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On the semantics of EPCs  

Efficient calculation and simulation 

  One of the most debatable features of Event driven Process Chains (EPCs) is their non-local semantics, which 
results in some difficulties when formalising their semantics. Recently, we have overcome these problems by using 
techniques from fixed-point theory for defining the semantics of an EPC, which consists of a pair of related 
transition relations. This fixed-point characterisation of the semantics of EPCs provides a mathematical 
characterisation of the semantics of EPCs only.  For simulating an EPC based on this semantics, we need an 
efficient way for calculating the corresponding pair of transition relations. A naive implementation of the 
underlying fixed-point iteration for calculating the transition relations results in a practically useless algorithm. 
 
In this paper, we show how to calculate the semantics of an EPC in a more efficient way by employing different 
techniques and optimisations from symbolic model checking. We also analysed all kinds of simplifications of EPCs 
to make the calculation of the semantics more efficient, but it turned out that most of these techniques are 
ineffective. Still, our algorithms are fast enough for simulating practical size EPCs. 
 
In order to demonstrate the efficiency of our algorithms and data structures, we have started an open source 
project called EPC Tools, which could be a good starting point for an open source tool for the EPC community. 

 

1 Introduction 

Event driven Process Chains (EPCs) have been 
introduced in the early 90ties for modelling business 
processes [KeNS92]. Initially, EPCs have been used 
informally only, without a fixed formal semantics. 
For easing the modelling of business processes with 
EPCs, the informal semantics proposed for the OR-
join and the XOR-join connectors of EPCs was non-
local. This non-local semantics, however, results in 
severe problems when it comes to a formalisation of 
the semantics of EPCs and, recurrently, resulted in a 
debate on the semantics of EPCs [LaSW98, Ritt00]. 
It turned out that these problems are inherent to the 
informal non-local semantics of EPCs. In [AaDK02], 
we pin-pointed these arguments and proved that a 
formal semantics that exactly captures the non-local 
semantics of EPCs in terms of a single transition 
relation does not exist. But, we could define a 
semantics for an EPC that consists of a pair of two 
correlated transition relations by using fixed-point 
theory [Kind04b]. 

Due to their non-local semantics, EPCs cannot be 
simulated by looking at the current state only;  
rather it requires calculating the transition relations 
beforehand. In principle, the two transition relations 
defined as the semantics of an EPC can be calculated 
by fixed-point iteration. The problem, however, is 
that the calculation of the two transition relations by 
naive fixed-point iteration is very inefficient and 
intractable in practise.  In this paper, we will show 
that some techniques from symbolic model checking 
[BCM+92, McMi93, ClGP99] and ordered binary 
decision diagrams (OBDDs) [Brya86] can be used for 
calculating the semantics of EPCs in a more efficient 
way. 

We have implemented an EPC tool based on these 
techniques, which simulates practically relevant 
EPCs within a reasonable response time.  Since this 
tool calculates the transition relations of an EPC 
anyway, it was easy to implement some simple 
semantical checks; and it should be easy to add all 
kinds of more sophisticated analysis and verification 
methods. The tool is open source and is based on 
the Eclipse platform [Ecli]. Therefore, it could serve 
as the starting point of an open source project for an 
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EPC tool with all kinds of analysis, simulation, and 
verification features, which is the reason for calling it 
EPC Tools. 

2 Syntax and semantics of EPCs 

In this section, we introduce the syntax and the 
semantics of EPCs as motivated, discussed and 
formalised in [Kind04b], which was based on the 
informal ideas as presented in [KeNS92, NüRu02]. 

2.1 Syntax 

Figure 1 shows an example of an EPC.  It consists of 
three kinds of nodes: events, which are graphically 
represented as hexagons, functions, which are 
represented as rounded boxes, and connectors, 
which are represented as circles. The dashed arcs 
between the different nodes represent the control 
flow. The two black circles do not belong to the EPC 
itself; they represent a state of the EPC.  A state, 
basically, assigns a number of process folders to 
each arc of the EPC. Each black circle represents a 
process folder at the corresponding arc.  
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Figure 1: An EPC 

Mathematically, the nodes are represented by three 
pairwise disjoint sets E, F, and C, which represent 
the events, functions, and connectors, respectively. 
We denote the set of all nodes by N = E ∪ F ∪ C.  The 
type of each connector is defined by a mapping l : C 
→ { and, or, xor }. The control flow arcs are a subset A ⊆ 
N × N. 

