
Heinrich C. Mayr, Martin Pinzger (Hrsg.): INFORMATIK 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 2187

Counting Performance: Hardware Performance Counter

and Compiler Instrumentation

Jan-Patrick Lehr1

Abstract: Analyzing applications for their runtime behavior, especially in the light of ef®cient re-
source utilization, involves iterative measurements and the interpretation of the data gathered. For
®ne grained analysis often hardware performance counters are monitored. Since compiler instru-
mentation augments the program with calls to a measurement system, it interacts with compiler op-
timizations. Currently, it is unclear to which degree the instrumentation in¯uences the characteristics
of the resulting binary. To determine the behavioral change introduced through instrumentation we
conduct a series of measurements on a subset of the SPEC CPU 2006 benchmark suite. We show that
although runtime increases up to acceptable 10% of the original runtime some hardware performance
counter are signi®cantly perturbed. However, it is also possible that hardware performance counter
deviate only slightly from the values measured in the original binary, even though the benchmark’s
runtime increases substantially. In particular, the program 444.namd showed an increase in store in-
structions by 2x with only 3% runtime overhead, whereas 450.soplex did not show signi®cant change
in mispredicted branches, when exhibiting an increase in runtime by 3x. We investigate whether the
validity of a hardware performance counter can be determined via static analysis. Therefore, we
outline a new tool based on the MAQAO binary analysis framework to compute and compare the
static instruction mix of binaries to identify the introduced change in the static instruction mix due
to instrumentation. The static instruction mix is comparable to a histogram, denoting how many
instructions of a certain category are found in each function of the binary. We conclude that static
analysis of the binary’s instruction mix may describe induced change for hardware performance
counters. Finally, we outline directions of further research in the ®eld of perturbation detection and
predictive modelling.

Keywords: High Performance Computing, Performance Analysis, Compiler Instrumentation, Hard-

ware Performance Counter, Binary Analysis

1 Introduction

Modern hardware offers increasing performance at the price of increasing complexity.

Especially in the area of high performance computing (HPC), big advances have been

made within the last decades. However, the increasing compute capability poses strong

demands on software architects in order to make ef®cient use of the available hardware.

Since many users of HPC are experts in other domains, such as physics or mechanical

engineering, a deep understanding of the available hardware cannot be assumed. Bischof et

al. pointed out that, based on economic considerations, performance analysis and tuning is

important [BaMI11]. Performance analysis and tuning is an iterative process consisting of

measurement, analysis and tuning, with the goal to improve the application’s performance

1 TU Darmstadt, Scienti®c Computing, Mornewegstrasse 30, 64293 Darmstadt

2188 Jan-Patrick Lehr

and ef®ciency. In order to give guidelines and help analysts to carry out the task, the

process has been modelled by Iwainsky et al. [Iw11].

To gain insight about the application’s behavior a performance analyst (PA) performs a

series of measurements, either manually or automatically. Those measurements are, in

general, performed using sampling or instrumentation and are taken with respect to a cer-

tain metric. For a more detailed explanation of the two approaches the reader is referred

to Morris et al. [Mo10]. The program that is measured is called a performance proxy, as

it is used to approximate the original application’s behavior in regard of the metrics mon-

itored. As with any measurement, the system under observation is also in¯uenced by the

measurement carried out [Ma91]. This in¯uence usually is referred to as runtime overhead.

Besides measuring runtime, often hardware performance counters are monitored. A com-

monly used library to abstract from the low-level and machine dependent interface of

hardware performance counters is the PAPI library [Br00]. State of the art measurement

systems like Score-P [Me11] or HPC Toolkit [Ad10] offer support for this interface. How-

ever, instrumentation, as used by Score-P, might actually have two types of in¯uence on

a program’s behavior [MRW92]. Since it changes a program’s source code, it might also

change the compiler’s decisions on optimizations it can apply. Consequently, not only the

measurement system’s runtime overhead is introduced, but a potentially differently opti-

mized binary is observed.

