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Abstract: The SSH protocol provides a secure way of accessing remote systems. Besides
traditional password-based authentication mechanisms, it currently only includes public-key
authentication as a cryptographic method. This paper introduces an additional method based
on a zero—knowledge proof of knowledge and the necessary additions to the SSH protocol.
Additionally, we present a proof-of-concept implementation of our zero—knowledge scheme
for OpenSSH, an open source SSH implementation.

1 Introduction

SSH is excessively used for remote administration. Beside traditional password-based login
mechanisms, SSH also offers public key cryptography challenge-response methods to authen-
ticate users. These schemes do have one disadvantage, however. The messages sent during the
authentication process contain information about the user’s secret. Although this information
is not easily accessible by an attacker, some information might nevertheless be leaked. Using
a zero—knowledge scheme, one can be sure that no information whatsoever is leaked about the
user’s secret. Therefore, zero—knowledge schemes are a perfect fit when it comes to user authen-
tication. OpenSSH! is one of the most popular SSH implementations today. Additionally, it is
distributed with an open source license, so the code may be changed and published freely under
the same terms.

The cryptographic concept of zero—knowledge proofs of knowledge was first introduced by Gold-
wasser, Micali and Rackoff in [GMRS85]. For a comprehensive introduction to zero—knowledge,
see [Gol02] or [GolO1, Chapter 4]. A recent user authentication protocol with the properties of
a zero—knowledge identification protocol is the SRP protocol [Wu05]. A patch for enabling SRP
in OpenSSH also exists. Its goal is to provide a secure means for password authentication. Au-
thentication based on the Diffie-Hellman problem is used in the protocol after a private key was
derived from the password using a hash function. Nevertheless, weak passwords make dictionary
and brute force attacks feasible regardless of how secure the authentication process is carried out.
Therefore, a zero—knowledge protocol (ZK protocol) without this disadvantage is desirable. The
zero—knowledge protocol we implement is due to Ohta and Okamoto [OO88]. It is a modifica-
tion and generalization of the well-known Fiat-Shamir scheme [FS86] (U.S. Patent 4,748,668)
with one crucial advantage: it is, to the best of our knowledge, not encumbered by patents. An-
other popular zero-knowledge identification scheme by Guillou and Quisquater [GQS88] is also

Uhttp://www.openssh.com
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patented as U.S. Patent 5,140,634. Although the patents mostly apply to usage with smart cards
or other computationally bounded devices, we wanted to use a scheme that can be freely imple-
mented into OpenSSH.

2 The Ohta-Okamoto zero—-knowledge authentication protocol

Ohta and Okatomo present a sequential version in some detail and discuss the security of a paral-
lel scheme in [OO88], but they do not present the parallel protocol’s actions. Therefore, we will
do this in the following section.

A prover P chooses an RSA-like modulus n (the product of two secret large primes) and k
random integers Si, ..., Sy € Zy, as his private identity keys, and a small integer L. His private
keyis ((Si,...,Sk),n, L). P now computes I; = S;”(mod n) forall 1 < j < k, and publishes
((I1,...,Ix) ,n, L) as his public identity key.

The proving party P wants to prove its purported identity to the verifying party V. To this end,
the following protocol is carried out over ¢ rounds until V' is convinced of the correctness.

1. P chooses a random R € Z,, and sends the witness X = RZ(mod n) to V.
2. V picks a challenge vector (ey, ..., ex) € (Z1,)* at random and sends it to P.

3. PcomputesY = R - Hle S5;%  (mod n) and sends Y as his response.

4. Vaccepts the round if and only if the following equation holds.

k
vi=x-T[5% (modn)
j=1

After t successful rounds, V accepts the proof. The probability that a cheating prover can suc-
cessfully fool an honest verifier is only L~*¢.

We will work in a remote attacker scenario where no assumptions about his power—beyond being
polynomially bounded—are reasonable. Therefore, the probability that a cheater can successfully
fool an honest verifier should be at most 278, Choosing L = 4, k = 10 for the number of identity
keys, and ¢ = 4 as the number of rounds yields the desired probability. We propose to use at least
2048 bits for the length of the modulus 7 to have a margin of security for future developments in
factorization and cryptanalysis. In one authentication pass, each party needs to perform roughly
40 RSA-like operations (exponentiation modulo n) with very small exponents (< L). As L = 4,
this does only have a negligible impact on authentication time in the implementation.

