Systems Support For Efficient State-Machine Replication

Gerhard Habiger
gerhard.habiger@uni-ulm.de
Ulm University

ABSTRACT

State-Machine Replication (SMR) is a well known approach for the
deployment of highly fault-tolerant services. Recent research has
focused on efficiency improvements, performance optimisation and
novel approaches to underlying concepts of SMR, such as consen-
sus with trusted components, dynamic weights for quorums, or
parallelisation of application code. To increase adoption of SMR
as a basic fault-tolerance technique, we see the need to improve
the current state of the art of SMR even further, and provide four
specific ways in which our research contributes to this goal. In par-
ticular, we present two approaches which make the development
and deployment of SMR services both easier and more efficient, and
talk about two further areas of improvement concerning internal
mechanisms of common SMR architectures.

The goal of this paper is to provide our current understanding
of important issues of current SMR systems as well as to outline
possible future solutions to them.

KEYWORDS

State-Machine Replication, Fault Tolerance, Deterministic Multi-
threading, Deterministic Checkpointing, Consensus

1 INTRODUCTION

State-Machine Replication (SMR) is a well-known approach to
achieve fault-tolerant services [17]. Generally, an SMR service is
modelled as a deterministic state machine. Every request (input)
is deterministically and reliably delivered to all replicas, each pro-
cessing every incoming request in a deterministic way. All correct
replicated state machines will have the same deterministic and con-
sistent state even if a defined number of replicas may fail. SMR can
be used with a crash-stop or crash-recovery model. Additionally,
SMR is one of the few approaches capable of dealing with Byzantine
failures.

Due to its high cost for this high level of reliability, SMR is
usually used for critical services, e.g. coordination and locking
services like Zookeeper [8], etcd [18] and Chubby [4]. However,
the strict determinism requirements of SMR makes development
of such systems complicated. Therefore special systems software,
i.e. mature frameworks and middleware systems are desirable for
the development of SMR-based applications. Only very few such
frameworks are currently available and mature enough for serious
deployment. Interestingly enough, Zookeeper and etcd do not rely

This paper is published under the Creative Commons Attribution-ShareAlike 4.0
International (CC-BY-SA 4.0) license. Authors reserve their rights to disseminate the
work on their personal and corporate Web sites with the appropriate attribution.
FBSYS °19, November 21-22, 2019, Osnabriick, Germany

© 2019 Copyright held by the authors, published under Creative Commons CC BY-SA
4.0 License https://creativecommons.org/licenses/by-sa/4.0/legalcode

https://doi.org/10.18420/fbsys2019-04

Franz J. Hauck
franz.hauck@uni-ulm.de
Ulm University

on frameworks, but deeply integrate SMR mechanisms with ap-
plication code—mainly for performance reasons. This has caused
problems in both projects in the past [10, 14], which demonstrates
how intricately all parts of an SMR system have to fit together in
order for the whole system to work correctly.

1.1 Motivation and Structure

It is our goal to make the development and deployment of SMR
applications more accessible by providing suitable systems software
which aids developers when designing, implementing and deploy-
ing generic applications utilising SMR. This position paper will
outline past and current research activities of our team to support
efficient and accessible SMR. In particular, the following topics will
be expanded upon in the remaining chapters of this paper:

e Whereas many systems execute requests sequentially inside
a replica, we allow concurrent execution based on determin-
istic multithreading. We designed sophisticated and config-
urable deterministic scheduling algorithms, which allow for
parallel processing of requests without the need to define
classes or types of requests beforehand, as is proposed in
recent efficient SMR parallelisation approaches.

e SMR systems often face variable load, e.g. during different
times of day or depending on the weekday or current events.
We designed and implemented a system capable of vertically
scaling CPU cores during runtime, which saves resources
during low-load scenarios without sacrificing peak load ca-
pabilities. Our reconfigurable schedulers allow for even more
scaling decisions, finally leading to fully self-optimising SMR
systems which adapt to the current application, load and
client profiles.

e Input distribution to all replicas typically relies on fault-
tolerant consensus algorithms, e.g. Multipaxos. Consensus al-
gorithm that exploit trusted components improve efficiency
for Byzantine faults, because latency and the number of nec-
essary messages can be reduced. One promising of such algo-
rithms is EBAWA [19]. We identified and repaired a number
of liveness and safety bugs of EBAWA, and even improved it
further to be more efficient.

e Concurrent execution of requests makes consistent check-
pointing in replicas much more difficult due to the uncer-
tainty of changed data in concurrent threads. However, check-
pointing is required to bootstrap new and recover old repli-
cas, and to prune log data that is required for the consensus
algorithm. We implemented several approaches to determin-
istically checkpoint replicas even while concurrent threads
execute requests.