If a PA uses measurements taken from such an instrumented binary as the basis for a

tuning decision, the question arises whether the collected data is obtained from a valid

performance proxy of the original application. Current best practice suggests that when-

ever the measured runtime was within 10% of the original runtime, the performance proxy

is considered valid. However, this guidance only re¯ects runtime and leaves aside other

important characteristics of an application.

We conducted a series of experiments regarding the in¯uence of automatic compiler in-

strumentation on hardware performance counters. The study is carried out using a subset

of the SPEC CPU 2006 benchmark suite consisting solely of C/C++ benchmarks as the

toolchain that we use is currently only capable of dealing with C/C++ programs.

To help the PA in determining whether the collected values resulted from a valid per-

formance proxy, we investigate whether hardware performance counter perturbation can

be correlated to the change in the static instruction mix within the binary. The static in-

struction mix is comparable to a histogram, denoting how many instructions of a certain

category are found in each function of the binary. To this end, we developed a tool, based

on the MAQAO binary analysis framework by Djoudi et al. [Dj05], that computes the

static instruction mix.

The paper is structured as follows: Section 2 provides a more detailed motivation and

background. We present experimentally gathered results for PAPI events in Section 3.

Our de®nition of the static instruction mix as well as a description of our tool is given in

Section 4. We conclude our ®ndings in Section 5 and give an outline of possible future

work and application areas of instruction mix comparison in Section 6.

Counting Performance 2189

2 Background

To investigate whether an application is constrained by a speci®c machine limitation or

does not use a given platform ef®ciently, an analyst needs to obtain an understanding of

the application’s runtime behavior. In order to construct a picture of the application’s be-

havior, a series of measurements is carried out, gathering a variety of metrics. The metrics

typically include runtime, performance counter and, in the case of parallel applications,

communication waiting times.

Inspecting and relating all of the available information leads to a hypothesis why the tar-

get application suffers from a speci®c performance problem. Depending on the identi®ed

problem, the analyst decides which limiting factors are to be approached ®rst. If the per-

formance proxy, however, does not re¯ect the original application’s behavior with respect

to the metric it was used to monitor, the PA may draw a wrong conclusion. As a result,

tuning effort is spent to resolve an artefact which resulted from the measurement and is not

necessarily present in the original application. Typically recorded hardware performance

counter differ from platform to platform, but may include:

• Level 1 and 2 instruction and data cache accesses / hits / misses
• Performed branch instructions / mispredicted branches
• Load and store instructions
• Stalled cycles / cycles without instruction issue

In this work, the effects of instrumentation will be inspected. The impact of sampling on

the various hardware performance counters needs yet to be studied, but will not be part

of this work. Instrumentation augments the application with calls to a measurement sys-

tem. Thus, it guarantees the observation of events and is therefore useful for certain tasks,

e.g. discovery of communication patterns in parallel applications. Instrumentation can be

carried out manually or automatically; in this work we focus on automatic compiler instru-

mentation, as provided by major compilers including GCC2, Clang3 or the Intel compiler4.

List. 1: Uninstrumented example code.

i n t f a c t o r i a l (i n t n){
i f (n == 0){

re turn 1 ;

}

re turn f a c t o r i a l (n−1) ∗ n ;

}

List. 2: Instrumented example code.

i n t f a c t o r i a l (i n t n){
c y g p r o f i l e f u n c e n t e r (& f a c t o r i a l ,

b u i l t i n r e t u r n a d d r e s s (1)) ;

i f (n == 0){
c y g p r o f i l e f u n c e x i t (& f a c t o r i a l ,

b u i l t i n r e t u r n a d d r e s s (1)) ;

re turn 1 ;

}

i n t t v a l = f a c t o r i a l (n−1) ∗ n ;

c y g p r o f i l e f u n c e x i t (& f a c t o r i a l ,

b u i l t i n r e t u r n a d d r e s s (1)) ;

re turn t v a l ;

}

Automatic compiler instrumentation introduces calls to a measurement interface at the

