Technische Universitat Dresden
Medienzentrum

Prof. Dr. Thomas Kohler
Jun.-Prof. Dr. Nina Kahnwald
(Hrsg.)

f GENEME '13

GEMEINSCHAFTEN IN NEUEN MEDIEN

an der
Technischen Universitat Dresden
mit Unterstutzung der

BPS Bildungsportal Sachsen GmbH
Campus M21
Communardo Software GmbH
Dresden International University
eScience — Forschungsnetzwerk Sachsen
Gesellschaft der Freunde und Forderer der TU Dresden e.V.
Gesellschaft fur Informatik e.V.
Gesellschaft fur Medien in der Wissenschaft e.V.
IBM Deutschland
itsax — pludoni GmbH
Kontext E GmbH
Learnical GbR
Medienzentrum, TU Dresden
ObjectFab GmbH
Transinsight GmbH
T-Systems Multimedia Solutions GmbH
Universitat Siegen

am 07. und 08. Oktober 2013 in Dresden

www.geneme.de
info@geneme.de

337

E.3 Recommending in an Enterprise Social Media
Stream without Explicit User Feedback

Torsten Lunze', Philipp Katz’, Dirk Réhrborn’, Alexander Schill’
'Communote GmbH

’Dresden University of Technology, Chair for Computer Networks
‘Communardo Software GmbH

Abstract

Social Media Streams allow users to share user-generated content as
well as aggregate different streams into one single stream. Additional
Enterprise Social Media Streams organize the stream messages into
projects with different usage patterns compared to public collaboration
platforms such as Twitter. The aggregated stream helps the user to access
the information in one single place but also leads to an information
overload. Here, a recommendation engine can help to distinguish
between relevant and irrelevant information for the users.

In previous work we showed how features inferred from messages can
predict relevant information and can be used to learn a user model.
In this paper we show how this approach can be used in a productive
enterprise social media stream application without using explicit user
feedback. We develop a time binned evaluation measure which suits the
scenario to steadily recommend messages of the stream. Finally, we
evaluate our algorithm in different variations and show that it helps to
identify relevant messages.

1 Introduction

A social media stream contains messages of different sources with a steady flow
of new incoming messages. Users are interacting with each other and with the
message, e.g. message can be liked, commented, favored and organized into topics
or discussions. In enterprise social media streams topics will be assigned with
permissions defining what a user may read or not. The stream is steadily filled with
new information and the urge arises to provide the user with the possibility to easily
distinguish between interesting and uninteresting messages. This is a differentiation
from typical recommender systems where specific items or messages are picked and
recommended to the user.

338

A stream recommender can be defined as follows: A stream recommender or stream
recommender system (SRS) computes a relevance score for each message of the
stream at the moment when the message occurs in the stream using information that
has been obtained during the past stream interaction. Therefore a SRS must compute
a relevance score for each user who has access to the item.

Following such scenarios, a SRS must fulfill the following constraints: First, it must
be able to compute the relevance score of an incoming message in near real-time.
Second, it must be able to find interesting messages based on the past experience of
the user. Third, it must be able to handle changing interest. Fourth, it must be able to
learn without explicit user feedback.

In [Lunz13] we presented an algorithm that fulfills the first three constraints. In this
paper we will focus on the fourth point to learn without explicit user feedback and
evaluate it within the scenario described in Section 3. Then, in Section 4 related
work is given. In Section 5 we define different learning strategies for a stream based
recommender that will not use any explicit feedback or ratings. The strategies are then
evaluated in Section 6 by using a time binned evaluation measure. Finally in Section
7, a conclusion is drawn.

2 Scenario

In an Enterprise Social Media Stream Application employees work together in
different projects and share their information within those projects. As more projects
and more employees are active within such an application, the amount of messages
increases and the application should provide employees a possibility to filter for
relevant messages. Besides any specific recommendation algorithm, only messages
the employee did not yet interact with need to be considered for recommendation.
Messages the employee liked, answered or read do not need to be included in the
recommendation since the employee already knows the message.

Typically, most of the messages in a stream are getting irrelevant as time passes.
Especially in an enterprise scenario messages should be read within the same day or
a couple of days. Therefore sorting messages by a computed relevance score without
time decay will not be useful at all. A simple solution is to only show the Top N
messages per day or week sorted by a relevance score. This also has the advantage
that this sort order is easily understandable by the end user.

In Figure 1: Filter and sort messages by relevance score it is shown how a selector
between different views on a stream can be integrated into the Enterprise Social

339

Media Stream Application Communote'. The standard view shows all messages of
the stream but it can be switched to only show messages the employee did not interact
with, and sort it by the relevance score per day separately.