For some node n ∈ N, nin denotes the set of its ingoing 
arcs, and nout denote the set of its outgoing arcs. With 
this notation, we can formalise the syntactical 
restrictions of EPCs: Each connector c ∈ C is either a 
join connector, i.e. ⎪cin⎪ >  1 and ⎪cout⎪ =  1, or it is a 

split connector, i.e. ⎪cin⎪ =  1 and ⎪cout⎪ >  1. Moreover, 
every function f ∈ F has exactly one ingoing and one 
outgoing arc (i.e. ⎪fin⎪ =  ⎪fout⎪ = 1), and every event e ∈ 
E has at most one ingoing arc and at most one 
outgoing arc (i.e. ⎪ein⎪ ≤  1 and ⎪eout⎪ ≤  1). Note that 
there are some more syntactical restrictions on 
EPCs. But, we omit these restrictions here because 
they are not important for our semantical 
considerations (see [NüRu02] for details). 

f fe ea. b.

c. d.

e. f.

g. h.

 

Figure 2: The transition relations for the different 
nodes 

A state of an EPC assigns a number of process 
folders to each arc of the EPC; here, we assume that 
there is at most one process folder at each arc. So a 
state σ is a mapping σ  : A → { 0, 1 }. The set of all 
states will be denoted by ∑. 

2.2 Transition relation 

The semantics of an EPC defines how process folders 
are propagated through an EPC.  This can be 
formalised by a transition relation R ⊆ ∑ × N × ∑, 
where the first component denotes the source state, 
the third component denotes the target state, and 
the middle component denotes the involved node. 
Clearly, the definition of this relation depends on the 
involved node, which is the reason for defining it for 
each node n separately Rn ⊆ ∑ × { n } × ∑ later in this 
paper. 
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For events and functions, a process folder is simply 
propagated from the ingoing arc to the outgoing arc. 
The transition relation Rn for events and functions is 
graphically represented in the top row of Figure 2 (a. 
and b.). For connectors, the propagation of folders 
depends on the type of the connector (AND, OR, 
resp. XOR) and whether it is a join or a split 
connector.  Figure 2 shows the transition relation for 
the connectors. For example, the AND-split 
connector (c.) propagates a folder from its ingoing 
arc to all outgoing arcs. Note that an AND-split 
connector can propagate the folder only when there 
are no folders on the outgoing arcs, because we do 
not consider multiple folders here.  The AND-join 
connector (d.) needs one folder on each ingoing arc, 
all of which are propagated to a single folder on the 
outgoing arc. 

The more interesting connectors are the OR-join and 
the XOR-join connectors. Here, we focus on the 
XOR-join. An XOR-join (h.) waits for a folder on one 
ingoing arc, which is then propagated to the 
outgoing arc. But, there is one additional condition: 
The XOR-join must not propagate the folder, if there 
is or there could arrive a folder on the other ingoing 
arc. 

In Figure 2 (h), this additional condition is 
represented by a label with a crossed out arrow at 
the other arc.  Note that this condition cannot be 
checked locally in the current state: whether a folder 
could arrive on the other arc or not depends on the 
overall behaviour of the EPC. Therefore, we call the 
semantics of the XOR-join connector non-local. 
Likewise, the OR-join (f.) has a non-local semantics. 

Note that, in this informal definition of the transition 
relation, we refer to the transition relation itself 
when we require that no folders should arrive at 
some arcs according to the transition relation. 
Therefore, we cannot immediately translate it to a 
mathematically sound definition.  In order to resolve 
this problem, we assume that some transition 
relation P is given already, and whenever we refer to 
the non-local condition, we refer to this transition 
relation P. Thus, Figure 2 defines a mapping R(P) for 
each node, which defines a transition relation R(P) for 
some given transition relation P. Actually, we define 
a mapping Rn(P) for each node n separately, where 
R(P) is the union of all Rn(P). 