2 see http://gcc.gnu.org/
3 see http://clang.llvm.org/
4 see http://software.intel.com/en-us/c-compilers

2190 Jan-Patrick Lehr

start and exit of every function as can be seen exemplarily in Listing 2. Especially in

C++ codes, this can lead to massive runtime overhead, if one considers a modern, object-

oriented programming style with many small functions. However, the introduced runtime

overhead is only one part, as the additional function calls may also change the compiler’s

decisions about optimizations, including inline expansion and tail call elimination. Thus,

compiler instrumentation might in¯uence the target application’s behavior in more subtle

ways.

2.1 Related Work

Mytkowicz et al. showed that capturing software metrics using instrumentation may sig-

ni®cantly perturb hardware performance counters [My07]. In their work they use sampling

to create program traces of vanilla5 and instrumented versions6 and capture a selection of

hardware performance counters, including level 1 data and level 2 total cache misses. For

both traces, the correlation of two performance counters values within the trace is com-

puted. After aligning the traces, these correlations are compared and the results show that

adding instrumentation signi®cantly alters the correlation values. In comparison to their

approach, our research targets static analysis of the binary instead of the comparison of

multiple traces. The possibility to determine the in¯uence of instrumentation statically,

would decrease the necessity to perform time and resource consuming baseline measure-

ments.

Malony et al. proposed a methodology to automatically detect measurement overhead in

time stamps of program trace events [MRW92]. In their approach, they construct a propa-

gation model of incurred runtime overhead and are able to recover trace event time within

small error margins. In order to decrease the necessary analysis time, Malony et al. pro-

posed an on-the-¯y compensation method for overhead mitigation in [MS05]. They ex-

tend their former work to account for parallel applications and the special needs to capture

communication correctly. However, both approaches focus solely on time and the relative

order between different events in a potentially parallel application. While this is valuable

information for the analysis of applications, their approach regards solely runtime.

Kashnikov et al. use the static loop analyzer provided with the MAQAO infrastructure

to extract low-level assembly features and characterize loops to discover potential opti-

mization opportunities [Ka13]. While their approach to extract important features, such as

vectorization ratio, is similar, the actually extracted features are different and the overall

goal differs. Kashnikov et al. focus on improving existing compiler optimization or ap-

ply further binary optimization, our work focuses on determining the validity of measured

performance counter values.

Moseley et al. focus on the discovery of regions for potential improvements in compiler

optimization techniques. While the process involves the comparison of assembler instruc-

tions, it focuses on the performance of short instruction sequences in terms of runtime.

5 Here: the application without any instrumentation applied.
6 Here: the application compiled with any kind of instrumentation applied.

Counting Performance 2191

To this end, they match event logs from program traces and correlate the respective as-

sembly instructions [MGP09a]. Although their correlation approach is interesting, the pri-

mary goal is drawing the user’s attention to potentially poorly applied compiler optimiza-

tions [MGP09b].

Static binary analysis is frequently used for reverse engineering and cross instruction set

architecture translation [CE99, CS00, TC02]. Especially today’s high-level language ab-

stractions, such as virtual calls, and transformations applied by optimizing compilers pose

challenges to the correct reverse engineering of the binary.

To the best of our knowledge static binary analysis has not been applied to determine

whether an instrumented binary is a valid performance proxy with respect to a certain

hardware performance counter.

3 Experiments

In order to study the impact of instrumentation on hardware performance counters we

conduct a series of measurements on a C/C++ subset of SPEC7 CPU 2006 benchmark

programs, using the Clang compiler in version 3.8. The benchmarks are written either

in C (403.gcc, 429.mcf, 433.milc, 456.hmmer, 458.sjeng, 462.libquantum, 464.h264href,

470.lbm and 482.sphinx3) or in C++ (444.namd, 447.dealII, 450.soplex, 453.povray and

473.astar). For a more detailed explanation of the benchmarks, see [He06].

