
cbe doi:10.18420/sicherheit2018_07

H. Langweg, M. Meier, B.C. Witt, D. Reinhardt et al. (Hrsg.): Sicherheit 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 79

SDN Ro2tkits: A Case Study of Subverting A Closed Source
SDN Controller

Christian Röpke1

Abstract: An SDN controller is a core component of the SDN architecture. It is responsible for
managing an underlying network while allowing SDN applications to program it as required. Because
of this central role, compromising such an SDN controller is of high interest for an attacker. A recently
published SDN rootkit has demonstrated, for example, that a malicious SDN application is able to
manipulate an entire network while hiding corresponding malicious actions. However, the facts that
this attack targeted an open source SDN controller and applied a specific way to subvert this system
leaves important questions unanswered: How easy is it to attack closed source SDN controllers in the
same way? Can we concentrate on the already presented technique or do we need to consider other
attack vectors as well to protect SDN controllers?

In this paper, we elaborate on these research questions and present two new SDN rootkits, both
targeting a closed source SDN controller. Similar to previous work, the first one is based on Java
reflection. In contrast to known reflection abuses, however, we must develop new techniques as the
existing ones can only be adopted in parts. Additionally, we demonstrate by a second SDN rootkit that
an attacker is by no means limited to reflection-based attacks. In particular, we abuse aspect-oriented
programming capabilities to manipulate core functions of the targeted system. To tackle the security
issues raised in this case study, we discuss several countermeasures and give concrete suggestions to
improve SDN controller security.

Keywords: Software-defined networking; SDN controller security; SDN rootkits

1 Introduction

Academia and industry have brought forward Software-Defined Networking (SDN) for quite a
long time already. The key driver was (and probably is) the OpenFlow protocol [Mc08] which
was introduced in 2008. From then on, many studies have been presented which vary from
OpenFlow improvements [Opa], numerous SDN controllers [Gu08, Mc, Fl, Opb, ON, Yo17],
network simulation software [LHM10], hardware switches with OpenFlow support to various
SDN applications [HPa]. In addition, SDN is on the big player’s business agenda including
network vendors such as Cisco and Juniper, software vendors such as Microsoft and Oracle,
network operators such as Verizon and Deutsche Telekom, and data center operators such
as Google and Facebook. Major reasons for this are the ability to solve pressing network
1 Ruhr-Universität Bochum, Lehrstuhl für Systemsicherheit, Universitätsstrasse 150, 44801 Bochum, NRW,

christian.roepke@rub.de

cba doi:10.18420/sicherheit2018_07

H. Langweg, M. Meier, B.C. Witt, D. Reinhardt (Hrsg.): Sicherheit 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 95

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/sicherheit2018_07
christian.roepke@rub.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2018_07


80 Christian Röpke

problems easier than in the past [FRZ13], the potential to reduce costs [Ho12, Va17], and
opportunities to improve network security [Sh16].

In software-defined networks, SDN controllers play a crucial role [Op13, Op14]. They
primarily connect network hardware (aka. SDN switches) and network software which
is responsible for making forwarding decisions (aka. SDN applications). Programming
SDN switches is performed either proactively by inserting flow rules into an SDN switch
or reactively by reacting on packets, which are delegated to an SDN controller because
of a missing flow rule. For the benefit of SDN applications, SDN controllers provide a
global view of the network and allow operating on it in an abstract manner. Obviously,
this control system is of high interest for an attacker as compromising it would allow
network-wide adverse manipulations. As recent work [RH15b] concentrates on open source
SDN controllers, it is still unclear whether closed source systems are affected equally serious.
It is also uncertain if simply blocking Java reflection for SDN applications would solve the
problem, or if an attacker can implement SDN rootkits using other techniques.