With these contributions, we aim to make SMR more usable and
available to a wider audience. Thus it becomes a basic technology
for critical systems requiring high levels of fault tolerance.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.18420/fbsys2019-04

FBSYS ’19, November 21-22, 2019, Osnabriick, Germany

We want to emphasise that systems support for efficient SMR
deployments is possible, so that impementation and optimisation
details are hidden in a middleware or framework layer. Further we
will show that there are many difficult open issues that are worth
to be solved to attract more users to SMR.

2 RESEARCH AND GOALS

For the main motivations mentioned in our introduction, we will
present our current and past research, as well as the open problems
we are planning to solve.

2.1 Deterministic Scheduling

With SMR systems requiring deterministic execution of requests
in order to stay consistent across all replicas, the easiest way of
implementing such systems keeps all application code in a single
thread and makes sure no explicit randomness is introduced by calls
to PRNGs or similar. Multicore processors have long since taken
over the world and there are significant performance benefits to be
gained by parallelising applications. One approach to parallelise
deterministic applications as required by SMR is to specifically clas-
sify requests into groups such as “conflicting” and “non-conflicting”
or similar. Recent research shows that this approach manages to
yield improved performance [1, 11]. Most of these solutions, how-
ever, require the explicit classification of requests by the application
developer during the development process, which requires the de-
veloper to not only be aware of this problem, but also to learn
and think in terms of the specific parallelisation solution and its
proposed classification scheme. Other solutions speculatively exe-
cute requests which are likely to not interfere, but have to sacrifice
performance whenever this speculation goes wrong [9].

In contrast, a deterministic scheduler for multithreading is appli-
cation-agnostic and treats all requests equally, only requiring de-
velopers to utilise well-known synchronisation techniques like
Mutexes. Any execution of parallelised applications on a determin-
istic scheduler will always yield the same results, given a correct
parallel program with correctly lock-protected shared data regions.

With MAT [16] and UDS [7] we designed two sophisticated and
configurable scheduling algorithms. UDS in particular is flexible
enough to simulate other existing schedulers like MAT, PDS [2]
and Kendo [15]. Since different configurations of the scheduler are
optimal for different application types, UDS has the built-in capa-
bility to deterministically adapt configuration parameters during
runtime, so that an SMR system can adapt itself to a wide variety
of load situations on the fly.

It is already known for a while that there is no one-fits-all so-
lution when it comes to scheduling strategies [5]. Application be-
haviour, request load, number of available cores and the scheduling
algorithm and its configuration heavily interfere. Several problems
like the so-called round-filling delay and unbalanced execution
phases of concurrent threads may reduce concurrency. In worst
case, scheduling degrades to sequential execution providing no ben-
efits at all. However, clever configurations of a flexible scheduler
like UDS can prevent this. Our current efforts are concentrated on
measuring the effects of different UDS configurations on common
application-load profiles of SMR systems. We will show the bene-
fits of this approach, both in regard to the improved performance

Gerhard Habiger and Franz J. Hauck

compared to single-threaded applications, as well as for ease of
development of SMR-capable parallelised programs.

2.2 Self-Optimisation

Since load on a system usually fluctuates over time, it would be de-
sirable to have an SMR system optimising itself according to current
load and resource utilisation. Optimisation targets can for example
be vertically scalable hardware resources like CPU cores, RAM or
network interface speed, or system-specific internal parameters like
queue lengths inside the consensus algorithm or scheduler specific
parameters.

Conceptually speaking, in order to react to changes in load, a
system first needs to learn about changes in resource usage by mon-
itoring. However, since an SMR systems consist of multiple replicas
with possibly different hardware, and are often even deployed in a
Byzantine failure setting, usual monitoring solutions would yield
vastly inconsistent results for different machines, resulting in inde-
terministic reconfiguration and broken systems.

In our research prototypes based on BFT-SMaRt [3], we moved
monitoring inside the replicas and separated optimisation targets
into non-deterministic (e.g. CPU cores) and deterministic (e.g. sched-
uler configuration). For non-deterministic targets, we can simply
monitor each replica’s current resources (e.g. CPU load) and decide
on scaling actions locally. For deterministic targets however, we re-
duced the monitored resources to a single value which is frequently
and deterministically determined between all replicas. Based on
this value, reconfiguration decisions can be made locally and will
be consistent across all replicas.

In a recent paper, we showed that for a properly parallelised ap-
plication, the optimal configuration for different load levels depends
on the current request rate, the request execution time, and—among
others—the number of available cores. Scaling cores has no effect
on the determinism of the SMR cluster, so each machine can freely
choose when and how to scale cores depending on its locally mon-
itored values. In [6], we managed to scale the number of cores
dynamically at runtime to save costs and always meet the current
demand.