3 Adjustments to the OpenSSH 4.0p1 code base

The format of the extension is a patch that can be applied to the OpenSSH portable source code
before compilation. The zero—knowledge protocol applies only to authentication and leaves other
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parts of the SSH protocol untouched, as due to the nature of zero—knowledge proofs of knowl-
edge, they cannot be used for key distribution.

The source code is divided into three parts: server, client and additional utilities like key generator
or agents for holding keys. Server, client and key generator were modified for handling the
chosen ZK protocol and its keys. Two functions, each named userauth_zk, were implemented
for processing and answering requests, one for the server (auth2-zk.c) and the other for the
client (sshconnect2.c). Only SSHv2 was extended.

The response of the client (Step 3 of the protocol) is received and checked for its correctness by
calling functions of the module that implement the calculations according to the Ohta—Okamoto
zero—knowledge protocol (ohta-okamoto.c). Sending a packet can be achieved by using the
interface for the Binary Packet Protocol provided by OpenSSH. The nifty details of assembling
the packet that really goes out on the wire are hidden in comfortable high—level functions.

In contrast to the server, where every authentication method is implemented in its own imple-
mentation file, at the client side all methods are joined in a single file sshconnect2.c. This file
contains an array of authentication methods and one or more functions specifically for handling
a certain method. The array has to be extended by one element and at least two new functions
have to be introduced: The function userauth_zk sends the initial zero—knowledge user au-
thentication request and generates responses to the challenges issued by the server. The function
input_userauth_zk_ok answers to a SSH.MSG_USERAUTH_ZK_OK received from the server.

The extension of OpenSSH with a zero—knowledge user authentication has led to the introduction
of a new option zZeroKnowledgeAuthentication in ssh_config and sshd_config. Alter-
natively, the user may provide

$ ssh userlhost -o ZeroKnowledgeAuthentication

on the command line. By default zero—knowledge authentication will be used as one of the pre-
ferred user authentication methods (the others being “public key” and “keyboard—interactive”).
Zero-knowledge authentication can be disabled explicitly by passing no to the option shown
above.

Keys are generated with a separate program named ssh-keygen. It enables the user to generate
RSA1, RSA, DSA and 00_zk keys and to modify their optional attributes. The generated keys
are stored in identity files in a . ssh subdirectory of the user’s home directory. OpenSSH uses the
OpenSSL—-API functions for PEM encoding to store RSA and DSA keys in files. This is easily
done, because the RSA and DSA data types are also taken from OpenSSL which provides routines
for PEM encoding and decoding exactly for those key (data) types. In our implementation ZK
keys are written to disk using a custom binary file format. The functions for RSA1 keys were
taken as a template and adapted to handle 00_zK keys. The identity files are accessed by the
client as soon as zero—knowledge user authentication or any method that uses public keys is
started. The private key is needed for calculating the witness or signature, respectively. These
operations are conducted in the method—specific functions implemented in the sshconnect2.c
file. Beside key generation ssh-keygen also offers options for key manipulation like changing
comments for RSA1-style keys and changing the passphrase used for encrypting the private key.
This functionality is not implemented for 00_zK keys, yet.
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4 Security issues and additional information

Privilege separation is an optional mode of running for the server. It increases security by reduc-
ing the runtime in which the server possesses user or even root privileges. These extra privileges
are only needed for binding to port 22 or reading keys. The rest of the code can be executed
without them. Currently the protocol implementation does not work when privilege separation is
enabled. The reason for this is yet unknown.

In [DNS98], Dwork, Naor, and Sahai consider problems with zero—knowledge protocols when the
prover is involved in (polynomially) many proof protocols at the same time. For our application
this scenario is a rather unusual one, so that we do not see a need to consider this setting. The
same is true for the notion of resettable zero—knowledge in [CGGM99]. In this scenario the
attacker is able to reset the verifier, forcing him into the exact same state he had before starting
the protocol.

The patches for the OpenSSH source code, a more detailed documentation of the project, and
additional information about zero—knowledge can be obtained at http://zk—-ssh.cms.ac.
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