To complement existing work, we present two new SDN rootkits and use them as demonstra-
tors to discuss these open issues. The first one is based on Java reflection which is enabled
by default even for closed source SDN controllers. The second one takes advantage of
Aspect-Oriented Programming (AOP) which must not be supported by an SDN controller
in its default settings. However, we demonstrate how an attacker can add required AOP
software via bypassing a corresponding security mechanism (i. e., signature validation). In
order to run these attacks, we target the HP VAN SDN controller [HPb] as it is supposed to
provide robust security [HPc] while several release generations indicate a certain degree of
maturity.

2 Background

2.1 Java Reflection in SDN Rootkits

Java is an object-oriented programming language which includes that access to class
internals can be restricted. By choosing an access modifier like public or private, a developer
can specify which other classes can have access to a variable or method of a class. Especially,
private variables and methods are not supposed to be accessible by objects of other classes.
However, Java also provides a mechanism called reflection [Ora] which allows to bypass
this mechanism. The already presented SDN rootkit [RH15b] takes advantage of this
mechanism and modifies private fields as well as invokes private methods. In particular,
private field manipulation was used for both removing rootkit artifacts from internal
inventories and replacing internal services by malicious versions. In the latter case, source
code of OpenDaylight was used to re-implement internal services with malicious filtering
functions. To replace such an internal service, an object of a modified version was created
which was then set to a private variable which was supposed to point to the original service.

96 Christian Röpke



SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 81

In addition, private methods were invoked in order to bypass internal cache updates which
are supposed, among others, to keep internal flow rule databases up-to-date. By skipping
such updates, the SDN rootkit was able to hide manipulations from these databases, which
are used by internal services as well as by SDN applications to monitor network changes.

2.2 Aspect-Oriented Programming

Aspect-oriented programming is a programming paradigm which complements object-
oriented programming by enabling cross-cutting concerns [Ki97]. It brings flexibility and is
especially capable of improving security which is in fact a cross-cutting concern [DWJP05,
PS08, VBC01, DWVDD02]. So-called aspects act similar to classes while containing,
among others, so-called advices and pointcuts. An advice specifies the code manipulation
and a pointcut defines a point in the program flow where such an advice is supposed to be
applied. A typical use case for AOP is adding log functionality, for example, to observe
when a certain method is called and what arguments it receives. Instead of modifying all
classes which use such a method, AOP enables to define an aspect which modifies all the
existing code at once. For example, additional code can be executed before or after a method
of interest. In case of Java, code manipulation is typically implemented on the byte code
level by weaving manipulations either into already compiled classes (compile-time weaving)
or while loading a class (load-time weaving). Thus, AOP for Java allows to modify closed
source systems such as SDN controllers, for example, by adding security checks before
accessing critical controller functions.

2.3 Attacker Model

Throughout the rest of this paper, we assume an attacker which is able to install a
malicious SDN application. This can be achieved in several ways: (i) an attacker can
lure administrators into installing such an application, (ii) a security vulnerability can be
exploited to bypass the security mechanism taming such applications as a whole [Orb, Orc]
or in parts [Orf, Ore, Ord], and (iii) an attacker can steal a certificate in order to correctly
sign a malicious application[FMC11]. In addition, we allow this malicious SDN application
to use SDN controller services in the same way other SDN applications can do. This
includes, for example, reading the network topology (e. g., to look for an interesting target)
and re-programming network devices (e. g., to manipulate the network).

3 Subverting the HP Controller

An SDN rootkit faces several challenges with respect to its primary goal, i. e., hiding
its existence. First, it is obliged to hide the components which become visible during its

SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 97



82 Christian Röpke

installation. For instance, SDN controllers typically add information to internal inventories
such as a list of installed SDN applications and a list of applications, which are allowed to
handle network packets. In addition, the HP controller provides a protection mechanism
which is supposed to prevent the installation of unwanted SDN applications. In particular,
an SDN application’s signature is validated during the installation procedure in order to
prevent unsigned software.

Second, an SDN rootkit typically wants to hide malicious network manipulations such as
added malicious flow rules. As providing the current network state is a core function of
SDN controllers, also the HP controller provides a corresponding interface. An attacker
must manipulate this service in order to hide the presence of adverse network manipulations,
for example, from a monitoring application.

