Integrating Content Assist into Textual Modelling Editors

Markus Scheidgen*
scheidge @informatik.hu-berlin.de

Abstract: Intelligent, context sensitive content assist (also known as code completion)
plays an important role in the effectiveness of model editors. This is not only true for
textual language notations, but also for graphical notations that often contain a signif-
icant amount of textual elements. This paper presents techniques to describe content
assists for meta-model based textual model editors. We show that these techniques
help to automate the development of editors with content assist, a process that requires
extensive manual work otherwise.

1 Introduction

Modern integrated development environments for programming languages, have accus-
tomed us to editors with capabilities that increase productivity by magnitudes. Extensive
knowledge about language syntax and semantics programmed into these editors, allows
them to offer context sensitive assistance to the editor users by presenting them with a list
of meaningful continuations at the current cursor position. This is known as content assist
or code completion.

Unfortunately, development of such editors is extensive and therefore has only been done
for popular programming languages like Java. New editor development frameworks for
domain specific modelling languages allow to describe language notations efficiently and
generate feature rich editors from these descriptions automatically. This possibly facili-
tates the same tool quality for textual modelling languages with less development efforts.

While existing frameworks for textual modelling notations succeed in offering basic model
editing capabilities, like transforming input text into models and vice versa, they struggle
to achieve some of the advanced editing features, especially content assist. This paper
introduces high level description techniques for content assist. Such descriptions can be
used to generate textual model editors with content assist automatically. Our work focuses
on content assist for keywords and named references.

The remainder of this paper is structured as follows: section 2 gives an introduction to
textual modelling and textual editing frameworks. With this knowledge we present content
assist techniques in section 3. In section 4, we report about TEF, a framework for textual
model editors that supports content assist. We close with related work and conclusions in
sections 5 and 6.

*This work is part of the Graduiertenkolleg METRIK, founded by the Deutsche Forschungs Gemeinschaft.

121

2 Background - Textual Modelling

Textual modelling, as opposed to graphical modelling, uses text to represent models. Tex-
tual model editors allow users to write models in a language specific syntax. Textual
modelling can be applied to a whole language, i.e. the whole model is represented with
a single cohesive text. In this case an according textual model editor is a standalone tool
that is used to create and edit models. Textual modelling can also be applied to parts of a
language, where the other parts are represented otherwise, e.g. graphically. In this case,
textual model editors are integrated into another (e.g. graphical) editor. Examples for
this are complex textual statements embedded into a graphical language, such as OCL ex-
pressions in UML diagrams. We will not further distinguish these types of textual model
editing, because an embedded textual model editor is simply a model editor for a sub-
language and both kinds of editors are realised in the same way.

Furthermore, categorising a language into modelling or programming language only refers
to the pragmatics and semantics of the language and has nothing to do with how instances
of this language are edited. To avoid confusion, we will stick to the term textual modelling
language, but the presented techniques can also be applied to programming languages.

In this paper we concentrate on languages with an abstract syntax defined as a meta-model
and concrete notations defined separate from this meta-model. A notation, suitable for tex-
tual modelling, consists of a context-free grammar, and a mapping between that grammar
and the language meta-model. The grammar defines a set of syntactical correct strings.
The mapping identifies the model corresponding to a syntactically correct string. Frame-
works for developing textual modelling editors provide notation definition languages to
define textual notations and can generate textual model editors from such notations. More
detailed information on using grammars for notating models can be found in: [AP04],
[MFF+06], and [WKO06].

The background parsing process. Most existing textual model editors use background
parsing. Background parsing consists of the three steps: (1) the user edits text using a
normal text editor, (2) the inserted text is parsed according to a given grammar, (3) a
model is created from the resulting parse-tree based on a given meta-model and grammar
to meta-model mapping. This process is repeated continuously to give the impression that
the user edits the model directly.

Creating models from parse-trees. Figure 1 shows a meta-model for a simple expres-
sion language in the top-left corner. Below this meta-model we see a model, an instance
of the meta-model, that represents the expression foo(n) = (n + 2) * n + 1. On the right
side of this figure we see a grammar that could be used to define a notation for that expres-
sion language. The rules in this context-free grammar can be used to create the parse-tree
below, which is a parse-tree for the string foo(n) = (n +2) *n + 1.

The example parse-tree and model are very similar. Basically, we can map symbols and
terminals to objects and their attributes, and we can map child-of relations between nodes
to corresponding links. However, there is one important difference. There are some links

122

Meta-Model Grammar

Variable

0.

