
Difference-based Conformance Checking

for Ecore Metamodels

Erik Burger, Aleksandar Toshovski

Institute for Programme Structures and Data Organization

Karlsruhe Institute of Technology

Am Fasanengarten 5

76131 Karlsruhe, Germany

burger@kit.edu, aleksandar.toshovski@student.kit.edu

Abstract: During modern model-driven development processes, generators and higher-
order transformations are used to create metamodels with short life cycles. Since
these metamodels often differ from each other only in small parts, instances as well as
metamodels may be re-used if the difference between them does not lead to a violation
of instance conformance. Existing co-evolution approaches describe this conformance
based on change operators to a metamodel. Thus, they require that changes to the
metamodels are carried out using special editors. To use this conformance for arbitrarily
generated metamodels, we present a conformance validator for Ecore metamodels that is
based on difference-based analysis. The validator has been implemented as a plug-in for
the Eclipse framework. We demonstrate the completeness of our approach by covering
state-of-the-art co-evolution change operators.

1 Introduction

In model-driven engineering, instances of metamodels represent entitites in the domain

of interest and are thus the primary artefacts which are modified during development of a

system. Metamodels, however, represent standards, such as UML, which are implemented

in specific modeling tools. Thus, metamodels usually stay stable during the development

process. When such a standard or tool evolves, a new version of a metamodel is issued,

and existing instances have to be migrated to valid instances of the new versions of the

metamodels. Since these evolution steps do not occur frequently and may affect a large

number of instances, migration scripts can be provided to adapt those instances. Metamodel

evolution mechanisms for automatic co-evolution of instances [BG10; HVW11] support a

semi-automatical migration process from one metamodel to another.

In advanced model-driven approaches, such as multi-view modeling [ASB10; Bur+13;

Bur13], metamodels, model-to-model transformations, and instances are generated on-

the-fly based on declarative definitions. Incremental changes to these definition lead to

incremental evolution of the generated metamodels. Thus, the life-cycles for metamodels

are considerably shorter. It is, however, desirable to re-use metamodels in such processes

for reasons of compatibility to existing tools, and for the development of graphical editors.

97

In this paper, we present a conformance relation for Ecore metamodels which expresses

that instances of one metamodel are also valid instances of another metamodel. This

conformance can be used in two ways: First, to determine if co-evolution efforts are

necessary for existing instances of a metamodel, and second, to determine whether existing

metamodels can be re-used in scenarios where metamodels are generated automatically. In

contrast to existing co-evolution methods [Bec+07; Wac07], which require a manual tracking

of edit operations, the conformance relation presented in this paper can be determined by a

difference-based analysis of two distinct metamodels or two versions of a metamodel. The

contribution of this paper is the definition of conformance as a set of rules using the Java

Drools1 rule engine, and a prototypical implementation based on EMF Compare [BP08]. To

evaluate the completeness of our approach, we show that the approach covers all operators of

the catalogue presented by Herrmannsdörfer in [HVW11]. We demonstrate the application

with an extension of the ModelJoin tool [Bur+13].

The rest of this paper is structured as follows: In section 2, we present the concept of the

conformance relation, followed by the technical realization in section 3. We evaluate the

conformance validation with the operator catalogue of Hermannsdörfer and a modelling

example in section 4. We conclude with a brief discussion of related work and prospects on

future work in section 5.

2 Concept

Incremental changes to metamodels do not necessarily break the compatibility to existing

instances, for example, if only additive changes are applied to the metamodels. Metamodels

can thus be re-used for multiple instances. This is especially beneficiary if graphical

representations and editors have been defined for a specific metamodel, since these would

have to be adapted as well otherwise. To exploit the compatibility of existing instances to

new versions of a metamodel, we define a conformance relation between metamodels:

Definition 1 (Conformance) Let MA, MB be metamodels and I(MA), I(MB) the sets of all

possible instances of MA and MB. Metamodel conformance is defined as

conforms(MA,MB)⇔ I(MA)⊆ I(MB)

To determine the conformance relation between two actual metamodels, we categorize

metamodel changes based on [BG10; HVW11]. These approaches describe the impact of

single or multiple changes to a MOF-based metamodel on existing instances. In these terms,

conformance of metamodels means that all changes that have to be applied to MA in order

to acquire MB are model-preserving [HVW11] / non-breaking [BG10]. The co-evolution

approaches mentioned above are, however, operator-based, i.e., they assume that a change

between two metamodels is expressed as a series of atomic changes. Edapt [HVW11], for

example, requires that the user expresses changes to metamodels as specific refactoring

steps using an Eclipse plug-in. If a metamodel is changed by any other than the Edapt

1http://www.jboss.org/drools/

98

Metamodel A

Metamodel B

Diff Engine

IDiff

operationType:OperationType
differenceType:DiffType
leftResource:ResourceSet
rightResource:ResourceSet
parameter:String
oldValue:EObject
newValue:EObject
oldParent:EObject
newParent:EObject

diff description

Compliance

Validator

Figure 1: Concept for Determining the Conformance

editor, or generated by a declarative definition as in the example above, the approach is not

applicable.

