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Abstract: As of today, multiple diseases have been associated with shape and volu-
metric changes in the brain’s ventricular system. Undoubtedly, the transport mecha-
nisms in the cerebrospinal fluid play an important role, but the knowledge about the
related phenomena is still limited.

Computational fluid dynamics calculations, which may shed light on the underly-
ing mechanisms, need detailed, topologically correct models of the ventricles in order
to perform realistic flow simulations. In preliminary experiments some anatomical
structures have been identified, which have major influence on the flow characteris-
tics. In this paper we propose an automatic method for extraction of those landmarks,
which will also be useful in a later stage to initialize and to guide the segmentation
process of the third ventricle.

1 Introduction

As of today multiple diseases can be associated with shape and volume changes in the
ventricular system of the brain and there is intensive clinical research focusing on the
topic. Undoubtedly, flow and associated transport phenomena of the cerebrospinal fluid
(CSF) play an important role, but the knowledge about the subject is still rather limited.
Computational fluid dynamic (CFD) simulations of the CSF performed on realistic models
promise to broaden this knowledge and might even become a valuable diagnostic tool.

Although tedious manual segmentation is still common in clinical applications, a shift to-
wards semi- and fully automatic segmentation techniques for the third ventricle would be
desirable. To overcome the complications such as thin separation membranes between the
ventricular and external CSF, an automatic segmentation algorithm for the third ventricle
has to incorporate prior anatomical knowledge. Wu et al. [WPW+03] used an expectation
maximization driven deformation of an anatomical atlas, whereas Schnack et al. [SPB+01]
and Xia et al. [XHA+03] used region growing combined with anatomical knowledge to
correctly identify components of the ventricular system that otherwise would appear dis-
connected in the image. All of the above methods can split the ventricular system into
disconnected compartments when the connection between them is not apparent in the
data. Furthermore, Schnack and Xia are using simple planar boundaries to prevent the
segmentation of the third ventricle from leaking into extraventricular CSF. The resulting
inaccuracies in the shape of the third ventricle would alter the outcome of the CFD sim-

459



ulation as it requires both correct topology and realistic geometry. Preoperative planning
can also benefit from improved segmentation algorithms.

A variety of landmark extraction techniques for 3D volumes have been presented in the
literature. Gu and Tjahjadi [GT02] employ bandpass filters to detect salient features in the
images, whereas De Vries and Verbeek [dVV00] are using eigenanalysis of the gradient
structure tensor to detect and classify them. An extensive evaluation of derivative based
point landmark extraction methods was performed by Rohr and Hartkens [Roh97, HRS02].
The work of Worz and Rohr [WR05] offers not only the landmark localization, but the
fitting of parametric intensity models also offers a shape description of the landmarked
structure. The prominent position of the anterior and posterior commissure as stereotaxic
landmarks led to specialized extraction algorithms (e. g. [PHA+06]), but almost exclu-
sively on T1 imagery.

2 Method

The third ventricle has a complex anatomy as can be seen in Figure 1. It includes multiple
recesses, neural fiber tracts connecting the cerebral hemispheres and a body of choroid
plexus tissue. The size of the recesses varies, occasionally they are reduced to mere
bumps. The anterior wall (between the AC and the tip of the OR) has only a thin sep-
aration membrane to a body of extraventricular CSF in the anterior direction. Preliminary
CFD simulations showed that the anterior wall and the recesses are important factors for
the flow.

The proposed approach can be summarized as follows. The selected interest points are
identified in a hierarchical fashion, starting with the entry point of the cerebral aqueduct
and followed by the AC and PC which can be detected most robustly. We search for the
other landmarks sequentially, while spatial information form previously extracted interest
points is used to limit the search regions of the still unknown ones. For each interest
point, a set of candidates is extracted. Using anatomical knowledge, the interest point
corresponding to a specific anatomical structure is selected from these candidates.