1
+name : String

+variables| +definition
function := <id> '(' variable ')'
'=' expr
Fu"mon_ ! Expression variable := <id>
+name : String expr := expr '+' term
+op1| +op2 expr := term
1 ! term := term '*' factor
VariableExpression term := factor
Operator factor = '(' expr ')'
factor 1= <id>
& ? factor := <int>
Literal "
Times
+value : Integer E
1
Model foo(n)=(n+2)*n+1 Parse-tree
H 2 function

name = "foo"

name ="n"

m value =2

Figure 1: The differences between meta-models and grammars examplified based on a simple ex-
pression language.

in the model that are not represented in the parse-tree directly. These are links between
instances of VariableExpression and Varibale. The fundamental difference between meta-
models and context-free grammars is that meta-models describe graphs, while grammars
describe trees. Therefore, this link (which causes a circle in the model graph) has to
be represented indirectly within the parse-tree. This is a typical problem for notations
defined with context-free grammars: they usually use some form of identifier to describe
a reference between a variable usage and its definition of that variable. Due to references,
creating a model from a parse-trees has to include identifier resolution.

Content assist in textual model editors. Content assist in general describes the text edi-
tor capability to provide a list of possible text fragments that form reasonable continuations
for the text under the current cursor position.

123

References are the most important language constructs that content assist provides help for.
One of the major problem that users have with editing textual models is to select identifiers
and to spell them correctly. Content assist helps with references by providing a list of
reasonable identifiers for the current cursor position; users can choose identifiers from
that list instead of creating the according reference manually. The proposed identifiers are
taken from the model that is created during a background parsing process. We call this
intelligent, model-aware form of content assist reference assist.

Content assist can also help with simpler language constructs such as keywords or special
characters. If a user is uncertain about what keywords or special characters are syntac-
tically possible at the current cursor position, content assist provides a list of possible
terminals to choose from. We call this simpler, only syntax dependent form of content
assist keyword assist.

3 Content Assist

We introduce the notation of a content assist type. The engineer, who develops the textual
model editor, can define multiple content assist types as part of a notation definition. The
editor uses these content assist types to offer content assist. A content assist type defines
a syntactical context and instructions to collect content assist proposals. When the user
of the editor requests content assist, the editor determines for each content assist type if
the current cursor position is located within the syntactical context that is defined in the
content assist type. Thereby, the editor selects a set of active content assist types. Content
assist proposals are collected for all active content assist types based on the instructions
given in these content assist types. The current model, text, and cursor position is used as
input for these instructions. All the collected proposals are finally presented to the user.

3.1 Determining the Syntactical Context

The following pieces of information about the language are known to the editor engineer
and are also programmed into the editor: the language’s meta-model, the notation’s gram-
mar, and the mapping between grammar and meta-model. Based on this information the
editor engineer has to define possible syntactical contexts. The editor furthermore knows
the current text, a model based on a possibly earlier version of the text, and the cursor
position. Based on this information, the editor has to determine if a syntactical context is
active or not.

What is a syntactical context? A syntactical context is a specific point within the syntax
of a language construct. A syntactical context can be used by an editor to determine
all those positions within a text that describe this point in the instances of the according
language construct. We say that these positions are located in this syntactical context. A
syntactical context is active if the current cursor position is located in this context.

124

example grammar except from a simplyfied OCL grammar:
collection_op_call = expr "->" IDENTIFIER "(" variables "|" expr ")"
op_call = expr "." IDENTIFIER "(" arguments ")"

variable_access = IDENTIFIER

expr = collection_op_call | op_call | variable_access

syntactical context for a symbol content assist: IDENTIFIER

three syntactical contexts for single reduction content assists:
(the underline denotes the symbol that defines the syntactical context)

symbol suffix
I] 1
1.Icollection_op_call = expr "->" IDENTIFIER "(" variables "|" expr)"I
rule
2. op_call = expr "." IDENTIFIER "(" arguments ")"
3. variable_access = expr "." IDENTIFIER

syntactical context for a multiple reduction content assist:
(the underline denotes the position where the next rule is used, the last underlined
symbol defines the syntactical context)

[collection_op_call = expr "->" IDENTIFIER "(" variables "|" expr ")",
expr = variable_ access,
variable_access = IDENTIFIER]

Figure 2: Some examples for syntactical contexts.