Third, network manipulations typically trigger network events which are observed by SDN
controllers. As this can reveal malicious network manipulations, an attacker is obviously
interested in hiding corresponding artifacts as well. In case of OpenFlow, for example,
flow_mod messages are generated when (re)-programming SDN switches and flow_removed
events are sent to inform SDN controllers about flow rule removals. In order to monitor such
network events, the HP controller provides two separate listener services. On the one hand,
a so-called flow listener allows to monitor flow_mod OpenFlow messages. On the other
hand, a so-called message listener enables the observation of various messages including
flow_mod and flow_removed.

Fourth, we face additional challenges with respect to closed source SDN controllers. On the
one hand, it is more difficult to understand the internal functioning of an SDN controller.
As this is particularly important to identify interesting spots within an SDN controller, it
can complicate subverting critical functions significantly. On the other hand, abusing Java
reflection in the way used by previous work [RH15b] does not work anymore. For example,
replacing a controller component by implementing a malicious version which is based on
the SDN controller’s source code (see Section 2.1) is not possible. This reflection-based
technique was, however, essential to hide critical SDN rootkit artifacts.

3.1 Abusing Java Reflection

As mentioned before, our first SDN rootkit uses Java reflection to subvert the HP controller.
As solving aforementioned challenges varies in difficulty, we describe this rootkit’s solutions
depending on its difficulty and start with the most difficult one. The most challenging parts
are to understand the internal functioning of the HP controller and to find suitable spots,
which must be manipulated in order to hide malicious network manipulations. Based on the
HP controller’s programming guide, its API documentation, and by means of decompiling
byte code, an attacker is able to solve these challenges despite the controller’s complexity.
For example, the documentation says that getFlowStats() is responsible for listing installed
flow rules and that it is provided by a so-called ControllerService, which is implemented

98 Christian Röpke



SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 83

by a class called ControllerManager.class. To list interesting private fields of this class
(e. g., FlowTrk flowTrk and ListenerService ls), we use Java reflection. Note that an attacker
can also take advantage of a Java decompiler such as Procyon[Mi] to ease this process.
According to documentation, a flow tracker is a sub-component of the controller service that
is responsible to manage reading and writing of flow rules. In particular, it is involved in
case a controller component or an SDN application calls getFlowStats() in order to request a
list of currently installed flow rules. The documentation does not say much about a listener
service, but it seems that it is responsible for managing a list of message listeners which,
for example, can receive OpenFlow multipart response messages. This is indicated by a
private variable called msgHandlers which contains, among others, the message listener of
the aforementioned flow tracker. Such OpenFlow messages are particularly important in this
context as they also contain a list of current flow rules. Based on these insights, we abuse
Java reflection and subvert critical functions of the HP controller without re-using its source
code. Figure 1 illustrates the mechanism we implement to hide malicious flow rules, to fake
the existence of removed legitimate flow rules, and to hide adversely modified flow rules.

Controller Service

OpenFlow Controller

Flow Tracker

Message 
Listener

REST API
Internal 

SDN Apps
Rootkit

External 
SDN Apps

Message 
Listener

Controller 
Components

Listener Service

Fig. 1: Hiding network manipulations

In detail, we hook the control flow when getFlowStats() is called as this function is
responsible for returning the current network state in terms of installed flow rules. The
normal control flow starts when an SDN application (or a controller component) calls this
controller service’s function. In turn, this service uses its flow tracker sub-component and
passes this request towards the network. The flow tracker in turn uses the listener service
which in turn uses a component called openflow service that sends OpenFlow multipart

SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 99



84 Christian Röpke

request messages to the network. As a result, the corresponding SDN switch returns a
multipart response message including all of its flow rules including the malicious ones.
Inside the HP controller, receiving such an OpenFlow message generates an event which is
passed to the aforementioned flow tracker’s message listener. Normally, this flow tracker
would pass the event data to the controller service, which returns the requested flow rules to
the component which was calling getFlowStats() in the first place. However, we hook into
this control flow in order to enable our rootkit to filter out rootkit related data before it is
passed to the controller service. To achieve this, we implement a message listener which
any SDN application is allowed to do. Since the flow tracker’s message listener is called
before the one of our rootkit, filtering out data is not effective yet. For this purpose, we must
manipulate the control flow in a way that the rootkit’s message listener is executed before
or instead of the flow tracker’s one. By applying Java reflection we manipulate the private
list of message handlers (i. e., msgHandlers), which is managed by the listener service, and
replace the flow tracker’s message listener object by our rootkit’s listener. From now on,
all event data, which is supposed to reach the flow tracker’s message listener, is in fact
passed to our rootkit. In order to keep the HP controller functioning, we also invoke the
flow tracker’s message listener (i. e., the event function of its message listeners) after we
filter out rootkit related data. Thus, we are able to to hide malicious network manipulations
from all controller components as well as from all potential SDN security applications.

The remaining challenges (i. e., hiding rookit components and hiding from network events)
are solved as follows. In order to hide artifacts generated through a normal installation
procedure, we avoid using the controller’s web interface, but use the controller’s deploy
folder virgo/pickup. As this folder can be used for hot deployment tasks, the HP controller
automatically attempts to install all files which are copied to this folder. When installing
our rootkit like this, it neither appears in the list of installed SDN application nor does the
HP controller’s signature validation mechanism raises any alert. Note that other popular
SDN controllers such as OpenDaylight [Opb] and ONOS [ON] also support such a deplay
folder. Hiding this bundle from controller internal functions can be achieved as presented
in previous work [RH15b]. With respect to hiding from network events, the HP controller
provides two valuable services: (i) flow listeners and (ii) message listeners. Both are suitable
to monitor critical network messages such as flow_mod and flow_removed. These can
be used, for example, by a monitoring application in order to observe what flow rules
are actually added, modified, and deleted. By comparing this view of the network with
data provided by getFlowStats(), differences in terms of hidden manipulations can be
revealed. Unfortunately, there are two drawbacks regarding these components. First, the
flow listener function does not work correctly in version 2.7.10 (and probably earlier
versions) but only in the newest version (i. e., 2.7.18). Second, registered flow listeners get
informed about such critical network events only if a special flow programming function is
used (i. e., sendConfirmedFlowMod()). For example, the controller’s REST API uses this
function which is based on OpenFlow barrier response messages. However, in case we call
sendFlowMod() no such barrier request messages are generated after sending a flow_mod
message. Thus, our rootkit can add, modify, and delete flow rules without notifying a

100 Christian Röpke



SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 85

flow listener. In a similar way, registered message listeners get also notified only in case
sendConfirmedFlowMod() is used, which our SDN rootkit does not.

To evaluate this first SDN rootkit, we run several tests. First, we test default monitoring
capabilities of the HP controller and potential monitoring capabilities of SDN security
applications. Former tests include reviewing the list of SDN applications provided via the
controller’s web interface, and observing the list of flow rule statistics which is provided by
the web interface as well as by the controller’s REST API. For the latter tests, we implement
an SDN application with comprehensive monitoring capabilities. As a result, we find that
our rootkit is capable of hiding its artifacts from all these tests. In addition, we not only
test the rootkit against the initially targeted HP controller version (i. e., 2.7.10) but also
against other versions (i. e., v2.6.11, v2.7.10, v2.7.16, and the newest version 2.7.18). To
attack all these versions, only a few changes are necessary. Regarding v2.6.11, we recompile
our rootkit with the SDK shipped with this controller version. With respect to v2.7.18, we
change a single letter in the rootkit code as in this controller version a variable’s name
changes from ls to lm.