To measure the PAPI counters, we developed a lightweight wrapper library, which allows

us to capture PAPI events de®ned in its high-level API. The library is loaded using libmon-

itor [Kr13], a lightweight mechanism to inject measurement facilities into applications.

All measurements are conducted on nodes from phase 2 of the Lichtenberg cluster of TU

Darmstadt8. Each node is equipped with two Intel Xeon E5-2680 v3 processors, 64GB

main memory and is used exclusively for the measurement. The processes are pinned to

a speci®c core and hyper threading as well as frequency scaling are disabled in order to

obtain comparable results across runs.

3.1 Measuring PAPI Counters for Vanilla and Instrumented Binaries

In our measurements we obtain values for exactly two PAPI events. The total number of in-

structions completed (PAPI TOT INS) is measured in every run. The second metric is one

of nine commonly used metrics: Level 1 instruction (L1I) cache misses (PAPI L1 ICM),

level 2 instruction (L2I) cache total accesses (PAPI L1 ICA), level 2 instruction and data

cache misses (PAPI L2 ICM, PAPI L2 DCM), load and store instructions (PAPI LD INS,

PAPI SR INS), conditional and mispredicted branches (PAPI BR CN, PAPI BR MSP) as

well as the number of cycles stalled on any resource (PAPI RES STL). The counter values

are monitored for a vanilla version as well as for an automatically instrumented version of

7 See http://www.spec.org
8 see www.hhlr.tu-darmstadt.de

2192 Jan-Patrick Lehr

the benchmark. We do not link the instrumented binary to an actual implementation of a

measurement system, but use the empty default implementation in glibc9. The goal is to

gather an understanding of hardware performance counter behavior in the sole presence

of additional calls to a measurement system, without actually capturing data. Thus, the

perturbation observed stems from solely the instrumentation instructions and its impact on

the compiler’s optmization decisions.

Benchmark Runtime Load Store L1I Misses L2I Misses L2D Misses Cond. Branches Br. Mispred.

403.gcc 1.405 1.608 1.579 1.091 1.121 0.985 1.000 1.200

429.mcf 1.186 1.422 1.561 1.506 1.508 1.028 1.075 1.611

433.milc 1.052 1.171 1.379 1.250 1.249 0.984 1.000 1.010

444.namd 1.038 1.344 1.959 1.135 1.073 1.002 1.000 1.000

447.dealII 13.136 7.282 14.736 17.479 7.788 0.764 1.428 6.247

450.soplex 3.081 3.271 11.122 2.892 1.932 0.650 1.093 1.033

453.povray 3.170 2.300 2.801 2.657 1.808 1.738 1.062 3.304

456.hmmer 1.024 1.010 1.018 1.007 0.935 1.000 1.000 1.009

458.sjeng 1.488 1.360 1.586 5.557 0.786 1.001 1.005 1.263

462.libquantum 1.002 1.019 1.070 1.449 1.465 1.011 1.000 0.923

464.h264ref 1.374 1.289 2.085 1.140 1.181 0.993 1.000 1.370

470.lbm 1.053 1.000 1.000 0.923 1.015 1.027 1.000 0.997

473.astar 1.818 1.970 2.775 1.653 1.473 0.913 1.000 1.063

482.sphinx3 1.132 1.054 1.325 1.104 1.115 0.998 1.000 1.305

Tab. 1: Measured counts for PAPI load and store instructions as well as L1I, L2I, L2D cache misses

and conditional branch instructions as well as conditional branch instructions mispredicted. The

values are given as relative factors with the vanilla version’s value being the baseline (1.0).

Table 1 lists the benchmarks and their runtime increase for an automatic compiler in-

strumented version. The factors listed show relative behavior of several PAPI counters

when vanilla and instrumented binaries are compared. Taking overhead runtime as an in-

dicator for the validity of the measurement suggests that 433.milc, 444.namd, 456.hm-

mer, 462.libquantum and 470.lbm are valid performance proxies. In contrast, 447.dealII,

450.soplex and 453.povray show an increase of 13x and 3x in runtime and, thus, would

not be considered valid. Both, 429.mcf and 482.sphinx3 do not exhibit large overhead and

are within 20% overhead, whereas 458.sjeng, 464.h264ref and 473.astar show runtime

increases between 37% and 82%.