The most important property of R(P) is that it is 
monotonously decreasing in P, i.e. for each two 
transition relations P and P' with P ⊆ P' we have R(P) ⊇ 
R(P’). The reason is that P occurs under a negation in 
the definition of R(P) (see [Kind04b] for more 
details). 

2.3 Semantics 

Based on R(P), we can now define the semantics of 
the EPC.  Ideally, we would like to define it to be a 
fixed-point P = R(P). Unfortunately, there are EPCs for 
which the mapping R does not have a fixed-point. 
So, we define it as a pair of transition relations P and 
Q such that P = R(Q) and Q = R(P), where P is the least 
such transition relation and Q is the greatest such 
transition relation. In [Kind04b], we proved that this 
pair is uniquely defined by exploiting the fact that R 
is monotonously decreasing. We called P the 
pessimistic transition relation of the EPC, and we 
called Q the optimistic transition relation of the EPC. 
Unfortunately, P and Q can be different for some 
(nasty) EPCs, and we have argued that these are 
exactly the EPCs for which a single transition relation 
cannot fully capture the informal semantics of EPCs. 
For EPCs for which P and Q coincide, the semantics 
exactly captures the informal semantics. Therefore, 
we call EPCs with P = Q clean. 

In [Kind04b], we did not bother to give an 
operational characterisation of this semantics, since 
we were interested only in defining a precise 
semantics.  But, the fixed-point theorem of Kleene 
immediately gives us a simple algorithm for 
calculating the pair ( P, Q ), which is called fixed-point 
approximation or fixed-point iteration: 

Let P0 = ∅ and Q0 = ∑×∑. For each i, we define Pi+1 = 
R(Qi) and Qi+1 = R(Pi).  Since R(P) is monotonously 
decreasing, we have that Pi ⊆ Pi+1 and Qi ⊇ Qi+1 for each 
i. 

Moreover, ∑ × N × ∑ is finite, which implies that, for 
some i, we will have Pi+1 = Pi and Qi+1 = Qi. For this i, 
we have R(Pi) = Qi+1 = Qi and  R(Qi) = Pi+1 = Pi.  And this 
pair (Pi , Qi) is the semantics of the EPC.  So, starting 
with P0 = ∅ and Q0 = ∑×∑ and iteratively computing 
the next Pi+1 and Qi+1 will eventually terminate with 
the semantics of the EPC. 

Unfortunately, an explicit representation of the 
transition relations Pi and Qi and an explicit 
calculation of Pi+1 = R(Qi) and Qi+1 = R(Pi) is extremely 
inefficient.  For realistic EPCs, there are millions of 
potential states ∑ and billions of potential arcs in the 
transition relation1. Moreover, an explicit calculation 
of R(P) involves a reachability analysis on P. So a 
naive explicit implementation of the fixed-point 
approximation does not work in practise. 

                                                           

1 Note that not all of these states will be reachable in the 
final semantics, but they must be considered during the 
calculation of the semantics. 
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3 Calculating the transition 
relations 

In the previous sections, we have rephrased the 
semantics of EPCs in an operational way.  Next, we 
will show how the two transition relations can be 
calculated in a more efficient way. To this end, we 
will use ordered binary decision diagrams and 
techniques from symbolic model checking. We use 
formulas and temporal formulas for representing the 
transition relation Rn(P) of each node n of the EPC, 
and we will show how these formulas can be used 
for efficiently calculating the semantics of the 
underlying EPC. 

3.1 Representing Rn(P) by formulas 

Let us start with the formula for an AND-split 
connector, with ingoing arc i and outgoing arcs o1, … , 
on. In order to define the corresponding behaviour, 
we assume that i and o1, … , on are boolean variables. 
The values of these variables represent the state 
before the transition, where value true means that 
there is a process folder on the corresponding arc, 
and value false means that there is no process folder. 
Moreover, we introduce the primed version i' and o1', 
… , on' for each arc, which represent the state after 
the transition. With this notation and understanding, 
the behaviour of the AND-split can be expressed by 
the following formula (cf. Fig. 2 (c)): 

i ∧ ¬o1 ∧ … ∧ ¬on   ∧  ¬i' ∧ o1' ∧ … ∧ on' 

This formula exactly captures the fact that there 
must be a folder on the ingoing arc i of the AND-split 
and there must be no folders on the outgoing arcs o1, 
… , on before firing the AND-split; and, after firing the 
AND-split, the ingoing arc has no folder anymore, 
but the outgoing arcs have a folder each.  
Altogether, the formula is an immediate translation 
of Figure 2 (c) (as formalised in [Kind04b]), where 
we assume that variables not occurring in the 
formula do not change. 