To enable conformance checking between arbitrary metamodels independently of the tools

with which they were created, we present a difference-based approach for conformance

checking. The approach is displayed in Figure 1: A Diff Engine is used to determine the

diff between two existing metamodels. The calculated IDiff element serves as an input for

the Compliance Validator, which is based on a rule set that covers all possible changes to a

metamodel.

3 Technical Realization

We have implemented a prototypical Compliance Validator which checks if the conformance

relation holds for two Ecore metamodels. The architecture of the approach is displayed

in Figure 2. The main component Compliance Validator contains the logic for checking

the conformance relation of Definition 1. It has been implemented as an Eclipse plug-in.

Metamodels are persisted in a Metamodel Repository, which is used by the validator to

retrieve metamodels. The usage of this repository makes it possible to compare a metamodel

with several existing metamodels and to find a conforming metamodel in the repository.

We have implemented a simple file-based metamodel repository for this purpose. The Diff

Engine is used to determine the delta between two metamodels. We use EMF Compare for

UI Compliance Validator

Diff Engine

Compliance Policy Registry

Metamodel Repository

Figure 2: Component model for the Compliance Validator

99

Figure 3: Compliance and Diff Rate in an Eclipse UI view (showing default value −1)

this purpose. The policies for determining the conformity of two metamodels are saved in

the Compliance Policy Registry component, so users can adapt them and register custom

policies. We use the Rete-based Drools rule engine for the definition of the conformance

policies. The conformance check is implemented in Eclipse via a UI component.

We have analysed all possible changes to Ecore metamodels, based on the classification

of metamodel changes in [BG10] and [HVW11]. Since these works are based on MOF,

adaptations were necessary to take the differences between MOF and Ecore into account.

For each change type, we created a rule which describes whether a change type violates the

conformity of existing instance to the metamodel which is being changed. In total, we have

defined 24 rules which cover all model-preserving change types.

An example for a conformance rule is displayed in Listing 1: The rule analyses the impact

of the deletion of a structural feature from an EClass element. The IDiff element describes

the delta between two elements of the respective metamodels. The Java helper functions is-

PullUpFeature() and isParentAbstract() in the DroolsUtils library determine whether

the class in the old metamodel is abstract and whether the feature was moved to a superclass,

which influences the impact of the change. The then-clause of the rule is empty since we

use a listener to react on the firing of a rule.

rule "ReferenceChange EClass remove Attribute/Reference"

when diff: IDiff(operationType == OperationType.DELETE, differenceType ==

DiffType.REFERENCE, parameter=="eStructuralFeatures", DroolsUtils.

isPullUpFeature(oldValue,newValue,newParent)

then

end

Listing 1: Drools rule for deletion of an attribute/reference

The complete set of rules is not represented in this paper due to space restrictions. We refer

to the reader to [Tos13]2 for an extensive description of the rules and the validator.

If there are several metamodels in the Metamodel Repository which conform to the meta-

model which is being checked, a measure for the similarity of metamodels is calculated to

determine the metamodel with the lowest number of conflicts (see Figure 3): The compli-

ance rate is the number of changes which violate conformance, while the diff rate describes

the number of total changes. The user of the validator is furthermore presented a list of issues

which cause the inconformance, and can adapt the metamodel accordingly to re-validate it.

2http://sdqweb.ipd.kit.edu/publications/pdfs/toshovski2013a.pdf (in German)

100

4 Evaluation

Although the conformance relation (Defintion 1) is formally defined, we consider it imprac-

tical to formally prove the correctness of our implementation, since the Ecore metamodel

and MOF itself lack a formal basis which would be necessary for such a proof. Thus, we

follow the same approach as Herrmannsdörfer in [HVW11] and demonstrate the practical

completeness of our implementation by validating the coverage of the most frequent cases

of metamodel changes in practice.