As it can be seen in Table 1 and Figure 1, 444.namd would be considered valid, although

the increase in store instructions is close to 2x. Such a deviation can lead the performance

analyst to drawing the wrong conclusions and trying to investigate and ®x not an inher-

ent problem of the application but an artefact of the measurement. The same can also be

true for 433.milc, although, the increase in store instructions is not as severe as it is for

444.namd.

For 462.libquantum, where nearly no runtime increase is seen, the L1I and L2I cache

misses increase by nearly 50%. In the analysis one can conclude that it would be necessary

to change code layout in order to improve code locality in the binary. However, as the

increase is due to the instrumentation added, it is uncertain whether the vanilla version

would bene®t from such changes.

9 see http://www.gnu.org/software/libc/

Counting Performance 2193

On the other hand, for 403.gcc, the counted number of L1I cache misses is nearly un-

changed when compared to the vanilla version. Additionally, the L2I cache misses are

close to a 10% deviation compared to the vanilla version. This suggests that the number of

these events counted is usable for analysis purposes, even though the runtime increase is

1.4x.

Fig. 1: Depicting the increase for mispredicted branches (top) and store instructions (bottom) for the

instrumented versions of the benchmarks.

The results also show that a measurement, which would not be considered a valid per-

formance proxy, as it lies outside of 10% of the vanilla runtime, can indicate the orig-

inal’s behavior with respect to a certain hardware performance counter. All programs,

except 447.dealII, show no or very little change with respect to the measured number of

conditional branch instructions commited. Additionally, the counted number of mispre-

dicted branches is nearly unchanged for some of the benchmarks for which the measure-

ment would not be considered valid, see Figure 1. For example, 450.soplex shows nearly

no change with respect to committed, as well as mispredicted, conditional branches, but

would not be considered valid, as its runtime increased by 3x.

In summary, we conclude that requiring only runtime to be within 10% of the vanilla

version’s runtime seems to be valid as a general guideline. However, especially the results

for 444.namd and 450.soplex motivate a detailed evaluation of the subtle interplay between

instrumentation and hardware performance counters.

2194 Jan-Patrick Lehr

4 Static Instruction Mix

In the last section we showed that instrumentation does in¯uence some of the PAPI perfor-

mance counters considerably and that runtime increase alone is not always a good measure

for hardware performance counter perturbation. To be able to investigate the correlation

between our ®ndings and changes at the binary level, this section illustrates our concept

of a static instruction mix for binaries. It also outlines challenges when inspecting bina-

ries as one may need to reconstruct properties, such as transformed call sites. In addition,

we present our approach for computing the static instruction mix based on the MAQAO

infrastructure.

The static instruction mix is comparable to a histogram, denoting how many instruc-

tions of a certain category are found in each function of the binary. We chose seven cat-

egories: Arith, Mem, Calls, Branches, Unconditional Branches, Stack Ops and

Unclassified, with the latter containing operations which are not clearly of any other

category. The Mem category in general captures memory related operations like MOV oper-

ations, which correlate to PAPI load and store events. Consequently, we do not consider

register to register move operations as MEM operations, as PAPI does not count these as

load or store events. Calls, Branches and Unconditional Branches should in¯uence

the PAPI cycles stalled counter as well as branch predictor related metrics. The other cat-

egories are chosen to be able to inspect the impact on stack memory, compute arithmetic

to memory ratio and possibly missed optimization opportunities to eliminate arithmetic

operations.

We use MAQAO’s call graph analysis to build the static call graph. Since compiler op-

timization may turn a function call to a jump, we ®x up lost call sites doing a jump-to-

function-label analysis. The analysis iterates over all jump instructions in the binary with

a function name as jump target. If the label does not have an additional offset, the jump is

considered to be an optimized call.