Notes Following @kenmei Bookmarks g a

RSS Feed

Peloton's Android-powered static | RTF Export
(video)

)
)

Sort by Time (Standard]
Sort By Rank
Sort By Rank, Show Unread messages

anly

I Sort By Rank, Show Uninteracted only I

Here's some gear that'll ensure you'll never [.

&

Gartner: Tabletverkaufe steigen enorm, Windows verliert Marktanteile [...]

Figure 1: Filter and sort messages by relevance score

3 Related Work

There are several categories of recommender systems: [BurkO7] and [Riccll]
distinguish between collaborative, content-based, demographic, knowledge-based,
community-based and hybrid recommenders. Relevant for this work are recommenders
that can be applied on social media streams, such as news recommenders. The most
of those recommenders are using some form of content-based, collaborative or
community-based methods for recommendation, such as [Diaz12]. In [Lops11] it
is mentioned, that the content-based in contrast to the collaborative recommenders
have their advantages in user independence, transparency and in the ability to handle
the new item problem. The new item problem is crucial for stream recommenders for
ranking a new item fast. Collaborative methods have their advantage, once enough
relations between users and items exist and can be exploited. There are methods for
collaborative recommenders that are using stereotypes or clusters [Wanl1] for the
new item problem. For new items with a new context it is not sufficient to infer a
rank with those methods as long as only little interaction has been observed for the
new items.

In [LiWZ2011] content-based news recommender are distinguished into term
weighting and concept weighting recommenders. The term weighting recommender
uses mainly information filtering methods and applies them to learned user models. In
contrast, concept weighting recommenders use ontologies to discover term similarities.
News recommendation is used for example in [Das07] and [LiWL2011] and only a

1 http://www.communote.com

340

few recommenders such as [Guy10] or [Lunz09] focus on news recommendation in
enterprises. [Guy11] uses activity streams for recommendation. [Lunz09] uses a first
approach of a stream recommender using a content based recommender but it lacks
necessary performance and quality. An overall system architecture for stream based
recommender is given in [Katz11].

4 Learning Strategies

In [Lunz13] a basic stream based algorithm is presented that extracts features from
messages. Based on the features, a subset of messages can be recommended to
users. We showed there a new message is likely to be relevant for a user, if the user
participates in the discussion associated with this message or is notified within such
a discussion. Also, if the new message contains a mention for the user, the message is
highly relevant for the user. In this way a high relevance score can be determined for
a subset of messages. For the other set of messages - that are not part of an existing
discussion or part of a discussion the user is not involved in - no trivial features can
be used to determine a relevance. As an result of the algorithm a relevance score in
the range of [0..1] i1s computed per user and message.

Therefore we trained a term based user model in [Lunz13] using the terms of the
messages where a positive relevance has been determined based on the trivial features.
This user model is then used to compute a relevance score for new messages per user
if none of the trivial features applies. The question arises which features to use in
which way for learning. So we extended the algorithm of [Lunz13] with different
learning and ranking strategies:

1. Standard: If the user is the author of a message, is mentioned within the message
or the message is part of a discussion where the user is author or mentioned, the
terms of the messages are integrated into the user model.

2. Learn from Direct Parents: It extends No. 1 by using the direct parent message,
if there is one, to be integrated into the user model.

3. Learn from All Parents: It extends No. 2 by using all parent messages
recursively, if there is one, to be integrated into the user model.

4. No Discussion Learning: It limits No 1. by only integrating messages into the
user model, the user is author of or is mentioned within.

5. Half score on Non Participation: This uses the learning strategy of No 1. If
the message to rank is part of a discussion the user is not an author of or not
mentioned, the relevance score is multiplied by 0.5. The reason of this strategy
is that, if the user did not participate or was not involved within the discussion
it is likely to be irrelevant.

341

5 Evaluation

Dataset

For evaluation we used Communote which is used within a real world company for
over five years. During December 2012 to April 2013, ten users submitted a total of
30,000 ratings. A rating refers to a message that its user either marked as relevant or

irrelevant. As implementation for the stream-based algorithm we used the open source
framework SPEKTRUM?2.

Evaluation Measures
To match the scenario defined in Section 3 we only considered ratings that refer to
messages

- the user is not author of,

- the user is not mentioned within and

- the user did not reply to the message (if the user replied to the message, he
must have read the referring message).

In all these cases it is highly likely that the user will already have read the message and
it is not necessary to recommend it and hence it would blur the evaluation. Therefore
only the messages the user did not interact with are used in the further evaluation.
This reduces the number of ratings to 2,600. We used all those ratings for evaluation;
no ratings at all have been used for training. Hence the user model is created and
maintained by the features extracted as described before.

