

The analysis of the mean differences of the different parameters were determined with a
t-test. As seen in table 1, it is noticeable that the measured parameters mostly performed
better in the group with adjusted feedback and guidance components. The score number
of duplicate blocks is significant (t(28.88) = 2.60, p = .015) with a mean difference of 0.44
blocks. The mean differences between the groups are particularly small in the categories
ctscore (t(55) = -.35, p = .727, MD = -1.10) and runtime (t(53) = 1.12, p = .268, MD =
1.03 seconds). The scores of time to solve (t(53) =.19, p = .850, MD = 12.03 seconds) and
level won count (t(38.92) = 1,27, p =.213, MD = 0.78) were better in the control group but
could not reach significance.

Tab.: 1

Outcomes Performance Parameters Analysis
User Statistics Exp_version M Mean

p

ctscore 0 83.71 -1.10 .729
 1 84.81
Number of dead blocks 0 0.80 0.55 .141
 1 0.25
Number of duplicate blocks 0 0.49 0.44 .015
 1 0.05
Level won count 0 7.03 0.78 .213
 1 6.25
Runtime 0 9.10 1.10 .265
 1 8.00
Time to solve 0 173.20 -12.00 .850
 1 185.20
Tries 0 6.62 0.11 .896
 1 6.51

Note. Time is given in seconds.

Impact of Guidance on the Development of CT Skills 119

5 Conclusion

In this paper we presented an extension of the game-based learning environment
ctGameStudio. The new version includes feedback and guidance components that analyse
the learner's code and provide appropriate guidance that improves learning, particularly
the inspection, reflection, and evaluation of own logical (code) artefacts. We hypothesized
that this would result in higher performance regarding computational thinking.

The results regarding the differences in the performance parameters between two groups
showed no significant improvement in most performance parameters. However, the
significant mean difference in number of duplicate blocks shows that the concepts are well
explained to the participants and that the acquired knowledge can be transferred. In
addition, there is a tendency for the feedback group to take a bit more time and complete
slightly fewer levels, which can be explained by the fact that the participants had to deal
with the feedback and interact with the component. However, these differences are not
significant. Additionally, a significant improvement of the flow could be observed in the
feedback group. Flow is repeatedly described in literature as a particularly important factor
in the learning process, so that this result is an indication that the changes to the game
experience were effective.

Since there is a considerable amount of literature on the benefits of formative and
summative feedback in gaming-based learning environments, e.g. [Gr18, LK11], the
reason for the small group differences regarding the performance of the learners may be
due to the implementation of the feedback system and the design of the study. Even though
there were small performance improvements in the feedback group, there were no
significant differences in the ctscore. The ratios of the parameters for the calculation of
the score may need to be revised. Although, ctGameStudio is created for first-time game-
based learning of CT the participants of the study had a high heterogeneity in terms of
programming experience, which may have led to mixed results. Since the game was only
played for 45 minutes and it takes extra effort to read the feedback dialogs, the benefits
might only be realized with longer observation.

6 Bibliography

[AD86] Abelson, H.; diSessa, A.: Turtle Geometry: The Computer as a Medium for Exploring
Mathematics, 1st ed., MIT Press, Cambridge, 1986.

[Da01] Dalgarno, B.: Interpretations of constructivism and consequences for Computer Assisted
Learning. In: British Educational Research Association, pp.183-194, 2001.

[Gr18] Groff, J. S.: The potentials of game-based environments for integrated, immersive
learning data. In: European Journal of Education, 53(2), pp. 188-20, 2018.

[GP13] Grover, S.; Pea, R.: Computational Thinking in K–12. In: Educational Researcher,
42(1), pp. 38–43, 2013.

120 Sven Manske et al.

[Gr17] Grover, S.: Assessing Algorithmic and Computational Thinking in K-12: Lessons from
a Middle School Classroom. In (Rich, P. J.; Hodges, C. B. eds.): Emerging Research,
Practice, and Policy on Computational Thinking. Educational Communications and
Technology: Issues and Innovations, Springer, Chalm, pp. 269-288, 2017.

[LK11] Lee, M. J.; Ko, A. J.: Personifying programming tool feedback improves novice
programmers’ learning. In: Proceedings of the seventh international workshop on
Computing education research - ICER ’11, pp. 109-116, 2011.

[LT97] Lee, M. O. C.; Thompson, A.:Guided Instruction in Logo Programming and the
Development of Cognitive Monitoring Strategies among College Students. Journal of
Educational Computing Research, 16(2), pp. 125–144, 1997.

[Ma04] Mayer, R. E.: Should there be a three-strikes rule against pure discovery learning? The
case for guided methods of instruction. The American Psychologist, 59(1), pp. 14-19,
2004.

[Ma14] Manske, S., & Hoppe, H. U. (2014). Automated indicators to assess the creativity of
solutions to programming exercises. In 2014 IEEE 14th ICALT (pp. 497-501).

[Me11] Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011, June). Habits of programming
in scratch. In Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education (pp. 168-172).

[Mo15] Moreno-León, J., & Robles, G. (2015, November). Dr. Scratch: A web tool to
automatically evaluate Scratch projects. In Proceedings of the workshop in primary and
secondary computing education (pp. 132-133).

[Pa80] Papert, S.: Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New
York, 1980.

[PSB17] Pugnali, A.; Sullivan, A.; Bers, M. U: The impact of user interface on young children’s
computational thinking. Journal of Information Technology Education: Innovations in
Practice, 16, pp. 171-193, 2017.

[Re09] Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.; Eastmond, E.; Brennan,
K.; Millner, A.; Rosenbaum, E.; Silver, J.; Silverman, B.; Kafai, Y.: Scratch:
programming for all. In: Communications of the ACM, 52(11), pp. 60-67, 2009.

[We18] Werneburg, S.; Manske, S.; Feldkamp, J.; Hoppe, H. U.: Improving on Guidance in a
Gaming Environment to Foster Computational Thinking. In: Proceedings of the 26th
International Conference on Computers in Education, Philippines, pp. 676-685, 2018.

[WMH18] Werneburg, S.; Manske, S.; Hoppe, H. U.: ctGameStudio - A Game-Based Learning
Environment to Foster Computational Thinking. In: Proceedings of the 26th
International Conference on Computers in Education, Philippines, pp. 543-552, 2018.

[Wi06] Wing, J. M.: Computational Thinking. In: Communications of the ACM, 49(3), pp. 33-
35, 2006.

[Wi14] Wing, J. M.: Computational Thinking Benefits Society. In: Social Issues in Computing
40th Anniversary Blog, New York, 2014.

	The Impact of Guidance and Feedback in Game-Based Computational Thinking Environments
	Sven Manske 0F , Alexia Feier, Philip Frese, Pia Hölzel, Maurice Iffländer Rodriguez, Joshua Körner, Aron Lichte, Lena Otto de Mentock, Melinda Kocak, Natalia Szymczyk, Dilan Temel, Mathis Haefs, Nina Kersting, Rebekka C. Liewald, Daniel Bodemer 1F ,
	1 Introduction
	2 Guidance and Feedback in ctGameStudio
	3 Evaluation
	4 Results
	5 Conclusion
	6 Bibliography