3.2 Abusing Aspect-Oriented Programming

Our second SDN rootkit uses aspect-oriented programming instead of Java reflection.
Since by default the HP controller only provides limited AOP support via the Spring AOP
framework [Ro], we install and use AspectJ [Xe] which is more powerful. To achieve this,
we include AspectJ-related software within the rootkit package. Then, during the installation
of this rootkit the HP controller is configured appropriately. In particular, the rootkit extracts
AspectJ files to the correct folders, manipulates HP controller configuration files to add
AspectJ support, and finally triggers a controller restart. As adding AspectJ support is
achieved during runtime, an attacker can used it as this capability were enabled by default.
Note that an attacker may find a way to use the AOP support, which is shipped with the HP
controller, instead of AspectJ.

Based on insights gained during the implementation of the first rootkit, we solve several
challenges in the same way. In particular, finding suitable spots within the HP controller,
hiding rootkit artifacts generated during its installation, and hiding from network events are
solved in the same fashion as described before (see Section 3.1). The remaining and more
interesting challenge is replacing Java reflection by AOP as this would allow an attacker to
subvert SDN controllers although Java reflection is prohibited. For this purpose, our second
rootkit uses AspectJ to replace entire methods in order to hook the HP controller’s normal
control flow. Instead of manipulating a list of message listeners via Java reflection, this
eases subverting SDN controllers significantly.

Figure 2 shows how this is achieved to hide malicious flow rules. First, we define a pointcut
to specify a point during the execution of the getFlowStats method. Then, we replace
the original method by our own one by using an around advice. Now, in case OpenFlow

SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 101



86 Christian Röpke

pointcut pc(DataPathId d,TableId t): call(* *.getFlowStats(DataPathId,TableId)) && args(d,t);

List<MBodyFlowStats> around(DataPathId d, TableId t) : pcName(d, t) {

// get actual network state

List<MBodyFlowStats> orig = proceed(d, t);

// create filtered data set

List<MBodyFlowStats> filtered = new ArrayList<MBodyFlowStats>();

for (int i = 0; i < orig.size(); i++) {

for (int j = 0; j < flows_to_hide.size(); j++) {

// if current flow rule should NOT be hidden, add to filtered

}

}

return filtered;

}

Fig. 2: AspectJ Example of Hiding Adverse Network Manipulations

messages are received by the HP controller, this replacement can handle them. For the
purpose of hiding malicious flow rules, we compare the received list of installed flow rules
with a list of flow rules to hide. In case of a hit, we filter it out. Finally, we return a set of
filtered flow rules to the caller of getFlowStats(), which is typically an SDN application
or a controller component. As a result, our AOP-based rootkit is able to hide malicious
network manipulations from the HP controller successfully. In order to demonstrate the
effectiveness of this rootkit, we re-run the tests performed to evaluate our first rootkit. This
includes reviewing the list of SDN applications and observing the list of flow rule statistics
both provided by the controller’s web interface as well as by the controller’s REST API, and
running an SDN application which implements monitoring capabilities.

4 Limitations and Discussion

Since our SDN rootkits take advantage of Java-specific capabilities, these attacks primarily
affect Java-based SDN controllers. However, SDN controllers written in other programming
languages also suffer from malicious SDN applications [Sh14]. In particular, AOP support
is not limited to Java and, thus, can enable attackers to replace critical code, for example,
for C++-based SDN controllers [OS]. In addition, our second rootkit currently requires the
HP controller’s hot deployment mechanism in order to install additional software. As many
closed source SDN controllers are based on OpenDaylight [SD15], which also supports
such a mechanism, an attacker can abuse this in a similar fashion. Furthermore, we target
only one closed source SDN controller as attacking various systems would go beyond the
scope of this work. Nevertheless, we argue that several other systems are equally affected
as many closed source SDN controllers use OpenDaylight as a basis, which is currently
neither able to prevent Java reflection nor AOP operations.

