Probabilistic Event Processing for Situational Awareness

Davy Preuveneers', Andreas D. Landmark?, Leendert W.M. Wienhofen?
IBBT-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
2Department of Computer and Information Science, Norwegian University of Science and
Technology (NTNU), Sem Szlandsv 7-9, NO-7489 Trondheim, Norway

davy.preuveneers @cs.kuleuven.be
andreala@idi.ntnu.no
leendert.wienhofen @idi.ntnu.no

Abstract: Over the last century the continuous innovation of technology, coupled with
a steady increase in the size of the healthcare organizations, has created a need for in-
formation systems supporting healthcare professionals with their daily tasks and deci-
sions. Modern hospitals are full of technology producing electronic records of events
and activities, with the opportunity of these events culminating in a wealth of informa-
tion that these semi-autonomous experts can tap into to improve situational awareness,
facilitate coordination and take better informed decisions. However, processing these
footprints, contextualizing and inferring over them presents several interesting chal-
lenges to the current state of Complex Event Processing methods. This article looks at
challenges presented by an information system for perioperative process support and
how contextualization and adequate tool support can provide the essential backdrop
for meaningful inference.

1 Background

Clinical work processes can resemble non-deterministic processes, at least when it comes
to the core activities that determine clinical work. As problem solving activities, in which
several actors participate, each from their own domain of knowledge, creating detailed
models of clinical processes can be difficult. The exact flow of control (the trajectory of
actions performed) is determined by the problem to be solved (e.g. the health issue of the
patient) and the decisions that individual actors make, based on their assessment of this
problem and their knowledge. This means that different problem solving activities can
interfere and due to matters of urgency or lack of resources, the ordering of the activities
will vary given the local circumstances.

The overall objective of COSTT ! is to evaluate and design novel ICT support for a selec-
tion of clinical processes. Our belief is that efficient support can be achieved not through
explicit control of the flow of work, but rather by providing all actors involved an easy ac-
cessible, comprehensible overview of the progress of a process and its current status. By
making the process transparent to all those involved, the actors can coordinate their own
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work. So, coordination is facilitated but not dictated, which is often favorable in complex
organizations [GMO1].

The core concept in our visualization of progress and current status of clinical processes is
the patient trajectory. We define a patient trajectory as a timeline-oriented representation
of what actually has occurred and will happen with the patient during encounters with
clinicians. Through inspecting a patient trajectory, a clinician can see how far the plan
concerning a patient has progressed, and also whether there have been deviations from the
original plan. Based on this information he can decide if he needs to make any adjustments
to his own activities.

However, as shown by others [RRvdGK09, HTS06], stringent workflow systems and at-
tempts at creating detailed guidelines or exhaustive process maps for healthcare often
break down because of the apparent non-deterministic nature of healthcare processes. Ad-
ditional work has also uncovered that some process variation can be beneficial for the
treatment process and as such, should be supported rather than discouraged by informa-
tion systems facilitating such work [BFS11].

Capturing these subtleties in software or tool support has shown to be difficult. Several
strategies have been explored, often resulting in issues such as increasing the level of
abstraction until the semantic value of the end result is diluted, or the numbers of disjoint
but similar processes grows almost exponentially to cover all these eventualities. However,
attempting to map any exception to any process of non-trivial size often descends into a
chaotic representation of reality. Additionally the prospect of mapping out the unknown a
priori, is daunting at best.

The goal of this paper is to address these challenges by introducing and motivating the
concept of situational awareness through event-based information systems. The paper is
organized as follows. In Section 2 we introduce the healthcare professionals as a social
community with a strong desire to improve self-coordination and cooperation. We show
the value of probabilistic event processing in Section 3, and present modeling and tool sup-
port in Section 4 demonstrating the importance of this concept. We end with conclusions
and further work in Section 5.