We also showed that reconfiguring our deterministic sched-
uler can improve performance for different application types and
loads compared to static configurations like in previous scheduling
algorithms. In contrast to scaling CPU cores, however, reconfig-
uring UDS impacts determinism, so we decide about scheduler-
reconfigurations using a single value derived from the current
request rate in the system, which is consistent across all replicas.

Assembling these parts into one dynamic SMR system would
yield a fully self-optimising platform, which adapts to current re-
source utilisation and load based on deterministic and non-determi-
nistic input values. The benefits of such a system are clear, as they
allow developers and administrators to focus on the performance
of the application itself, instead of fine-tuning system parameters.
Additionally, such a system can save significant resources, which
translates into saved costs in the right setting.

We are currently working on making our prototypes smarter
with respect to their optimisation strategies and plan to publish our
results next year.

2.3 Consensus

Since all replicas in an SMR system require the same totally ordered
input, oftentimes consensus algorithms which are usually similar
to Multipaxos are employed to order incoming requests. Consensus
is expensive and requires a lot of communication overhead before
a decision is reached. Deploying a trusted component reduces the
number of interaction rounds in case of Byzantine failure models
as well as the number of necessary messages. The main reason for
these reductions is that replicas can no longer cheat on messages,
as the trusted component will sign the message and attach a trusted
sequence number before signing. Thus a replica is no longer able
to send additional messages with its sender ID. Instead replicas
always have to be able to show all their messages to other replicas
to demonstrate that they were not cheating.

One promising consensus protocol that deploys such a compo-
nent is EBAWA [19]. EBAWA uses a rotating leader principle, which
reduces the impact of malicious nodes that try to behave normal
but try to slow down the system as much as possible.

We found out that EBAWA contains multiple liveness and safety
bugs, e.g. a situation where a fallen-behind replica can never catch
up, and another where replicas diverge due to indeterministic as-
sumptions about the so-called black list.

We fixed EBAWA’s design and developed an improved version,
which is even faster. The orginal EBAWA algorithm has more or less
sequential decisions, whereas our improvement allows concurrent
decisions up to an @ window as proposed by Lamport [12]. We
further modelled EBAWA and our improved version in PlusCal [13]
in order to verify the found bugs and to validate for bug-freeness.

2.4 Checkpointing

Lastly, for efficiently running a cluster of replicas in the real world,
checkpointing is required not only to enable restarting replicas
without having to re-run all requests ever seen by the SMR system,
but also to prune logs usually created and required by the consensus
algorithm. Further, during consensus a replica may fall behind due
to network latencies or performance problems. If this replica is too
far behind, it is better to load a checkpoint to catch up instead of
trying to execute all missing requests.

Checkpointing becomes incomparably harder for multithreaded
systems, even when using simple stop-the-world approaches, for
example due to inherent problems with the wait/notify synchroni-
sation of threads or thanks to liveness issues when blocking threads
before a checkpoint while others are waiting for their input.

For our internal parallelised prototype SMR system, we worked
on enabling checkpointing with different snapshotting approaches.
We have a working system which in its simplest form utilises a
stop-the-world approach, which waits for all current threads to
finish running before taking a checkpoint.

Future work will have to focus on more efficient snapshotting
approaches, which could for example be capable of doing rolling
snapshots during the execution of parallel threads.

3 CONCLUSION

In the last sections, we presented our research and focus on the
idea of a self-optimising, easy-to-use SMR system. We think that
Byzantine fault-tolerance should be made as accessible as possible.

FBSYS ’19, November 21-22, 2019, Osnabriick, Germany

While frameworks like BFT-SMaRt represented a huge step in that
direction, the inherent single-threaded execution and static config-
uration lack the required dynamicity to satisfy current hardware
designs and variable loads of real world applications.

It is our hope that we can contribute to solving open problems
like the easy development of deterministic concurrent applica-
tions or fully autonomous self-optimisation of highly parametrised
platforms, and extend existing systems software by our newly de-
veloped mechanisms to better support fault-tolerant applications.
Thus, we can make SMR more accessible to a wider audience, in-
creasing its adoption and recognition as one of the most capable
fault-tolerance mechanisms available.

ACKNOWLEDGMENTS

This material is based upon work supported by the DFG under
Grant No. HA 2207/10-1 and 10-2.

REFERENCES

[1] E. Alchieri, F. Dotti, O. M. Mendizabal, and F. Pedone. 2017. Reconfiguring Parallel
State Machine Replication. In Proc. of the IEEE 36th Symp. on Rel. Distr. Sys. (SRDS).
104-113. https://doi.org/10.1109/SRDS.2017.23

C. Basile, Z. Kalbarczyk, and R. K. Iyer. 2006. Active Replication of Multithreaded

Applications. IEEE Trans. Parallel Distrib. Syst. 17, 5 (May 2006), 448-465.