One challenge during the reconstruction of the call graph are virtual calls, as can be found

in C++. Another challenge are indirect calls through function pointers, which could not

be resolved at compile time but depend on runtime values. Since virtual calls are usually

implemented using jump tables, to be able to perform the dispatch based on the runtime

type of an object, it is not easy to reliably reconstruct them [TC02]. Our implementa-

tion currently ignores this fact and does reconstruction based only on calls and jumps to

function labels. However, this is not a limitation of the general aproach but of the current

technology used.

After the construction of the call graph, we compute the inclusive instruction mix, which is

de®ned as the sum of all instruction mixes for functions f̂ reachable from a given function

f . Doing so for the main function results in the instruction mix for the binary, without

static initialization. Having both, the instruction mix per function as well as the inclusive

instruction mix for a function and all reachable descendents, it is possible to compare the

change on a function to function level and on a subtree to subtree level. This allows to eval-

uate the effects of instrumentation on inline expansion and the resulting static instruction

mix.

Counting Performance 2195

Fig. 2: The instruction mix change between vanilla (upper) and instrumented (lower) version of

453.povray benchmark. Arith is shown in red, Mem is shown in blue, Calls are shown in green,

Branches are shown in beige, Unconditional Branches are given in tourquoise, Unclassified

are shown in white, Stack Ops are colored pink. For the instrumented version, calls to the measure-

ment interface are given in black. The numbers are total counts of the respective instruction mix

category.

In general, an increase towards the Mem category can be seen for all of the benchmark bina-

ries. As an example, Figure 2 depicts the inclusive static instruction mix for the 453.povray

benchmark with the vanilla binary at the top and the instrumented binary at the bottom,

respectively. It can be seen that the value for Branches as well as Arith within the binary

decreases for the instrumented version. These two artefacts, in our opinion, do correlate as

the computation of a condition for a Branch instruction itself counts as Arith operation.

Thus, if fewer branches exist, then less conditions must be evaluated leading to a decresing

number of Arith operations.

In addition, the decreasing number of Arith operations can be explained by missed opti-

mization opportunities. Usually, if the compiler’s vectorizer hits a computation it is able

to vectorize, it emits a vectorized as well as a scalar version of the computation, thus in-

creasing the number of total arithmetic operations. Seeing a decrease in this category is

likely to show missed opportunities for such optimization. The lower number of condi-

tional branches can be seen as another indicator of this change, as within an optimized

binary, the compiler needs to emit runtime checks, whether the vectorized computation or

the scalar version needs to be called.

At the same time the number of Stack Ops increases for the instrumented binary when

compared to the vanilla version. This correlates with more functions requiring local stack

space being present in the instrumented binary (2025) than in the vanilla version (1545).
In the stack frame, the compiler has to allocate space for local variables. Further, it needs

to save live registers10 before calling any function. If the register save was not necessary

in the vanilla version, the additional calls to the measurement system, most likely, demand

10 A register is said to be live if its value is read within any subsequent instruction in the instruction sequence

without an interpositional write operation.

2196 Jan-Patrick Lehr

the saving of at least one register. This leads to either more stack operations or to additional

memory operations.

5 Conclusion

Performance analysis and tuning is important for ef®cient use of HPC resources. Since

monitoring a system necessarily introduces perturbation into the system, the analyst needs

to be aware of the change that was introduced by the instrumentation. For instrumentation,

we showed that solely relying on the usually accepted guideline that a measurement is

valid (in the sense that the instrumented program properly re¯ects the characteristics of the

uninstrumented program) when its runtime does not deviate more than 10% of the original

program’s runtime, is not always true. In particular, hardware performance counters show

signi®cant differences. Consequently, additional information for determining the validity

of hardware performance counter measurements is needed.