2 Motivation: the Professional Healthcare Community

In ‘social communities’, being ‘social’ is the driving force behind most of the available
platforms, and time is in general of less critical importance, nor is facilitating coopera-
tion. In our domain, time and cooperation are key factors for achieving ‘a good day’ and
hence providing good care. Keeping track of colleagues and what they are doing and how
these activities might impact your own work is a difficult task. Operations and associated
resource planning can only to a limited degree be captured in an explicit workflow. Due
to the rapid changes in the domain (acute patients causing changing priorities and so on),
continuous replanning is necessary. The overall activities such as start and finish are quite
easy to conceptualize, though for coordination purposes it is also very relevant to know
what happens between these markers. Knowing when an operation is expected to end en-
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ables for example a coordinator to anticipate, prepare and reschedule following patients as
needed.

Not unlike in less critical ‘social communities’, location and situation awareness can have
positive and negative effects. In general people will rarely trust one system completely,
yet better overview, provides a better starting point for self-coordination. Still, the ‘terrain
takes precedence over the map’ when reality and plan diverge.

One of the fundamental assumptions in the COSTT-project was that given better trans-
parency of the processes - or situational awareness, users of the system would be able to
better self-coordinate. Situational awareness is a term used to describe at which level a
person has perceived the current situation. In increasing levels of awareness [End95], the
first level would be to perceive the current situation. The second level would be to not
only perceive the elements in your immediacy, but also to comprehend the meaning of
the events occurring. When the highest level of situational awareness is achieved, one is
also able to project how the current situation might evolve based on comprehension of the
current as well as knowledge about how the current situation usually evolves.

Using situational awareness as a concept to describe the comprehension of an environment
and its impact on your own goals and objectives, it has also been shown that lack of or in-
adequate awareness is a contributory factor to ‘human errors’. As such, building computer
support to help increase and support situational awareness is an obvious extension to the
already existing technology for distributing and increasing situational awareness .

3 Situational awareness with events

Situational awareness is a field of study concerned with perception of the environment crit-
ical to decision-makers in complex, dynamic areas such as aviation, military operations,
and healthcare. The perception of environmental elements with respect to time and/or
space, the comprehension of their meaning, and the projection of their status after some
variable has changed, such as time. Situational awareness involves being aware of what
is happening in the vicinity to understand how information, events, and one’s own actions
will impact goals and objectives.

Trying to create a software support system for such a process then entails support for
aggregating and combining heterogeneous knowledge and events from a variety of sources.

3.1 Events and complex event patterns

In general it is meaningful to distinguish between (at least) two levels of event richness:
Simple events and complex events. Simple events are single events that carry slivers
of meaning in themselves, without much room for decomposition. Examples of simple
events would be stock order placements, atomic bank account transactions, or stock trades
(buy/sell-orders being matched). This is in contrast to complex events, which summarize,
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represent, or denote a set of single events which combined would denote a ‘pattern of
events’ of a specific process. An oft-cited example is the 1929 stock market crash [LSO8].
Complex events are formally processes rather than events, but within the domain are often
treated as events and subject to the same processing and rules as for simple events.

3.2 Contextualized semantics of non-deterministic event patterns

Tackling the challenge of the non-deterministic nature of healthcare processes is instru-
mental to realizing a system which can cope not only with the majority of regular cases -
but also recognize the minority of cases with deviations in event value. From a practical
point of view, the value of any support system is at its highest when it helps support the
difficult minority rather than the more streamlined majority.
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Figure 1: Example patient flow

Figure 1 shows a typical patient flow through several diagnostic activities. In a perfect
world, these steps are taken in a pre-determined chronological order. However, in real life
deviations to the regular patient flow order are possible. The allowed deviations are driven
by dependencies in the information flow dependencies between the healthcare profession-
als (see Figure 2).

In the following sections, we will refer to these steps as the situations a patient can be in.
Furthermore, each of these steps is characterized by events, which motivates our approach
of situational awareness with events.