How can we define a syntactical context? We distinguish between syntactical contexts
of three complexity levels. The simplest syntactical context is defined by a single terminal
or non-terminal symbol. An assist using such a context is called symbol content assist. A
more complex syntactical context is defined by a symbol, used within a specific grammar
rule. An assist using such a context is called single reduction content assist. Multiple
reduction content assists use a symbol within a specific grammar rule, which again is used
within a specific grammar rule, and so on. Syntactical contexts can be defined using the
data structures: SymbolCA, SingleReductionCAa, and MultipleReductionCA
(in the top of figure 3). Figure 2 shows a few examples for syntactical contexts.

How can we determine if a syntactical context is active or not? We use LR-syntax
analysis to determine whether a syntactical context is active. We emulate continued pars-
ing as if the text following the cursor position is written according to the syntactical con-
text. If the continued parsing is possible, the context is active; if the continued parsing
causes a parse error, the context is not active. For symbol content assists, this means we
try to shift the symbol onto the parse-stack. If that is possible, the context is active. For
a single reduction content assist, we shift the symbol, then shift the symbols in the rule
suffix, and then try to reduce with the context’s grammar rule. If this is all possible, the
context is active. For a multi reduction content assist, we do as in a single reduction content
assist, but after reduction, we try to shift the suffix of the next rule, reduce with this rule,
then continue with the next rule, etc. If we can do so for all parts of the multi reduction
content assist, it is active. Figure 3 shows pseudo-code for this algorithm.

125

definitions

datatype Symbol

array Symbol[] Rule

struct SymbolCA { symbol: Symbol }

struct SingleReductionCA { rule: Rule, symbol: Symbol, suffix : array Symbol[] }
array MultipleReductionCA SingleReductionCA[O..n]

boolean shift(Symbol) // shifts the symbol on the parse stack if possible
boolean reduce(Rule) // reduces the parse stack using the given rule if there is
// a follow up symbol allowing the reduction
boolean reduce(Rule, Symbol) // reduces the parse stack using the given rule if
// possible using the given follow up symbol
algorithm
parse the document using the notation's grammar rules and LR-syntax analysis
stop parsing at the current cursor position
switch type of ca
SymbolCA:
return shift(ca.symbol)
SingleReductionCA:
if not shift(ca.symbol) then return false
for symbol in ca.sufix do
if not shift(symbol) return false
if reduce(ca.rule) return true
MultiReductionCA:
for i = 0; i < ca.length; i++ do
if not shift(calil.symbol) return false
for symbol in calil.sufix do
if not shift(symbol) return false
if (i+1 < ca.length)
if not reduce(calil.rule, cal[i+1].symbol) return false
else
if not reduce(calil.rule) return false
return true;

Figure 3: An algorithm that determines if an input content assist (ca) is active in pseudo-code.

3.2 Collecting Content Assist Proposals

Each content assist type includes instructions to collect proposals. The proposals have
to be collected from the following information: the validity of the syntactical context of
the content assist, the parse-tree created during analysing the syntactical context, and the
current model. We distinguish between three different guality levels for proposals.

For the lowest proposal quality, we only use the syntactical context without any additional
instructions. From the syntactical context, we know which type of element can be inserted
at the cursor position and we simply offer all instances of the according type. Take the OCL
example in figure 2 and the single reduction assist number 2: we propose all identifiers
that reference an operation. Therefore, we collect all operations in the given model. The
problem is that all the proposals are valid based on the abstract syntax of the language,
but not necessarily its static semantics. In the example, we are not constraining the set of
operations to those allowed based on the expression type that the operation is called upon.

126

For a higher quality level, we again use the syntactical context, but now also allow addi-
tional constraints based on the parse-tree. Starting at the node located in the syntactical
context, one can visit all the containers of the syntactical context by navigating the parse-
tree towards its root. Thereby, container refers to containment as defined by composition
in the meta-model. Take the multi reduction content assist in figure 2: navigating from the
variable access to the collection operation call (two containment relations out, respectivly
two parse-tree nodes up), we can access the variables of the collection operation call, and
these are the variables we want to propose.

For the highest proposal quality, we allow proposal constraints based on parse-tree and
model. Previously, using only the syntactical context, we proposed all operations in the
first single reduction content assists of the OCL example in figure 2. But based on parse-
tree and model, we can determine the expression that the operation is called on. We can
determine the expression’s type and all operations allowed for this type. It is now possible
to constrain the set of operations to those allowed by OCL’s operation call semantics.