We propose to inspect the static instruction mix at the binary level to determine the per-

turbation of hardware counters due to instrumentation, as the binary more than the source

code re¯ects the really running program. To this end, we developed a static binary analysis

tool based on the MAQAO framework. The tool classi®es every instruction into one of

seven categories to reveal changes within the mix of assembly instructions. The classi®-

cation is performed at the granularity of functions, thus, it draws a clearer picture of the

application than simply counting assembly instructions from start to end. Additionally, the

call graph is constructed and the inclusive instruction mix is computed, to give a high-level

view on the changes in the instruction mix of the binary.

We showed that instrumentation, in general, gears the instruction mix more towards mem-

ory operations and increases the number of stack operations. The number of conditional

branch instructions decreased for a subset of the benchmarks, as well as the number of

arithmetic operations. Thus, the change in the static instruction mix may be helpful to

determine the validity of gathered hardware performance counter values.

6 Future Work

Some of the artefacts that can be seen in the static instruction mix may serve as a descriptor

of introduced change. However, further investigation is needed to quantify the relation

between properties of the binary and perturbation of hardware performance counters and

in this section, we outline avenues for future research.

An interesting property of the binary is the distance between function calls within the

vanilla and instrumented versions as it indicates the compiler’s ability to inline functions.

In addition the number of functions and the distance between the code of the respective

bodies is of interest, as it can serve as an indication for level one and two instruction cache

misses.

Counting Performance 2197

Although in current architectures the ¯oating point operation counters are disabled, these

counters are of interest in older architectures. To determine the impact of instrumentation

on other compiler optimizations, the kind of arithmetic operations which are found in the

binary is of interest. To this end, the operand-type mix and differences in the vectorization

ratio can be computed between the binary, between single functions, or between subtrees

of the respective call graphs.

Since static analysis cannot determine where an application spends most of its time, using

pro®le information to weight the instruction mixes can also bene®t the analysis. Especially

loop driven programs, like many scienti®c applications, spend most of their runtime in a

limited amount of code. Thus, a tool used for performance data assessment can use already

available pro®ling information to weight the respective static information.

To further investigate the change induced by instrumentation, experiments with more so-

phisticated instrumentation techniques are also of interest. For example, Score-P offers

support to ignore inline marked functions from instrumentation. Since inlining is a pow-

erful compiler optimization, it is worth investigating whether this reduces the induced

change.

Finally, it is worth exploring whether the instruction mix can be used to predict the likely-

hood that the instrumented binary captures a certain metric to a suf®cient degree.

In general, further research is neccessary to investigate whether the static instruction mix

can be used as a descriptor for other attributes, such as energy consumption. Being able to

correlate the static instruction mix, maybe with added pro®le information, with the energy

behavior of an application, would provide opportunities for energy-aware work scheduling

systems.

Acknowledgements

I would like to thank Christian Iwainsky for his guidance and valuable discussions.

References

[Ad10] Adhianto, Laksono; Banerjee, Sinchan; Fagan, Mike; Krentel, Mark; Marin, Gabriel;
Mellor-Crummey, John; Tallent, Nathan R.: HPCToolkit: Tools for performance analy-
sis of optimized parallel programs. Concurrency and Computation: Practice and Expe-
rience., 22(6):685±701, 2010.

[BaMI11] Bischof, Christian; an Mey, Dieter; Iwainsky, Christian: Brainware for green HPC.
Computer Science - Research and Development., 27(4):227±233, 2011.

[Br00] Browne, S.: A Portable Programming Interface for Performance Evaluation on Modern
Processors. Intl. Journal of High Performance Computing Applications., 14(3):189±204,
2000.

[CE99] Cifuentes, Cristina; Emmerik, Mike Van: Recovery of jump table case statements from
binary code. In: Proc. of the 7th Intl. Workshop on Program Comprehension. pp. 192±
199, 1999.

[CS00] Cifuentes, Cristina; Simon, Doug: Procedure abstraction recovery from binary code. In:
Proc. of the 4th Europ. Software Maintenance and Reengineering. pp. 55±64, 2000.