One of the main challenges in the perioperative domain is that the systems from which we
harvest events were not designed to be part of a larger system and to a large degree live a
life of their own. The COSTT-project assumes a bottom-up collection of events wherein
we combine physical sensor sources such as indoor positioning systems with events culled
from information systems such as planning- and recordkeeping-systems. While this allows
for a broad-spectrum of information about the processes and activities in the hospital, it
also pushes the issues of temporality, vagueness and uncertainty to the forefront.
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Figure 2: Information flow dependencies

Using sources that rely on manual input as the primary means of gathering information
(such as most clinical recordkeeping systems) also means that the variation in the currency
of information is, at times, extreme. On the other hand, physical sensors have predictable
currency, but inherent shortcomings in sensitivity and specificity.
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Figure 3: Acceptable deviations in event values

Filtering event values based on medical data can also prove difficult given that the test of
clinical significance is often given in ranges rather than specific values. What is acceptable
for one patient might be unacceptable to the next patient, even given the same diagnosis.
This makes simple filtering as shown in Figure 3 difficult without a rich context for inter-
pretation, which in this case could range from baseline values for this particular patient to
encompassing significant parts of the patients medical history. Additionally, certain values
have different ranges depending on how the reading was obtained (e.g. body temperature
taken rectally, orally or axillary).
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Figure 4: Acceptable deviations in event timestamps

Spatial and temporal relevance (see Figure 4) is just one aspect of the contextual relevance
of an event.

Healthcare is rife with examples of procedures where the number of stages depends on the
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results of prior steps. Education and experience can also influence whether or not certain
stages are skipped or additional ones are performed. The effect from an information system
point of view is that some events in a pattern become optional.

Figure 5: Optional or undetectable events

In terms of defining event patterns, one needs to define which events are optional - see
Figure 5 for an illustration - where the non-occurrence of such an event will not make the
pattern matching wrongly refute the correct pattern.
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Figure 6: Acceptable deviations in event orderings

The order in which events occur often follows a predefined business logic or workflow
path, which could be seen as an event pattern. The order in which events occur can dif-
fer based on the workflow path chosen. The ordering of events in the patient workflow
may change due to resource constraints or interference with other patients. For example,
whereas the logical consequence of events would be eq, es, €3, e4, the order of events es
and e3 for a particular patient might be altered, as depicted in Figure 6, if for example
there is currently no free slot in the receiving department.

4 Situation Studio: Tool support for event-driven activity recognition

Based on one of the cases in the COSTT project, a pre-operation examination day (for de-
tails we refer to [WPLT11]), we designed a flexible event-based workflow system, called
the ‘Situation Studio’. It is used to model different situations, the probability of their oc-
currences, the variety of observable and non-observable events in each situation, and the
possible partial ordering between situations.

Figure 7 illustrates the graphical user interface of the tool. It shows a concrete instance of
the example patient trajectory as shown in Figure 1.
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Figure 7: The Situation Studio

4.1 Characterizing situations through events

Each of the situations is characterized by events. For example, the Blood sampling situa-
tion is characterized by the following observable and mandatory system events:

e access_lab_system
e generate_bar_code
e dispatch blood_sample

The order of events is typically as listed above. The Blood sampling situation is bounded
in time by two non-observable events:

e blood_sampling._started
e blood_sampling_finished

These implicit events mark the beginning and the end of a situation. They can only be
inferred from the occurrence of other observed or inferred events. Unless their occur-
rence matches one-on-one with an observable event, the exact timing of their occurrence
is usually uncertain.

Non-observable events are triggered with rule sets, i.e. a series of if-then-else rules. For
example, if the system detects a system event in the Cardiology outpatient assessment,
we can infer that the previous Blood sampling situation has ended and we can trigger the
blood_sampling_finished event.