Our method relies on T2 weighted MRI images acquired on 3T Philips Intera Achieva
scanner. Nine healthy volunteer data sets are divided into two groups. Group A contains
three volumes1 with an in-plane resolution of once 0.5 and twice 0.225 mm (interpolated
by zero filling in the Fourier domain) and an inter-slice distance of 0.47 mm and 0.4 mm
respectively. For Group B, the scanning sequence was modified2 to reduce imaging ar-
tifacts. The Group B contains six volumes with an in-plane resolution of 0.45 mm and
an inter-slice distance of 0.6 mm.

Many important anatomical structures have tips or are of tubular shape. They can therefore
be detected as point or line features. In case of the third ventricle we use different methods
for (1) tip landmarks and (2) landmarks for short tubular structures.

1SE, TE/TR 130/2800, 160/2000 and 160/2325 respectively, flip angle 90◦
2SE, TE/TR 150/2000, flip angle 90◦
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Figure 1: (a) Anatomy of third ventricle. Extraventricular CSF is marked in light gray. AC Ante-
rior commissure, AQ Cerebral aqueduct, FL Floor of the third ventricle, IA Interthalamic adhesion,
IC Infundibular chiasm, ICV Internal cerebral veins, IF Interventricular foramen, IR Infundibu-
lar recess, OC Optic chiasm, OR Optic recess, PC Posterior commissure, PR Pineal recess, SPR
Suprapineal recess (b) Selected landmarks overlaid on a MRI dataset.

Tip landmarks: Extraction of tip-like structures is based on the gradient structure ten-
sor GSTσ,ψ presented in [dVV00, HRS02]. Through an extensive evaluation Hartkens
et al. [HRS02] found, that the determinant of the gradient structure tensor offered consis-
tently good performance under a wide range of conditions.

Tubular landmarks: To detect the tubular landmarks, first the eigenvalues and eigen-
vectors of the Hessian matrix are extracted for each voxel. Based on the eigenvalues,
a vesselness measure V (X) is derived using the method proposed in [SNA+97]. The ves-
selness measure represents a likelihood of a voxel to be in the center of a tubular structure.

Other tubular structures, mainly vessels, can be present

Figure 2: Attenuated vesselness
(left) and its anisotropic integration
in the preferred left-right direction
(right). Upper blob is the AC.

in the region of interest (ROI) for the landmark, but
their orientation differs from the orientation Ad of the
landmark structure. Therefore, we suppress the vessel-
ness measure in the structures strongly deviating from
Ad, while maintaining it in the well aligned structures.
The attenuated vesselness measure V �(X) is computed
as V �(X) = V (X)|Ad ·Ae|/(IX+b), where Ae is the direc-
tion along the local structure3 at X , IX is the intensity
of the voxel X and b is an intensity bias to avoid divi-
sion by zero and at the same time to suppress the influence of the noise in the image. As
a result, the voxels belonging to bright structures and the voxels of structures with unfa-
vorable orientation end up with a lower measure than the voxels in favorably oriented dark
structures. We set the value of b to 1% of the estimated CSF threshold.

Next, we integrate the attenuated vesselness image V �(X) with an anisotropic Gaussian
kernel (of width σLR, σIS , and σAP )4 with a large standard deviation in the expected

3an eigenvector corresponding to the eigenvalue with smallest absolute value
4coordinates are corresponding to the left-right (LR), anterior-posterior (AP) and inferior-superior (IS) axis
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Figure 3: Details of intensity regions for the AC (a) and the PC (b); sagittal view. (c) Expected
orientation of both AC and PC is left-right, structures deviating more than 60◦ (black area) are
rejected in the prefiltering step; axial view. (d) Expected orientation of the infundibular recess and
chiasm; sagittal view.

direction and a small in the perpendicular directions (Figure 2). This smoothing not only
causes isolated high response voxels to be suppressed, but also further attenuates clusters
deviating from the expected orientation. The local maxima of the integrated image are
then selected as candidates of the structure. The representative of the structure is selected
from the candidates according to rules derived from local anatomy.