Since the purpose of our conformance relation is twofold, we will evaluate two cases:

First, we will show that our conformance validator covers all the operations in the catalog

[HVW11], thus demonstrating that the conformance validation can be used for co-evolution

scenarios. Second, we will demonstrate the applicability of the conformance validator for

the re-use of metamodels in cases where instances and metamodels are generated from a

declarative definition. To this end, we have integrated the approach with the ModelJoin tool

[Bur+13] and checked the conformance of changes using a joined metamodel based on the

Palladio Component Model [BKR09] and a metamodel for simulation results.

4.1 Change Operators by Herrmannsdörfer et al.

In their 2011 publication [HVW11], Hermannsdörfer et al. have presented a catalog of

operators for the coupled evolution of metamodels and models, which covers common cases

of metamodel adaptations. The operators are divided into three groups: structural primitives,

none-structual primitives, and complex operations. Each operator is classified by the impact

it has on existing instances. For our conformance relation, the class of model-preserving

operators is of interest, since it describes the cases where no adaptation to existing instances

is necessary. The group of primitive operators can be described by single instances of the

IDiff element, while complex operators have to be describe as a set of IDiff elements.

To evaluate the completeness of the compliance validator, we wrote a JUnit test suite that

applied each of the change operations to an example metamodel and tested whether the

validator was able to detect the correct class of changes. For primitive operations, we created

the appropriate IDiff elements directly; for complex changes, we used Edapt to apply the

change to the example metamodel. The rule set of the conformance validator was able to

detect all the 61 operations of the catalog correctly.

4.2 ModelJoin views on the Palladio Component Model

The ModelJoin [Bur+13] tool generates custom metamodels and instances based on textual

queries (see Figure 4): Based on a query, an annotated target metamodel is synthesized

and a QVT-O transformation is generated automatically based on the annotations in the

target metamodel. Since every execution of a query leads to the generation of a query-

specific target metamodel, the re-usability of query results is limited if metamodel-specific

101

generated at compile time

generated at runtime

ModelJoin
Query

Input
Metamodels

Input
Metamodels

Input
Metamodels

references

Input ModelsInput ModelsInput Models

«instance of»

Metamodel

Synthesis

Model-to-model
Transformation

references

Target
Metamodel

Transformation

Generation

Transformation

Execution
Join Result

«instance of»

Figure 4: Metamodel and transformation generation in ModelJoin (in FMC [KGT06] notation, from
[Bur+13])

visualisations or further transformations are used. To enable the re-use of metamodels,

we have extended the ModelJoin tool by the conformance validator and the file-based

metamodel repository. If a query is executed, the conformance validator checks if there are

metamodels in the repository to which the newly synthesized metamodel conforms. If one

or more suitable metamodels are found, the user can choose one of these, so the join result

is generated as an instance of this metamodel. If no suitable metamodel is found, the user

can access the list of incompatible changes and either modify the query accordingly until

the synthesized metamodel conforms to one of the metamodels in the repository, or use the

synthesized metamodel, which is then added to the repository.

We have tested the compliance validator by varying ModelJoin queries on the Palladio Com-

ponent Model [BKR09] and the Sensor Framework metamodel, checking the conformance

against formerly created metamodels. Although these tests are not extensive enough to give

information about the percentage of cases in which metamodels can be re-used, our first

experiences indicate that additive changes profit from the conformance check. If a query

is amended with additional properties of the source metamodels, former queries and their

instances can still be used with the newly generated metamodel. This way, the user gets

feedback if additions to a query break the compatibility to queries which are already in use.

5 Related Work/Conclusion

Metamodel evolution adresses the compliance between different versions of a metamodel.

Several approaches support the analyses of metamodel changes by describing the changes

102

in a model-based format [Bec+07; BG10] and generating migration transformations auto-

matically [Cic+08]. Automatic derivation of this difference description has been proposed

in [DIP12] as a base for migration scripts, but without categorization of conformance.

The conformance relation presented in this paper can be seen as a special case of model

typing [SJ07]. Our state-based conformance check can be used for model type checking of

Ecore metamodels, which determines a subtype-relation between two metamodels.

In this paper, we have presented a conformance relation between Ecore metamodels which

expresses that all instances of one metamodel are valid instances of another metamodel.

This relation is useful either for the re-use of instances when metamodels evolve, or for the

re-use of metamodels in approaches where metamodels and instances are generated from

declarative definitions. The contribution of this paper is a difference-based compliance

validator which analyses Ecore metamodels for conformance based on a set of rules. The

advantage of a difference-based analysis is the independence from metamodelling tools

with which the metamodels under study are created.