With predicates we define when a situation can possibly emerge through declaring which
(combination of) events should have already occurred, and which ones must not have
occurred:

e patient_id (this event must have occurred)
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e !blood_sampling_finished (this event must not have occurred)

For this scenario, when the patient arrives (i.e. he is in the Patient arrival situation), the
system generates a pat ient _id event with all the personal details of the patient. As long
as the patient is not registered, we are sure that the patient cannot be in the Blood sampling
situation. By also specifying the !blood_sampling-finished predicate, we declare
that a patient will never go back to this situation if he has completed this step before.

4.2 Probabilistic event processing: a pragmatic approach

With each situation, we associate a probability with each of its events to ascertain the
possibility that the patient is still in this situation. For example, the Cardiology outpatient
assessment situation is characterized by the following observable events:

e access_epr: the cardiologist opens the electronic patient record (EPR)
e dicate_result: the cardiologist dictates the results of the assessment into speech
recognition software

However, healthcare specialists have different working habits. Some may only open the
EPR while the patient is sitting in front of them, or dictate the results while the patient is
still present, while other ones open all the patient files in the morning or dictate the results
after the patient has left. Hence, the occurrence of a particular event is not a guarantee that
the patient is still at this location. That is why we associate a prior probability of each event
in each situation to characterize the possibility that the patient is at this location when this
event occurs. These prior probabilities are derived through discussions with the medical
stakeholders. For the Blood sampling situation this has led to a prior probability of 100%
for the access_lab_systemand generate barcode events, and a prior probability
of 70% for the dispatch blood_sample event. This means that the patient is surely
at this location when either of the two first events is recognized. However, there is a slight
chance that the patient has already left when the last event is triggered.

Ideally, we would have used proven probabilistic reasoning techniques like Bayes’ proba-
bility theory, Zadeh’s fuzzy logic or Dempster-Shafer’s evidence theory. We investigated
each of these techniques but none of them turned out suitable due to pragmatic reasons,
such as the maintenance of the knowledge for non-technical experts. With Bayes’ the-
orem, we can compute the probability for a situation S given the events E knowing the
probability of the events given the situation.

P(S|E)=P(SNE)/P(E)=P(E|S)« P(S)/P(E)
However, each situation is usually characterized by a set of events:

P(S|Ey,E2,E3,...) = P(Ey,Es, Es,...|S)x P(S)/P(Ey, Es, E3,...)
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This means that for any set of events we need to know their probability in every situa-
tion, and this is guess work without a proper data set from which we can obtain these
probabilities.

Zadeh'’s fuzzy logic has the advantage that it allows you to express domain knowledge with
linguistic terms rather than with crisp values. However, various arbitrary choices have to
be made, such as the shape of each fuzzy variable (triangle, trapezoide, bell, ...), the
modeling of fuzzy sets and rules, as well as the defuzzification into crisp values. Figure 8
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Figure 8: Fuzzy Logic for the Blood Sampling situation

illustrates this concern for inferring the blood_sampling_finished event based on
the occurrences of the other observable events, based on fuzzy rules like the following:

IF (blood_test_dispatched_to_lab IS false) THEN blood_sampling_finished IS low;

IF (lab_system_access IS medium) AND (blood_test_dispatched_to_lab IS NOT true)
THEN blood sampling finished IS low;

The evidence theory from Dempster-Share is a generalization of Bayes based on belief
and plausibility, but without going into details, experiments with Dempster’s combination
rule of evidence have shown that it can sometimes lead to counter-intuitive results. Zadeh
himself used the following example to illustrate this concern:

Doctor A: 99% brain tumor, 1% meningitis
Doctor B: 99% concussion, 1% meningitis
Dempster’s combination rule: 100% meningitis

Obviously, this result is very counter-intuitive. Instead, we pursued a more pragmatic
approach. Remember that situation X means that the patient is at location X. Various events
pertain to a particular situation (e.g. access_epr, change_ris, dictate_result,
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...). Due to the fact that events related to the situation can actually take place before,
during or after events, we used prior probabilities to model these uncertainties:

P (access_-ris | Radiology examination) 1.0
P (access_epr | Pulmonary examination) = 0.6
P (dictate_result | Cardiology examination) = 0.6