Localization of Entry Point of Cerebral Aqueduct: The first step is the detection of
the entry point of the cerebral aqueduct. There are multiple ways to obtain it, but as our
investigation of the third ventricle is performed in the context of the segmentation of the
whole ventricular system, we detect it by following the aqueduct from the fourth ventricle.

Localization of the Posterior Commissure: The PC appears as a dark tubular structure
in the posterior part of the third ventricle just superior to the entry point of the cerebral
aqueduct. It is oriented along the left-right axis. To restrict the search area, a ROI of
size 5 mm× 10 mm× 10 mm is placed 2 mm anteriorly and 2 mm inferiorly from the
entry point of the aqueduct. Using the detector for short tubular structures with a preferred
left-right orientation Ad and the Gaussian filter kernels σLR = 2.5 mm, σIS = σAP =
0.75 mm, the set of candidates is extracted. All candidates located in a CSF region are
rejected. Additionally, we reject the candidates with a direction deviating more than 60◦

from the left-right axis (Figure 3(c)). The region superior to the PR contains structures lo-
cally similar to the PC and usually produces a false candidate. Erroneous identification can
be avoided by selecting the candidate located just above the cerebral aqueduct. To improve
LR localization, we project the landmark to the symmetry plane of the third ventricle.

Localization of Anterior Commissure: Similar to the PC, the AC appears as a dark
tubular structure in the anterior part of the third ventricle. To limit the search area, we
use a ROI of size 12 mm× 16 mm× 22 mm with its center placed 23 mm anteriorly to
the PC. The dimensions of the ROI was designed to account for the uncertainties in the
size and orientation of the third ventricle. The extraction of the AC candidates follows the
approach used for the PC. The further filtering rules are derived from the local anatomy
surrounding the AC and are depicted in Figure 3(a). The average intensity of the region
A must be below the CSF threshold, whereas the average intensity of the region B must
be above the threshold. The resulting AC candidates are then rated according to the value

ordering
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Group AC PC IR OR
A 1.02 (0.52) 1.15 (0.60) 0.51 ( – ) [2] 2.27 (0.11) [1]
B 0.73 (0.37) 0.86 (0.34) 1.06 (0.44) [1] 1.45 (0.72) [1]

Table 1: Average localization error and its standard deviation (both in mm) for the landmarks. The
number of cases where the landmark detection failed is given in square brackets (these cases were
excluded from the statistics).

of integrated vesselness in the left-right direction and the contrast ratio between regions
A and B. The candidate with the highest product of the two measures is selected as the AC
landmark.

Localization of Infundibular Recess: The landmark is located at the tip of the in-
fundibular recess. It is localized in two phases. First, landmark candidates for the IC are
searched for using the short tubular structure detector in a ROI of size 10 mm× 14 mm
× 12 mm, centered 17 mm inferior and 2 mm posterior to the AC. The expected orienta-
tion is at 60◦ inferior to the PC–AC, (see Figure 3(d)) while using an isotropic Gaussian
filter kernel (σLR = σIS = σAP = 1.25 mm). In a first filtering stage, all candidates
with a deviation larger than 45◦ from the expected orientation are discarded. Additionally,
all candidates that are not surrounded by CSF in the plane perpendicular to the structure
orientation are removed, too. The remaining candidates are passed to the second phase,
where their corresponding tip is extracted using the determinant of the gradient structure
tensor as described in the tip landmark detector. Lets recall the anatomy of the immediate
surrounding of the infundibular recess, which extends inside the tube of the IC. The ves-
selness measure is not suitable for the detection of such double tube structures. Therefore,
the chiasm candidate is always detected farther away from the third ventricle body. When
we look at the cross-section perpendicular to the longitudinal axis of the tip or chiasm, we
see a high intensity blob of the IR tip, surrounded by a ring of dark tissue of the chiasm,
which is in turn surrounded by bright CSF area. We adjusted the iris filter [KM96] to rank
the landmarks after filtering out the IR candidates that are not surrounded by the structure
described above.