2198 Jan-Patrick Lehr

[Dj05] Djoudi, Lamia; Barthou, Denis; Carribault, Patrick; Lemuet, Christophe; Acquaviva,
Jean-Thomas; Jalby, William et al.: Maqao: Modular assembler quality analyzer and
optimizer for itanium 2. In: The 4th Workshop on EPIC architectures and compiler
technology. volume 200, 2005.

[He06] Henning, John L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Com-
puter Architecture News., 34(4):1±17, 2006.

[Iw11] Iwainsky, Christian; Altenfeld, Ralph; an Mey, Dieter; Bischof, Christian: Enhancing
brainware productivity through a performance tuning work¯ow. In: Euro-Par 2011:
Parallel Processing Workshops. Springer, pp. 198±207, 2011.

[Ka13] Kashnikov, Yuriy; de Oliveira Castro, Pablo; Oseret, Emmanuel; Jalby, William: Eval-
uating architecture and compiler design through static loop analysis. In: Intl. Conf. on
High Performance Computing and Simulation, HPCS. pp. 535±544, 2013.

[Kr13] Krentel, Mark W.: Libmonitor: A tool for ®rst-party monitoring. Parallel Computing,
39(3):114±119, 2013.

[Ma91] Malony, Allen D.: Event-based Performance Perturbation: A Case Study. In: Proc. of
the 3rd ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming.
PPOPP ’91, ACM, New York, NY, USA, pp. 201±212, 1991.

[Me11] an Mey, Dieter; Biersdorf, Scott; Bischof, Christian; Diethelm, Kai; Eschweiler, Do-
minic; Gerndt, Michael; Knüpfer, Andreas; Lorenz, Daniel; Malony, Allen; Nagel, Wolf-
gang E.; Oleynik, Yury; Rössel, Christian; Saviankou, Pavel; Schmidl, Dirk; Shende,
Sameer; Wagner, Michael; Wesarg, Bert; Wolf, Felix: Score-P: A Uni®ed Performance
Measurement System for Petascale Applications. In: Competence in High Performance
Computing 2010., pp. 85±97. Springer Science + Business Media, 2011.

[MGP09a] Moseley, Tipp; Grunwald, Dirk; Peri, Ramesh: Chainsaw: Using Binary Matching for
Relative Instruction Mix Comparison. In: 18th Intl. Conf. on Parallel Architectures and
Compilation Techniques, PACT. pp. 125±135, 2009.

[MGP09b] Moseley, Tipp; Grunwald, Dirk; Peri, Ramesh: OptiScope: Performance Accountabil-
ity for Optimizing Compilers. In: Intl Symp. on Code Generation and Optimization.
Institute of Electrical & Electronics Engineers (IEEE), 2009.

[Mo10] Morris, Alan; Malony, Allen D.; Shende, Sameer; Huck, Kevin: Design and Implemen-
tation of a Hybrid Parallel Performance Measurement System. In: 39th Intl. Conf. on
Parallel Processing. Institute of Electrical & Electronics Engineers (IEEE), 2010.

[MRW92] Malony, Allen D.; Reed, Daniel A.; Wijshoff, Harry A. G.: Performance measurement
intrusion and perturbation analysis. IEEE Transactions on Parallel and Distributed Sys-
tems., 3(4):433±450, 1992.

[MS05] Malony, Allen D.; Shende, Sameer S.: Models for On-the-Fly Compensation of Mea-
surement Overhead in Parallel Performance Pro®ling. In: Euro-Par 2005 Parallel Pro-
cessing., pp. 72±82. Springer Science + Business Media, 2005.

[My07] Mytkowicz, T.; Diwan, A.; Hauswirth, M.; Sweeney, P. F.: Understanding Measurement
Perturbation in Trace-based Data. In: IEEE Intl. Parallel and Distributed Processing
Symposium, IPDPS. pp. 1±6, 2007.

[TC02] Troger, J.; Cifuentes, C.: Analysis of virtual method invocation for binary translation.
In: Proc. of the 9h Working Conference on Reverse Engineering. pp. 65±74, 2002.