Altogether, we can apply this standard technique 
[ClGP99, HuRy00] for defining the behaviour of all 
EPC nodes with a local semantics. The complete list 
of formulas for all connectors is shown below, 
where, for simplicity, we assume that connectors 
have at most two input and output arcs (cf. Fig. 2): 

a. / b.: For n ∈ E ∪ F with nin = {i} and nout = {o}, the 
formula for Rn(P) is 

i ∧ ¬o  ∧  ¬i' ∧ o'. 

c.: For n = c ∈ C with l(c) = and, cin = {i}, and cout = {o1, o2},  

i ∧ ¬ o1 ∧ ¬ o2   ∧   ¬ i' ∧ o1' ∧o2'. 

d.: For n = c ∈ C with l(c) = and, cin = {i1, i2}, and cout ={o}, the 
formula for Rn(P) is  

 i1 ∧ i2 ∧ ¬o   ∧   ¬i1' ∧ ¬i2' ∧ o'. 

e.: For n = c ∈ C with l(c) = or, cin = {i}, and cout = {o1, o2}, the 
formula for Rn(P) is 

i ∧ ¬(o1 ∧ o2) ∧ ¬i' ∧ (o1 ⇒ o1') ∧ (o2 ⇒ o2') ∧ (o1 ≠ o1' ∨ o2 ≠ o2') 

g.: For n = c ∈ C with l(c) = xor, cin = {i }, and cout ={o1, o2}, 
the formula for Rn(P) is  

i ∧ ¬(o1 ∧ o2) ∧ ¬i' ∧ (o1 ⇒ o1') ∧ (o2 ⇒ o2') ∧ (o1 ≠ o1' xor o2 ≠ o2') 

The formulas for the OR-split and the XOR-split 
connectors are a bit more involved. For the OR-split 
connector (cf. Fig. 2 (e)), it is required that no 
outgoing arcs has less folders than before and at 
least one has more. Since we do not consider 
multiple folders, this constraint can be formulated in 
terms of an implication o ⇒ o' (i.e. if there is a folder 
on o in the source state of the transition then there is 
a folder on o in the target state of the transition). 

For the XOR-split (cf. Fig.  2 (g)) connector, we also 
require that no outgoing arc has less folders than 
before and exactly one arc has one more. Some 
formulas are a bit involved, but, in principle, there is 
no problem with these formulas for the local 
connectors, because the transition relation Rn(P) does 
not refer to P. 

But how can the formulas for the non-local operators 
be formalised?  For these connectors, the definition 
of Rn(P) refers to P. So, we need to refer to P in the 
formula for Rn(P) somehow. To this end, we use a 
temporal logic formula that is interpreted on the 
transition relation2 P.  Since we use very simple 
temporal formulas only, we do not introduce 
temporal logic in full detail, here. The only temporal 
operator needed for now is the CTL operator EF (see 
[ClGP99, HuRy00] for details): For some formula ϕ, 
the temporal formula EF ϕ is true in exactly those 
states from which a state can be reached (with 
respect to P ) in which ϕ is valid3. This way, we can 
express that no folder can arrive on some arc i by 
the formula ¬EF i. 

With this temporal formula, it is easy to express the 
behaviour of the XOR-join connector: For an XOR-

                                                           

2 Technically, P is considered as a Kripke structure on which 
the temporal formula is interpreted. 

3 The temporal operator EF can be read „there Exists a 
Future“. 
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join connector with two ingoing arcs i1 and i2 and one 
outgoing arc o, the formula 

( ( i1  ∧  ¬EF i2  ) ∨ ( ¬EF i1  ∧ i2  ) ) ∧ ¬ o    ∧    ¬i1' ∧ ¬i2' ∧ o' 

precisely captures its behaviour.  The formulas ¬ EF 
i1 and ¬ EF i2 guarantee that a transition does occur 
only when no folder can arrive from the respective 
other arc. 