In contrast to the change impact analysis of [BG10] and the classification of change

operators of [HVW11], the conformance validator only detects model-preserving changes

and does not provide means for resolving other changes that violate the conformance. In

future work, the rule set can be extended to differentiate between conflicts which have to be

resolved manually and those which can be fixed automatically.

The conformance validator is limited to Ecore-based metamodels and is thus tied to the EMF

framework. We do however not see this as a serious limitation due to the wide acceptance of

EMF and Eclipse in industry and research. As future work, the conformance validator can be

extended to support other metamodel repositories such as CDO3, Teneo4, or EMFStore5.

References

[ASB10] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software

Modeling: A Practical Approach to View-Based Development”. In: Evaluation

of Novel Approaches to Software Engineering. Ed. by Leszek A. Maciaszek,

César González-Pérez, and Stefan Jablonski. Vol. 69. Communications in Com-

puter and Information Science. Berlin/Heidelberg: Springer, 2010, pp. 206–

219.

[Bec+07] Steffen Becker et al. “A Process Model and Classification Scheme for Semi-

Automatic Meta-Model Evolution”. In: Proc. 1st Workshop MDD, SOA und

IT-Management (MSI’07). GiTO-Verlag, 2007, pp. 35–46.

[BG10] Erik Burger and Boris Gruschko. “A Change Metamodel for the Evolution of

MOF-Based Metamodels”. In: Modellierung 2010, Klagenfurt, Austria, March

3http://www.eclipse.org/cdo
4http://wiki.eclipse.org/Teneo
5http://www.eclipse.org/emfstore

103

24-26, 2010. Ed. by Gregor Engels, Dimitris Karagiannis, and Heinrich C.

Mayr. Vol. P-161. GI-LNI. 2010.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component

model for model-driven performance prediction”. In: Journal of Systems and

Software 82 (2009), pp. 3–22.

[BP08] Cédric Brun and Alfonso Pierantonio. “Model Differences in the Eclipse

Modelling Framework”. In: UPGRADE The European J for the Informatics

Professional IX.2 (2008), pp. 29–34.

[Bur+13] Erik Burger et al. ModelJoin Technical Report. 2013. U R L: http://sdqweb.

ipd.kit.edu/publications/pdfs/burger2013modeljoin.pdf.

[Bur13] Erik Burger. “Flexible Views for View-Based Model-Driven Development”.

In: Proceedings of the 18th international doctoral symposium on Components

and architecture. WCOP ’13. Vancouver, British Columbia, Canada: ACM,

2013, pp. 25–30.

[Cic+08] Antonio Cicchetti et al. “Automating Co-evolution in Model-Driven Engi-

neering”. In: Proceedings of the 2008 12th International IEEE Enterprise

Distributed Object Computing Conference. EDOC ’08. Washington, DC, USA:

IEEE Computer Society, 2008, pp. 222–231.

[DIP12] Juri Di Rocco, Ludovico Iovino, and Alfonso Pierantonio. “Bridging state-

based differencing and co-evolution”. In: Proceedings of the 6th International

Workshop on Models and Evolution. ME ’12. Innsbruck, Austria: ACM, 2012,

pp. 15–20.

[HVW11] Markus Herrmannsdörfer, Sander D. Vermolen, and Guido Wachsmuth. “An

extensive catalog of operators for the coupled evolution of metamodels and

models”. In: Proceedings of the Third international conference on Software

language engineering. SLE’10. Berlin/Heidelberg: Springer, 2011, pp. 163–

182.

[KGT06] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental Modeling

Concepts: Effective Communication of IT Systems. Wiley, 2006.

[SJ07] Jim Steel and Jean-Marc Jézéquel. “On model typing”. English. In: Software

& Systems Modeling 6.4 (2007), pp. 401–413.

[Tos13] Aleksandar Toshovski. “Wiederverwendung von Metamodellen in ModelJoin-

Sichten”. MA thesis. Am Fasanengarten 5, 76131 Karlsruhe, Germany: Karl-

sruhe Institute of Technology (KIT), July 2013.

[Wac07] Guido Wachsmuth. “Metamodel Adaptation and Model Co-adaptation”. In:

ECOOP 2007 – Object-Oriented Programming. Ed. by Erik Ernst. Vol. 4609.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007, pp. 600–

624.

104