To tackle the raised security concerns, we suggest improvements which are specific to the
HP controller, on the one hand, and generally applicable for SDN controllers, on the other
hand. With respect to the HP controller, flow and message listeners should be enabled to
receive flow programming related events independent of barrier messages. This would

102 Christian Röpke



SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 87

allow a more realistic observation of messages which are related to network manipulations.
Furthermore, validating signatures of software should be activated for the entire controller
platform. In particular, we strongly recommend to cover the controller’s hot deployment
folder virgo/pickup. Moreover, we suggest to ship the controller with default monitoring
capabilities which is capable of finding obvious inconsistencies. In addition, a mechanism
should be provided which protects critical controller mechanisms from being hijacked.
Particularly, invoking message listeners must be protected in a way that listeners of SDN
applications are not processed before the ones of controller components.

In more general, SDN controller vendors may be interested in implementing security
improvements such as (i) putting SDN applications into a sandbox, (ii) tracking reflection
and AOP related critical operations, and (iii) comparing the actual network state with
the state provided to SDN applications. In particular, several sandbox systems have been
proposed already [RH15a, Sh14, CTB16, Yo17]. With such a system, our Java reflection
and AOP based attacks can be prevented, for example, by denying access to corresponding
critical Java operations. However, it is worth noting that the use of such operations is not
malicious per se and, thus, SDN applications can use them in a benign manner as well.
Hence, we suggest to track corresponding critical operations in order to prevent only a
malicious utilization. Another possibility is to compare the actual network state provided by
network devices with the network view provided to SDN applications. Hereby, discrepancies
such as hidden flow rules can be easily revealed by a dual-view comparison [Ta17].

5 Related Work

The problem of malicious SDN applications was first raised by Porras et al. [Po12]. The
authors presented a new technique which enables attackers to bypass existent flow rules
by exploiting the standard OpenFlow instructions set and goto. Shin et al. [Sh14] and
Röpke et al. [RH15a, RH16] extended this work by presenting SDN applications which can
harm SDN controllers by implementing rudimentary malicious logic. For this purpose, the
authors exploited the fact that many SDN controllers run their SDN applications within
the same execution environment. In addition, Röpke et al. [RH15b] demonstrated a more
sophisticated malicious SDN application which is able to compromise an SDN controller
and, thus, an entire SDN via abusing Java reflection. Complementary to aforementioned
research, we adopt Java reflection-based attacks to a closed source SDN controller and,
additionally, present an AOP based technique to compromise SDN controllers. Although
manipulating Java programs via AOP is not new in general [Wi09], abusing AspectJ to
subvert SDN controllers is new in the context of SDN.

6 Conclusion

In this paper, we present two new SDN rootkits which aim to subvert a closed source
SDN controller. The first one extends existing Java reflection based attacks while the

SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 103



88 Christian Röpke

second one abuses aspect-oriented programming techniques to subvert critical controller
functions. Both rootkits are able to compromise the HP controller in a default setup and both
attacks do subvert this controller on such a deep level that even multiple release versions
are affected. Clearly, this shows that an SDN rootkit is not only a severe threat to open
source SDN controllers but also to closed source ones. We also demonstrate that preventing
SDN applications from accessing reflection-related operations is not enough to protect
SDN controllers. Further attack vectors must be considered. Moreover, we find that using
Java reflection to subvert SDN controllers heavily depends on a concrete implementation.
Thus, compromising another open or closed source SDN controller probably raises new
challenges with respect to finding suitable spots for hooking the control flow. To prevent
such attacks, we finally discuss several countermeasures including concrete suggestions to
improve security of the targeted SDN controllers.

References
[CTB16] Chandrasekaran, Balakrishnan; Tschaen, Brendan; Benson, Theophilus: Isolating and

Tolerating SDN Application Failures with LegoSDN. In: ACM Symposium on SDN
Research. 2016.

[DWJP05] De Win, Bart; Joosen, Wouter; Piessens, Frank: Developing Secure Applications
through Aspect-Oriented Programming. Aspect-Oriented Software Development,
2005.