For the OR-join connector, the transition relation is 
similar.  It requires that there is one folder on one 
ingoing arc and, if there is no folder on the other 
ingoing arc no folder can arrive at this arc anymore. 
Altogether, we define: 

f.: For n = c ∈ C with l(c) = or, cin = {i1, i2}, and cout ={o}, the 
formula for Rn(P) is  

( (i1 ∧ i2)  ∨ ( i1 ∧ ¬EF i2) ∨ (¬EF i1  ∧ i2)  ) ∧ ¬o   ∧   ¬i1' ∧ ¬i2' ∧ 
o'. 

h.: For n = c ∈ C with l(c) = xor, cin = {i1, i2}, and cout ={o}, the 
formula for Rn(P) is 

( ( i1  ∧  ¬EF i2  ) ∨ ( ¬EF i1  ∧ i2  ) ) ∧ ¬o    ∧    ¬i1' ∧ ¬i2' ∧ o'. 

Experts in model checking may be a bit concerned 
about mixing primed variables and temporal 
operators in a single formula. Usually, there are 
transition formulas that may contain primed 
variables, but no temporal operators, and there are 
temporal formulas that must not contain primed 
variables.  A transition formula or a set of transition 
formulas represents the underlying system; the 
temporal formulas represent properties to be 
verified for that system. Though uncommon, there is 
no harm in mixing primed variables and temporal 
operators in a single formula.  Such a formula 
defines a new transition relation based on a given 
transition relation, which is exactly what we need for 
calculating Rn(P). 

3.2 Computing the transition relations 

Next, we will discuss how to calculate the two 
transition relations that actually represent the 
semantics of an EPC, where we assume that the EPC 
has the local nodes l1, … , lj and the non-local nodes 
n1, … , nk, and g1, … , gj are the formulas representing 
the transition relations for the local nodes, and h1, … , 
hk are the formulas representing the transition 
relations for the non-local nodes. 

Let us first discuss the operations from model 
checking that we need for this calculation.  In 
symbolic model checking, a transition relation given 
as a formula (with primed variables) is transformed 

into a data structure that is called a reduced ordered 
binary decision diagram4  (ROBDD), which has the 
nice feature that equivalent formulas will have 
exactly the same ROBDD representation.  For a 
formula f with primed variables without temporal 
operators, there is a standard procedure for this 
transformation [ClGP99, HuRy00]. We denote this 
procedure by f.toROBDD(), which is close to the 
corresponding methods of our object oriented model 
checker MCiE [Kind04a]. 

Formulas with primed variables and temporal 
variables are very uncommon. So there is no 
standard procedure for converting it to an ROBDD.  
But, there is a standard procedure for calculating an 
ROBDD representing the set of states of a transition 
system in which a given temporal formula is true. We 
assume that the transition system is given as a set P 
of ROBDDs representing the transitions of the 
system.  This procedure can be easily extended to 
formulas that contain primed variables. For such a 
formula f and an ROBDD-representation P of the 
transition relation, f.toROBDD(P)calculates the 
resulting ROBDD. 

Given some transition system Pcurr (represented as a 
set of ROBDDs), we can calculate the transition 
system Pnext = R(Pcurr) as follows: 

Pnext:={ g1.toROBDD(),..., gj.toROBDD()}; 
for i:= 1 to k do 
  Pnext:=  Pnext.add(hi.toROBDD(Pcurr)); 

In the first line, we insert all the transitions of the 
local nodes to Pnext; in the loop, we add the 
transition relation for each non-local node to Pnext.  
To be precise, the calculation is a bit more involved: 
In order to exactly capture the semantics formalised 
in [Kind04b],  we must switch off the transition 
relation corresponding to node ni for calculating the  
next transition relation for node ni. Since this is a 
minor technical detail, we do not include this into the 
presented pseudo code. 