In the first evaluation the Precision, Recall and the F-Score?, as well as the RMSE*
were computed using the computed relevance scores and ratings. To compute the
RMSE, a relevant rating is used with a score of 1, otherwise 0. To compute the other
measures, a decision had to be made, if the computed relevance score is either relevant
or not relevant. Different thresholds had been used to determine the threshold which
leads to the highest F-Score. The RMSE itself is independent from the decision, and
it gives an indication of the overall error.

The problem of this evaluation measure is that it does not reflect the number of
messages returned. It also gives no indication if the relevant message found distribute
evenly over time or are concentrated within a specific time range. Therefore we used

http://spektrumprojekt.de

3 F-Score: Combines the Precision and Recall into a single measure. The F-1-Score weights
Precision and Recall equal.

4 RMSE: Root Mean Squared Error

342

the Precision@ and the Average Precision as measures. The Precision@ is defined
as follows, whereby k is number of elements to be considered and p the number of
found relevant elements in the returned dataset:

_F
P@; =7

The Average Precision also considered the ordering of the elements, if a relevant
element is ranked higher in the list of returned elements it will lead to a higher
Average Precision. With R(i) returning 1 if the element at position i in the returned
set of elements is relevant or returning 0 if it is irrelevant, then the Average Precision
is defined as:

IE R(D) = P@,

AP@; =
@ K

Instead of computing the overall values, we divide the messages into time bins of days
and weeks. The Precision@ and the Average Precision can then be computed first per
user per time bin and then aggregated by user and time bin. We use the number of
ratings per user per time bin as weights to balance the precision based on the actual
number of ratings used to determine the Precision@ of a time bin. With U as the set
of all users, T the set of all time bins, ¢ the number of ratings for a user u, O
the number of ratings for user in time bin t and P@(u,t) as the precision @ for user
in time bin t, the Time-Binned Precision can be defined as follows:

. 1 P -
P‘?’EEE‘ED?J.=—Z —z Wy # PE(W L]
“EUIE‘}“:]UEU ErETr"'I'l-i.-l-'l-E]'

Since #Pu= Z “ut and with the definition of this can be reduced to:

tET
- 1
Precision = —z Ep:
LuevPul

uEEET

Similar the Time-Binned Average Precision can then be defined as:

343

k
4 _ Pii
veragePrecision = ———— R(i) »—
. ELT ';'-"1.. L

uw et ET i=0

For example the Time-Binned Precision and Average Precision for the Top 25 per
day follows this order:

1. For each day the Top-25 messages with the highest computed relevance score
per user is determined.

2. Of those Top-25 messages per user: The messages with ratings in the evaluation
dataset are determined.

3. The Precision and Average Precision for that time bin is computed on the Top-
25 messages with existing ratings in the evaluation dataset. Each time bin per
user is weighted by the number of ratings available in that time bin. This is
necessary if the ratings are sparse and not available for all possible messages
per user. This way, users with only a few ratings will have less impact as users
with many ratings.

4. For each time bin, the Precision (and Average Precision) is weighted by the
number of ratings in the evaluation dataset; that is the sum of all ratings per user.

Evaluation Results

In Figure 2: RMSE and F-1 Score for the different Learning Strategies the RMSE and
F-1 Score are shown for the different Learning Strategies for non-interacted messages
only. It is compared to a Random Ranker which uses random rank per message and
user. We cannot use a collaborative algorithm for comparison since it is not suitable
for a stream-based recommender. The F-1 score is slightly higher for the Learning
Strategy 4 and 5 in contrast to the random ranker. The RMSE is significantly lower
and therefore better for all Learning Strategy compared to the random ranker. The
lowest RMSE and highest F-1 Score are reached for the Learning Strategy 5.

The time binned Precision and Average Precision for top-configurations Top-25 per
Day and Top-50 per Week are shown in Figure 3: Time-Binned Precision and Average
Precision for Top 25 Messages per Day and Figure 4: Time-Binned Precision and
Average Precision for Top 50 Messages per Week, respectively. Here it is clearly
shown that for all those top-configurations the Learning Strategies are better than the
Random Ranker. The best values are reached with Learning Strategy 5, which shows
the usefulness of the idea to lower the relevance score of a message which is part of
a discussion the user did not participate in.

344

By comparing the same Learning Strategies with the two different top-configurations,
the Top-25 Day configuration is worse compared to the Top-50 per Week. This means
that the results per day are not as good as taking a whole week as time bin. This is an
indication of a strong variation between the results for each time bin separately. The
reasons for this difference are due to research. Besides that it can be clearly stated
that our algorithm helps to find relevant messages in our scenario, since it performs
better as the Random Ranker in the time binned evaluation measure.