[DWVDD02] De Win, Bart; Vanhaute, Bart; De Decker, Bart: Security through Aspect-Oriented
Programming. Advances in Network and Distributed Systems Security, 2002.

[Fl] Floodlight. www.projectfloodlight.org/floodlight/, Accessed: 2018-02-13.

[FMC11] Falliere, Nicolas; Murchu, Liam O; Chien, Eric: W32. stuxnet dossier. White paper,
Symantec, 2011.

[FRZ13] Feamster, Nick; Rexford, Jennifer; Zegura, Ellen: The Road to SDN. ACM Queue:
Tomorrow’s Computing Today, 2013.

[Gu08] Gude, Natasha; Koponen, Teemu; Pettit, Justin; Pfaff, Ben; Casado, Martín; McKeown,
Nick; Shenker, Scott: NOX: Towards an Operating System for Networks. ACM
SIGCOMM Computer Communication Review, 2008.

[Ho12] Hoelzle, Urs: OpenFlow @ Google. Open Networking Summit, 2012.

[HPa] HP Open Ecosystem Breaks Down Barriers to Software-Defined Networking. www.
hp.com, Accessed: 2018-02-13.

[HPb] HP VAN SDN Controller. www.hp.com, Accessed: 2018-02-13.

[HPc] HP Virtual Application Networks SDN Controller: The building block of HP SDN
ecosystem. www.hp.com, Accessed: 2018-02-13.

[Ki97] Kiczales, Gregor; Lamping, John; Mendhekar, Anurag; Maeda, Chris; Lopes, Cristina;
Loingtier, Jean-Marc; Irwin, John: Aspect-Oriented Programming. In: European
conference on object-oriented programming. 1997.

104 Christian Röpke

www.projectfloodlight.org/floodlight/
www.hp.com
www.hp.com
www.hp.com
www.hp.com


SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 89

[LHM10] Lantz, Bob; Heller, Brandon; McKeown, Nick: A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks. In: ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking. 2010.

[Mc] POX SDN Controller. github.com/noxrepo/pox/, Accessed: 2018-02-13.

[Mc08] McKeown, Nick; Anderson, Tom; Balakrishnan, Hari; Parulkar, Guru; Peterson, Larry;
Rexford, Jennifer; Shenker, Scott; Turner, Jonathan: OpenFlow: Enabling Innovation
in Campus Networks. ACM SIGCOMM Computer Communication Review, 2008.

[Mi] Procyon. bitbucket.org/mstrobel/procyon/, Accessed: 2018-02-13.

[ON] Open Network Operating System. onosproject.org, Accessed: 2018-02-13.

[Opa] OpenFlow Switch Specification. www.opennetworking.org, Accessed: 2018-02-13.

[Opb] OpenDaylight Project. www.opendaylight.org, Accessed: 2018-02-13.

[Op13] Software-Defined Networking: The New Norm for Networks. www.opennetworking.
org.

[Op14] SDN Architecture Overview (ONF TR-504). www.opennetworking.org.

[Ora] Java Reflection API. docs.oracle.com/javase/7/docs/technotes/guides/
reflection/, Accessed: 2018-02-13.

[Orb] Security Alert for CVE-2012-4681. www.oracle.com, Accessed: 2018-02-13.

[Orc] Security Alert for CVE-2013-0422. www.oracle.com, Accessed: 2018-02-13.

[Ord] Sun Alert 1000148.1. download.oracle.com/sunalerts/, Accessed: 2018-02-13.

[Ore] Sun Alert 1000560.1. download.oracle.com/sunalerts/, Accessed: 2018-02-13.

[Orf] Sun Alert 1000975.1. download.oracle.com/sunalerts/, Accessed: 2018-02-13.

[OS] AspectC++. www.aspectc.org, Accessed: 2018-02-13.