Based on this code, we can easily execute the fixed-
point iteration discussed in Section 2: We start with 
P0 = ∅ and Q0 = ∑×∑ and the iteratively calculate Pi+1 = 
R(Qi) and Qi+1 = R(Pi).   

In order to save computation time, we do not 
calculate every Pi and every Qi, rather we calculate 
Q0, P1, Q2, P3, … in a zig-zag way. As stated before, 

                                                           

4 Often reduced ordered binary decision diagrams are called 
ordered binary decision diagrams (OBDDs) or even binary 
decision diagrams (BDDs) only. We stick to the term ROBDD 
throughout this paper. 
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we will eventually end up with Pi+2 = Pi  and Qi+2 = Qi  ; 
in order to detect this point, we need to store the 
last two versions of the calculated transition 
relations and compare them to the next one. When 
they are equal, we have calculated the two transition 
relations that represent the semantics of the EPC. 

The pseudo code for the resulting algorithm is shown 
below: 

Pnext:={ false }; // P0 
Pcurr:={ true }; // Q0 
step:= 1; 

repeat 
  Pprev:= Pcurr; 
  Pcurr:= Pnext; 
  step:= step + 1; 

  // Pnext := R(Pcurr) 
  Pnext:={ g1.toROBDD(),..., gj.toROBDD()}; 
  for i:= 1 to k do 
    Pnext:=  Pnext.add(hi.toROBDD(Pcurr)); 

until Pnext == Pprev; 

Upon termination Pcurr and Pnext contain the two 
transition relations for the EPC. The question, 
however, is which of them is the pessimistic 
transition relation and which of them is the 
optimistic transition relation. In order to decide this, 
we use the step counter. If it is odd, Pcurr is a Pi 
relation and thus represents the pessimistic 
transition relation and Pnext is the optimistic 
transition relation; if the step counter is even, Pcurr 
is a Qi relation and, thus, represents the optimistic 
transition relation and Pnext is the pessimistic 
transition relation. 

3.3 Simulation 

Once we have calculated the two transition relations 
for an EPC, it is easy to simulate it.  For some given 
state, we must calculate all nodes that can 
propagate a process folder (according to the 
pessimistic or according to the optimistic transition 
relation). In that case, we call the corresponding 
node enabled in this state. Since we store the 
calculated ROBDDs Pn for the transition relation of 
node n separately, checking the enabledness is 
simple.  Let enabled be the CTL formula EX true, 
which is valid in all states for which the underlying 
transition relation has a successor.  Then 
enabled.toROBDD(Pn) calculates all those states in 
which the node is enabled. 

When the user wants to fire an enabled transition, 
the simulator explicitly removes and adds the 
folders in the current state according to semantics 
of the corresponding node. It is not necessary to use 

ROBDDs here because only the enabledness of a 
node is non-local. The propagation of the folders can 
be calculated locally. 

3.4 Implementation 

It is easy to implement the above algorithms based 
on some standard ROBDD package. The only tricky 
part might be the mixed occurrence of primed 
variables and temporal operators in formulas. Since 
our own Model Checking in Education (MCiE) project 
immediately supports this kind of formulas, we 
implemented the algorithm based on MCiE. Though 
MCiE is implemented in Java and efficiency is not 
MCiE's highest priority, the first experiments with 
this algorithm were surprisingly good. Without 
further optimisations, it worked reasonably well on 
small EPCs. For calculating the semantics for larger 
EPCs, however, we had to come up with some 
optimisations, which will be discussed below. 

4 Optimisations 

As mentioned above, we had to apply several tricks 
and optimisations in order to compute the semantics 
of larger EPCs. In our discussion, we distinguish 
between two different kinds of optimisations. 

The first kind exploits properties of the semantics of 
EPCs in order to reduce and to simplify them. The 
idea is to calculate the semantics of a simpler and 
smaller EPC and, based on this information, simulate 
the original EPC. These optimisations have been 
investigated in [Cunt04]. Unfortunately, there are 
many negative results, which, basically, can be 
considered as a backfiring of the non-local semantics 
of EPCs. The non-local semantics of EPCs seems to 
have many nasty side effects and renders many 
ideas for optimisations impossible—except for very 
trivial ones. 