If predicates of a situation are false, then then particular situation is impossible (likelihood
is 0.0). For example, the Cardiology assessment cannot take place if the Cardiology outpa-
tient assessment has not finished. If all the predicates are true, we compute the probability
of the situation based on probability of the last correlated event, and infer the possibility
of all the remaining situations. However, this may lead to some mathematical non-sense.
Given the likelihoods of the following possible situations:

P (Cardiology outpatient assessment) = 0.7 // report_ready
P (Radiology examination) = 0.5 // access_epr
P (Pulmonary assessment) = 0.5 // access_epr

We see that the sum of the probabilities is not 1. The reason for this behavior is that
the related events do not occur all at the same time. If P(X) would be 1.0, we would be
absolutely sure that the patient is at that location. However, if it would be 0.95, then there
is room for doubt. To solve this problem, we implemented a function f(x;) (with z; being
the values above) with the following properties:

e ¥ f(x;)=1.0
e f(1.0)=1.0and f(0.0)=0.0 (What is absolutely true or false, remains so)
e Partial ordering of x; is the same as partial ordering of f(x;)

The solution is a value z with f(z;) = (2;)* and z such that ¥(z;)* = 1.0. The value z is
not easy to compute directly, so we use an iterative method to find the right value.

P(A) = 0.7 f(P(A)) = 0.494
P(B) = 0.5 with z = 1.980 f(P(B)) = 0.253
P(C) = 0.5 f(P(C)) = 0.253
or

P(A) = 0.99 f(P(A)) = 0.948
P(B) = 0.5 with z = 5.265 f(P(B)) = 0.026
P(C) = 0.5 f(P(C)) = 0.026

The property of the proposed function maintains the weight of the most likely situation
while ensuring the transformed values add up to one.

4.3 Qualitative assessment

It is important to realize that the actual value of (z;)* is meaningless. However, we used
the transformed values in our tool as a baseline for a color coding for the likelihood of a
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situation (e.g. red means impossible, green means absolute certainty, yellow means possi-
bility, blue means prior finished situation). See Figure 9 for an illustration of a simulated
event trace and the color coding of the different situations.

A O

Figure 9: Visualization of a simulated event trace

While testing the Situation Studio, we found that cross-cutting work flows greatly impact
the handling of events. For the blood sampling activity for example, for coordination
purposes one only needs to know if the sample has been taken and if the patient is done
with this activity. However, the outcome of the actual lab results is an input for later
activities, but it does not impact the flow of the patient though the day.

We also compared the mathematical output and color coding with the experience of the
patient coordinators, and while stepping through the trace of events the likelihood of the
outcomes were similar to their expectations.

5 Conclusion

In this paper, we discussed clinical processes as non-deterministic, resembling stochastic
processes with healthcare professionals being a social community with a strong desire to
improve self-coordination and cooperation. We introduced and motivated the concept of
situational awareness through event-based information systems, and presented preliminary
tool support to capturing non-deterministic subtleties.

Note that no structured test of the system has been commenced, as one of the most impor-
tant effects is understanding how putting events in a semi-structured work flow impacts
the quality aspect. These effects have been the source for many discussions, which in turn
resulted in iterations. This insight is valuable for understanding the effects of compiling
events into complex events.

The Situation Studio will be further developed in the frame of the FP7 BUTLER project
which investigates the challenges emerging from the recent ICT advances shaping up the
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Internet-of-Things (IoT) that will connect sensors, actuators and smart portable devices
into an ecosystem reaching an estimated 50 billion devices by 2015-2020. The sheer
amount of information and the means to discover and benefit from it will be so vast that
humans, no matter how technology-savvy, will not be able to handle it on their own. In
BUTLER, the Situation Studio will be used to manage context-aware event processing and
pattern recognition techniques to extract meaningful information and transform a stream
of events into a representation of human intent for anticipating common user behavior.
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