[3] A.Bessani, J. Sousa, and E. E. P. Alchieri. 2014. State Machine Replication for the

Masses with BFT-SMART. In Proc. of the 44th Int. Conf. on Dep. Sys. and Netw.

(DSN)). 355-362.

M. Burrows. 2006. The Chubby Lock Service for Loosely-coupled Distributed Sys-

tems. In 7th Symp. on Oper. Sys. Design and Impl. (OSDI. USENIX Assoc., Berkeley,

CA, USA, 335-350. http://dl.acm.org/citation.cfm?id=1298455.1298487

[5] J. Domaschka, F. J. Hauck, T. Bestfleisch, H. P. Reiser, and R. Kapitza. 2008.
Multithreading Strategies for Replicated Objects. In ACM/IFIP/USENIX 9th Int.
Middlew. Conf.

[6] G. Habiger, F. J. Hauck, J. Kostler, and H. P. Reiser. 2018. Resource-Efficient
State-Machine Replication with Multithreading and Vertical Scaling. In 2018 14th
European Dependable Computing Conference (EDCC). 87-94. https://doi.org/10.
1109/EDCC.2018.00024

[7] F.]. Hauck, G. Habiger, and J. Domaschka. 2016. UDS: A Novel and Flexible
Scheduling Algorithm for Deterministic Multithreading. In 2016 IEEE 35th Sym-
posium on Reliable Distributed Systems (SRDS). 177-186. https://doi.org/10.1109/
SRDS.2016.030

[8] P.Hunt, M. Konar, F. P. Junqueira, and B. Reed. 2010. ZooKeeper: Wait-free Coor-
dination for Internet-scale Systems. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference (USENIXATC’10). USENIX Association,
Berkeley, CA, USA, 11-11. http://dl.acm.org/citation.cfm?id=1855840.1855851

[9] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, M. Dahlin, et al. 2012.
All about Eve: execute-verify replication for multi-core servers. In Proc. of the
10th USENIX Symp. on Oper. Sys. Des. and Impl. (OSDI). 237-250.

[10] K. Kingsbury. 2014. Jepsen: etcd and Consul. https://aphyr.com/posts/
316-call-me-maybe-etcd-and-consul.

[11] R.Kotla and M. Dahlin. 2004. High throughput Byzantine fault tolerance. In Proc.

of the Int. Conf. on Dep. Sys. and Netw (DSN). IEEE, 575-584.

L. Lamport. 2001. Paxos made simple. SIGACT News 32, 4 (2001).

L. Lamport. 2009. The PlusCal Algorithm Language. In Theoretical Aspects of

Computing - ICTAC 2009 (LNCS), Vol. 5684. Springer Berlin Heidelberg, Berlin,

Heidelberg, 36-60.

A. Medeiros. 2012. ZooKeeper’s atomic broadcast protocol: Theory and practice.

M. Olszewski, J. Ansel, and S. Amarasinghe. 2009. Kendo: Efficient Deterministic

Multithreading in Software. In Proc. of the 14th Int. Conf. on Arch. Support for

Progr. Lang. and Oper. Sys. (ASPLOS). ACM, 97-108.

[16] H.P. Reiser, J. Domaschka, F.J. Hauck, R. Kapitza, and W. Schroder-Preikschat.
2006. Consistent Replication of Multithreaded Distributed Objects. In Reliable
Distributed Systems, 2006. SRDS "06. 25th IEEE Symposium on. 257-266.

[17] F. B. Schneider. 1990. Implementing Fault-tolerant Services Using the State

Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299-319.

https://doi.org/10.1145/98163.98167

The Cloud Native Computing Foundation. 2019. etcd Homepage. https://etcd.io/.

G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. 2010. EBAWA: Efficient

Byzantine Agreement for Wide-Area Networks. In 2010 IEEE 12th International

Symposium on High Assurance Systems Engineering. 10-19. https://doi.org/10.

1109/HASE.2010.19

[2

4

==
L

jperguny
&

e
)

https://doi.org/10.1109/SRDS.2017.23
http://dl.acm.org/citation.cfm?id=1298455.1298487
https://doi.org/10.1109/EDCC.2018.00024
https://doi.org/10.1109/EDCC.2018.00024
https://doi.org/10.1109/SRDS.2016.030
https://doi.org/10.1109/SRDS.2016.030
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
https://doi.org/10.1145/98163.98167
https://etcd.io/
https://doi.org/10.1109/HASE.2010.19
https://doi.org/10.1109/HASE.2010.19

	Abstract
	1 Introduction
	1.1 Motivation and Structure

	2 Research and Goals
	2.1 Deterministic Scheduling
	2.2 Self-Optimisation
	2.3 Consensus
	2.4 Checkpointing

	3 Conclusion
	Acknowledgments
	References