0,6
05 -
04 -

-

nY
2 £ & g
-:31 ='} q'hf" o F#E.- -.ﬁ’:’ .-_5..
'::I - i'-.-J nl"' 1?“_'."\:“' {.jh :‘e"
e

Figure 2: RMSE and F-1 Score for the different Learning Strategies

0,6
0,5
0,4
0,3 -
0,2
0,1 -

u .

mP 25-Day

AP 25-Day

Figure 3: Time-Binned Precision and Average Precision for Top 25 Messages per Day

345

07
06
05 N
0.4 B
03 - B
gﬁ | m P 50-Week
g ' ' AP 50-Waek
!:F’ E? %EP# o
2 ks
& N
) 2 Ao .
> OIS
(9

Figure 4: Time-Binned Precision and Average Precision for Top 50 Messages per Week

6 Conclusion

In this paper we described and motivated a scenario for a practical recommendation
use case within an Enterprise Social Media Stream. Furthermore, we defined a new
evaluation measure that represents this scenario as close as possible. We then put the
pieces together on applying our algorithm with different learning strategies to this
scenario without using explicit ratings. We showed that those strategies help to filter
for the relevant elements in a continuous stream that can be used within a productive
Enterprise Social Media Stream Application.

The future work is to research more configurations for different learning strategies
to improve the Precision and the Average Precision. Furthermore the approach
will be applied within a productive system to obtain direct user feedback about the
recommendation results and the integration within the frontend.

Acknowledgements

The results presented in this paper have been developed within the research project
SPEKTRUM. This project is funded by the Free State of Saxony and the EU
(European Regional Development Fund). We would like to thank all the users at the
Communardo Software GmbH participating in creating the dataset for the evaluation.

346

References

[Burk07] Burke, Robin: The adaptive web, Chapter: Hybrid web recommender
systems, pages 377-408, Springer-Verlag, Berlin, Heidelberg, 2007.

[Chanl11] B. Chandramouli, J, J, Levandoski, A. Eldawy, M. F. Mokbel: StreamRec:
a real-time recommender system, Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, SIGMOD 2011.

[Das07] A. Das, M. Datar, A. Garg, S. Rajaram: Google News Personalization:
Scalable Online Collaborative Filtering, Proceedings of the 16th
International Conference on World Wide Web, 2007, p. 271.

[Diaz12] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, W. Nejdl: Real-Time
Top-N Recommendation in Social Streams, Proceedings of the sixth ACM
conference on Recommender systems, 2012, p. 59.

[Guy10] I. Guy, N. Zwerdling, 1. Ronen, D. Carmel, E. Uziel: Social Media
Recommendation based on People and Tags, Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2010, p. 194.

[Guyl1] 1. Guy, I. Ronen, A. Raviv: Personalized Activity Streams: Sifting Through
the ""River of News”, Proceedings of the fifth ACM Conference on
Recommender Systems, 2011, p. 181.

[Katz11] P. Katz, T. Lunze, M. Feldmann, D. Rohrborn, A. Schill: System
Architecture for handling the Information Overload in Enterprise
Information Aggregation Systems, BIS 2011; Poznan, Poland; 6/2011.

[LiWLI11] L. Li, D. Wang, T. L1, D. Knox, B. Padmanabhan: SCENE: A scalable
two-stage personalized news recommendation system, Proceedings of the
34th international ACM SIGIR conference on Research and development
in Information Retrieval, 2011,.

[LiWZ11] L. Li, D. Wang, S. Zhu, T. Li: Personalized News Recommendation: A
Review and an Experimental Investigation, Journal of Computer Science
and Technology, 2011, p. 754.

[Lops11] P. Lops, M. Gemmis, G. Semeraro: Content-based Recommender Systems:
State of the Art and Trends, Recommender Systems Handbook, 2011.

[Lunz09] T. Lunze, M. Feldmann, T. Eixner, S. Canbolat, A. Schill: Aggregation,
Filterung und Visualisierung von Nachrichten aus heterogenen Quellen
-- Ein System fiir den unternehmensinternen Einsatz, Proceedings of the
GeNeMe’09 Workshop; Dresden, 2009.

[Lunz13] T. Lunze, P. Katz, D. Rohrborn, A. Schill: Stream-based Recommendation
for Enterprise Social Media Streams, BIS 2013; Poznan, 2013.

[Riccl1] F. Ricci, L. Rokach and B. Shapira: Introduction to Recommender Systems
Handbook, Recommender Systems Handbook, 2011.

[Wanl1]Y. Wan, C. Chen: An Effective Cold Start Recommendation Method Using
A Web Of Trust, PACIS 2011 Proceedings, 2011.