4 Realisation and Case-studies

The Textual Editing Framework and Content Assist We created the Textual Editing
Framework (TEF) [tef], a programming framework based on eclipse, that allows to create
textual model editors based on the background parsing strategy. TEF editors are based on
already existing EMF meta-models. TEF provides a EBNF-like language, that allows to
define a language’s textual notation. Such a textual notation definition contains a context-
free grammar and binds this grammar to a meta-model. Meta-model elements can be
assigned to grammar elements: grammar rules can be assigned to meta-model classes or
data-types; elements of a rule’s right-hand side can be assigned to attributes and references.
This information allows TEF editors to continuously create EMF models for the edited
text. A TEF editor defined by such textual notation definitions already comprise a serious
of editor features, like syntax-highlighting based on the used terminals or an outline-view
that presents the currently edited EMF model.

TEF editors also provide basic content assist based on a textual notations definition only.
The automatically generated content assist comprises keyword assists and reference as-
sists. Keyword assists are generated for each keyword or special character in the notation.
They use a symbol content assist type to define a syntactical context, and their proposal
collection always provides the terminal itself as the only proposal. Reference assists are
generated for each reference binding in the textual notation definition that refers to a meta-
model reference that defines a non-containment reference. These reference assists use a
single reduction content assist type to define a syntactical context, and their proposal col-
lection provides a list of names from all those model elements that have the meta-type of
the according reference.

There are two ways to customize the automatically generated content assist types. Firstly, a
language engineer can implement callbacks that alter the proposal collection behaviour of
the automatically generated reference assists. Giving parse-tree and model as input, these

127

methods can be used to realise the more advanced proposal quality levels. Secondly, a
language engineer can additionally define own content assist types. Here, the engineer has
to implement certain interfaces to define a syntactical context using Java data-structures
similar to those in figure 3 and he needs to program a proposal collection.

Content Assist for OCL We realised model editors for several example toy languages,
like the expression language in figure 1, and we created more significant editors for EMF’s
meta-modelling language ecore [BSM 03] models and OCL [Obj06] constraints.

The TEF generated OCL editor, for example, automatically provides a content assist for
each operator. Since these keyword assist are defined for a certain syntactical context, op-
erators are only proposed if this operator is syntactically allowed at the according position.
However, these automatically generated assists only reflect OCL’s syntax, and operators
are proposed even if they are not allowed semantically, e.g. not allowed based on operand

types.

OCL contains five kinds of references: references to local variables, i.e. self, operation
parameters, and variables defined in lef-statements; references to the properties of model
elements; references to the operations of model elements; references to types; and ref-
erences to operations of OCL’s collection library. Content assists for all these reference
kinds could be generated with TEF. However, the proposal collections had to be manually
altered for two reasons. Firstly, most references do not reference elements within the OCL
model, but within the model that the OCL is written for. Secondly, we only wanted to
allow proposal that are semantically valid, e.g. only propose properties and operations
defined in the according type. The first alteration was necessary, because TEF’s automat-
ically generated reference assists only rely on the edited model, and not on some external
model. The second alteration is always necessary if the desired content assists have to
reflect the language’s static semantics.

Creating the OCL editor showed lead to the general conclusion that even though TEF
provides reasonable syntactical contexts automatically, and therefore relieves the language
engineer from navigating though abstract syntax trees, etc., there is still lots of manual
programming necessary, if content assist has to be restricted to semantically reasonable
proposals.

5 Related Work

Content assist has a long history, starting from simple language independent approaches
such as hippo completion. Hippo completion proposes any word in a text document re-
gardless of the syntactical context of the cursor. State of the art content assist is based
on the languages syntax and static semantics, in its full potential firstly introduced in the
intelliJ Java IDE and became popular through the eclipse Java Development Tools (JDT).
In JDT, for example, the content assist types for the different references in Java are re-
alised as pieces of Java code. Each of this assist types triggers parsing of the document,
analysis parser and parse tree to determine if its active and collects proposals from the

128

least recently created background Java model. This approach results in multiple instances
of similar code, because many (but not all) content assist types can be realised using the
concepts in this paper.

With model-driven development and domain specific modelling languages, frameworks
where introduced that allowed to create textual model editors more efficiently. Exam-
ple frameworks are TCS [JBK06], TCSSL [MFF*06], MontiCore [KRV07], or [Kle07].
However, realising code-completion in these frameworks, if possible at all, still requires
manual work. Two frameworks provide support for content assists: Safari [CDF+06] and
xText [0DAW].

Safari is a framework to create tooling for context-free grammar-based textual domain
specific languages. Safari allows manual implementation of content assist. This means
that the editor engineer has to realises each content assist type as a piece of Java code,
which takes an AST of the document and the current cursor position as input and produces
a collection of proposals as output. It provides no automatic means for determining if a
syntactical context is active or proposal collection.