[Po12] Porras, Philip; Shin, Seungwon; Yegneswaran, Vinod; Fong, Martin; Tyson, Mabry;
Gu, Guofei: A Security Enforcement Kernel for OpenFlow Networks. In: ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking. 2012.

[PS08] Phung, Phu H; Sands, David: Security policy enforcement in the OSGi framework using
aspect-oriented programming. In: 2008 32nd Annual IEEE International Computer
Software and Applications Conference. 2008.

[RH15a] Röpke, Christian; Holz, Thorsten: Retaining Control Over SDN Network Services. In:
International Conference on Networked Systems. 2015.

[RH15b] Röpke, Christian; Holz, Thorsten: SDN Rootkits: Subverting Network Operating
Systems of Software-Defined Networks. In: Symposium on Recent Advances in
Intrusion Detection. 2015.

[RH16] Röpke, Christian; Holz, Thorsten: On Network Operating System Security. International
Journal of Network Management, 2016.

SDN Ro2tkits: A Case Study of Subverting A Closed Source SDN Controller 105

github.com/noxrepo/pox/
bitbucket.org/mstrobel/procyon/
onosproject.org
www.opennetworking.org
www.opendaylight.org
www.opennetworking.org
www.opennetworking.org
www.opennetworking.org
docs.oracle.com/javase/7/docs/technotes/guides/reflection/
docs.oracle.com/javase/7/docs/technotes/guides/reflection/
www.oracle.com
www.oracle.com
download.oracle.com/sunalerts/
download.oracle.com/sunalerts/
download.oracle.com/sunalerts/
www.aspectc.org


90 Christian Röpke

[Ro] Spring Framework Reference Documentation. docs.spring.io/spring/docs/
current/spring-framework-reference/html/, Accessed: 2018-02-13.

[SD15] SDxCentral: SDN Controllers Report. www.sdxcentral.com, 2015.

[Sh14] Shin, Seungwon; Song, Yongjoo; Lee, Taekyung; Lee, Sangho; Chung, Jaewoong;
Porras, Phillip; Yegneswaran, Vinod; Noh, Jiseong; Kang, Brent Byunghoon: Rosemary:
A Robust, Secure, and High-Performance Network Operating System. In: ACM
SIGSAC Conference on Computer and Communications Security. 2014.

[Sh16] Shin, Seungwon; Xu, Lei; Hong, Sungmin; Gu, Guofei: Enhancing Network Security
through Software Defined Networking (SDN). In: Proceedings of the 25th International
Conference on Computer Communication and Networks. 2016.

[Ta17] Tatang, Dennis; Quinkert, Florian; Frank, Joel; Röpke, Christian; Holz, Thorsten:
SDN-Guard: Protecting SDN controllers against SDN rootkits. In: Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2017 IEEE Conference
on. 2017.

[Va17] Vahdat, Amin: Cloud Native Networking. Open Networking Summit, 2017.

[VBC01] Viega, John; Bloch, JT; Chandra, Pravir: Applying Aspect-Oriented Programming to
Security. Cutter IT Journal, 2001.

[Wi09] Williams, Jeff: Enterprise Java Rootkits: Hardly anyone watches the developers.
BlackHat USA, 2009.

[Xe] The AspectJ Programming Guide. eclipse.org/aspectj/doc/next/progguide/
index.html, Accessed: 2018-02-13.

[Yo17] Yoon, Changhoon; Shin, Seungwon; Porras, Phillip; Yegneswaran, Vinod; Kang,
Heedo; Fong, Martin; O’Connor, Brian; Vachuska, Thomas: A Security-mode For
Carrier-grade Sdn Controllers. In: Anual Computer Security Applications Conference.
2017.

106 Christian Röpke

docs.spring.io/spring/docs/current/spring-framework-reference/html/
docs.spring.io/spring/docs/current/spring-framework-reference/html/
www.sdxcentral.com
eclipse.org/aspectj/doc/next/progguide/index.html
eclipse.org/aspectj/doc/next/progguide/index.html