Optic Recess and the Anterior Wall: The OR is located in the lower end of the anterior
wall. A body of extraventricular CSF is located anteriorly to it, separated only by a thin
wall. Due to partial volume effects, often only a small part of this separation membrane is
visible. The visible part of the separation wall is extracted and extrapolated as needed to
cover the whole front of the optic recess. The segmentation starts from the AC and follows
the low intensity sheet along the anterior wall. The tracing of the sheet is stopped when
the ratio of the smallest and the largest eigenvalue of the Hessian matrix is above 0.5 (wall
untraceable) or after 8 mm (whole wall extracted).

3 Results

The method was implemented in C++ using ITK [ITK]. Runtime performance was mea-
sured on a PC with 3.0 GHz Pentium 4 processor and 1GB of RAM. The extraction of the
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Figure 4: Results. (a) Example of successful extraction of an IR landmark (white dot), the ellipse
denotes the IC landmark. (b) Wrongly detected IR landmark (black dot), the correct position is
marked by a white dot, with more landmark candidates in the background. (c) Successful extraction
of the anterior wall and the optic recess. (d) Our algorithm failed to locate the start of the anterior
wall.

landmarks took 19− 31 s on lower resolution data sets and 138− 200 s on higher reso-
lution data sets. The relatively high variation is due to the varying number of candidate
points for the landmarks.

The method was tested on the nine datasets described earlier and compared with results
from manual segmentation. The statistics of the deviations is given by Tab. 1. Figure 1(b)
shows an example, where AC, PC and IR have been successfully detected.

The AC and PC have been correctly identified on all images of the test dataset. The
detected position deviated from the manually extracted landmarks mostly in the lateral
direction. Projected to the midsagittal plane, the two positions were at most one voxel
apart.

The IR landmark was successfully identified in six cases. The landmarks were typically
placed off-center as shown in Figure 4(a), whereas a typical manually placed landmark is
located on the centerline of the recess. In group B for one case a landmark on the wall
of the OC was ranked highest with the correct candidate being second (Figure 4(b)). In
both erroneous cases in group A, no raw landmark was placed on the tip of the recess.
These datasets show lower contrast in the region of the IR and the potential candidates
were filtered out during the Gaussian smoothing step.

It has to be noted that a failure to locate a recess landmark does not necessarily imply
an overall failure of the identification process, as a recess with a fixed geometry can be
assumed in such cases. Although inaccurate, the resulting model will still be anatomically
correct.

The anterior wall was successfully extracted from seven datasets (Figure 4(c)). The misiden-
tification of the anterior wall occurred once in each group. For the case in group A our
algorithm was unable to identify the beginning of the wall and for the one in group B
the tracking was attracted by a ridge belonging to the extraventricular CSF (Figure 4(d)).
In both cases the detection of the OR failed. Automatically extracted OR landmarks are
being placed more inside the recess than the manually extracted ones.
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4 Conclusions and Future Work

We presented a fully automated method for the extraction of landmarks in the third ven-
tricle. The method incorporates a priori knowledge about the anatomy and the appearance
of the structures and their immediate surrounding. Preliminary experiments on 9 datasets
demonstrated that this localization can be performed robustly and with high accuracy.

The presented landmark extraction method can also be used to improve segmentation of
the third ventricle for the purpose of preoperative planning.

While the results already allow the generation of patient-specific boundary conditions for
the computational simulation of cerebral fluid flow in critical regions, our future goal is
to develop a complete, automatic segmentation system for the third ventricle, using the
identified landmarks for the initialization of a deformable model and for the guidance of
its evolution. Additionally, we are currently developing classification methods allowing to
accurately locate the choroid plexus within the third ventricle.
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