The xText framework allows to define textual languages with context-free grammars. It
creates a meta-model, and grammar-to-meta-model mapping from a language defining
grammar, and provides background-parsing text editor based on this meta-model automat-
ically. The xText framework provides automatic reference assists similar to those of TEF,
and allows to manually implement content assist. To manually implement content assists
the editor engineer has to provide pieces of Java code that take a grammar-element and
the model that the edited text represents as input and provide a collection of proposals as
output. The given grammar-element represents the point in the grammar that reflects the
current cursor position. This information allows to realise symbol and single reduction
content assists easily. However, there is no support to realise multiple reduction content
assists.

Besides background parsing, editors can use the model view controller pattern. Such ed-
itors don’t allow users to type arbitrary text, but to use predefined commands to insert
language construct instances. Content assist plays an integral role in these editors, since
models are edited by selecting commands from a list determined by the current syntac-
tical context. But content assist also works intrinsically different, because the text is not
edited by the user, but created by the editor. Frameworks for creating model view con-
troller editors are intentional programming [Sim95] and the meta programming system
(MPS) [Dmi04].

6 Conclusions

We presented techniques to integrate content assist into meta-model based textual model
editors. We showed that it is possible to describe content assists for keywords and refer-
ences and that editors with content assist can be generated from these descriptions auto-
matically. Beyond that, it is possible to even generate the content assist descriptions for
a lower quality of content assist based on notation descriptions, which have to be written

129

anyway. Only for higher quality content assist, manual implementation is necessary to
constrain content assist proposals to those allowed by language specific static semantics.

This paper mainly dealt with content assist for keywords or references. An interesting
subject for future work is content assist for arbitrary syntactical constructs. These could
allow users to insert whole instances of constructs (such as if or loop statements in pro-
gramming languages) opposed to assists for keywords or named references. Another open
point are descriptions to constrain content assist proposals. It should not be necessary for
editor engineers to create these, if the information about language constraints is already
part of the language’s meta-model. It should be possible to use OCL-constraints in the
meta-model to derive constraints for content assist proposals automatically.

References

[APO4] Marcus Alanen and Ivan Porres. A Relation between Context-Free Grammars and Meta
Object Facility Metamodels. Technical report, TUCS, 2004.

[BSMT03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J. Grose.
Eclipse Modeling Framework (The Eclipse Series). Addison-Wesley Professional, Au-
gust 2003.

[CDF"06] Philippe Charles, Julian Dolby, Robert M. Fuhrer, Jr. Stanley M. Sutton, and Mandana
Vaziri. SAFARI: a meta-tooling framework for generating language-specific IDE’s. In
OOPSLA 06: Companion to the 21st ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 722-723, New York, NY,
USA, 2006. ACM.

[Dmi04] Sergey Dmitriev. Language Oriented Programming: The Next Programming Paradigm.
onBoard, (1), November 2004.

[JBKO6] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS:: a DSL for the specification
of textual concrete syntaxes in model engineering. In GPCE '06: Proceedings of the
5th international conference on Generative programming and component engineering,
pages 249-254, New York, NY, USA, 2006. ACM Press.

[K1e07] Anneke Kleppe. Towards the Generation of a Text-Based IDE from a Language Meta-
model. In Proceedings of the Third European Conference, ECMDA-FA 2007, pages pp.
114-129, 2007.

[KRVO7] Holger Krahn, Bernhard Rumpe, and Steven Vélkel. Integrated Definition of Abstract
and Concrete Syntax for Textual Languages. In Gregor Engels, Bill Opdyke, Douglas C.
Schmidt, and Frank Weil, editors, MoDELS, volume 4735 of Lecture Notes in Computer
Science, pages 286—-300. Springer, 2007.

[MFF106] Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michael Hassenforder, Rémi
Schneckenburger, Sébantien Gérard, and Jean-Marc Jézéquel. Model-Driven Analysis
and Synthesis of Concrete Syntax. In Proceedings of the 9th International Conference,
MoDELS 2006, pages pp. 98—110, 2006.

[0AW] openArchitectureWare. See http://www.openarchitectureware.org.

[Obj06] Object Management Group. Object Constraint Language Specification, version 2.0,
May 2006.

130

[Sim95]

[tef]

[WKO6]

Charles Simonyi. The death of computer languages, the birth of Intentional Program-
ming. Technical report, Microsoft Research, 1995.

Textual Editing Framework (TEF).
See http://www.informatik.hu-berlin.de/sam/meta-tools/tef.

Manuel Wimmer and Gerhard Kramler. Bridging Grammarware and Modelware. In
Satellite Events at the MoDELS 2005 Conference, pages 159-168, 2006.

131