The second kind is a smart application and 
combination of optimisation techniques generally 
known from model checking.  It turned out that 
these techniques were much more effective than the 
ones for EPCs and could be used in combination with 
the ones for EPCs. 

Note that, in spite of all our optimisations, the worst 
case complexity of our algorithms is still very bad: it 
is exponential. It is an interesting open question 
whether this is inherent to the semantics of EPCs or 
not. But, we feel that this worst case complexity 
cannot be avoided because of the non-local 
semantics of EPCs. But our experimental results 
have shown that, for many practical examples, we 
can calculate the semantics of many practically 
relevant EPCs in a reasonable time. 
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4.1 EPC techniques 

We start with a brief discussion of techniques that 
exploit the properties of EPCs. 

Eliminating chains 

It is clear that reducing the size of an EPC also 
reduces the complexity of the simulation problem. 
For our model checking algorithm, the number of 
arcs of the simulated EPC is essential, because the 
computation time is exponential in the number of 
variables, i.e. in the number of arcs. 

One possible approach is to simplify an EPC by 
eliminating chains of nodes that do not influence the 
semantical behaviour of other nodes. Obviously, a 
sequence of consecutive event and function nodes 
such as the ones shown in Figure 3 (labelled Event 
and Function) can be omitted when computing the 
enabledness of the XOR-join connectors. We call this 
optimisation chain elimination. We can apply chain 
elimination, when the following two conditions are 
satisfied: 

1. In the considered state, there are no process 
folders on the arcs eliminated by this simplification. 

It is obvious that, otherwise, a process folder in the 
predecessor set of an XOR-join connector which 
could influence the behaviour of the XOR-join in the 
original EPC would be missing in the simplified EPC. 

Note that this condition implies that we can omit 
only those arcs from a chain that do not have a 
folder on them. Therefore, chain elimination depends 
on the considered state of the EPC. For simulation, 
this is no problem because we can compute another 
simplified EPC each time the state has changed. 
Since the simplified EPC is much smaller than the 
original one, we can hope that the fixed-point 
computation is significantly faster for the reduced 
EPC. For analysis and, in particular, for checking 
whether the semantics of an EPC is clean, however, 
we cannot apply this chain elimination technique 
directly. 

2. In order to correctly apply chain elimination, it is 
necessary that in no reachable state of the reduced 
EPC, a node is blocked because of a process folder 
on one of its outgoing edges. We call such states 
contact situations. The problem with contact 
situations is, that the simplified EPCs tend to have 
more contact situations as compared to the original 
EPCs. In this case, the behaviour of the original and 
the simplified EPC are different. The simplified EPC is 
blocked, whereas the original version could still fire. 
Therefore, we cannot use the simplified version for 
simulating the original one. Fortunately, it is easy to 
calculate whether the simplified EPC has reachable 

contact situations, which provides us an a posteriori 
condition, whether chain elimination could be 
applied. If the condition is not met, we must switch 
back to calculating the semantics of the original EPC, 
which of course is less efficient. 

If both conditions have been checked, the simulator 
can use the transition relation computed for the 
simplified EPC to determine whether an XOR-join 
resp. an OR-join connector is enabled in the original 
EPC or not (other nodes can be checked locally 
anyway). Because we eliminated only event and 
function nodes, those connectors are still contained 
in the reduced EPC. 

The main disadvantage of the chain elimination 
approach is that it cannot be applied for arbitrary 
EPCs and that its applicability depends on the 
current state. Also, chain elimination does not allow 
us to calculate the complete semantics of an EPC. 
Therefore, it can be used for simulation only; it 
cannot be used for our analysis and verification 
algorithms. 

Syntactical restrictions 

Another idea for simplifying the simulation problem 
was to identify some restricted classes of EPCs for 
which no fixed-point iteration would be necessary. 
For example, we considered EPCs without cycles on 
non-local nodes such as the ones shown in Figure 1, 
or EPCs that are constructed from clean EPC 
constructs only. We hoped that we could calculate 
the semantics of EPCs from these sub-classes in a 
much more efficient way. Unfortunately, it turned 
out that this hope was in vain, and we found some 
nasty counter-examples, which spoilt this approach. 
A detailed discussion of these negative results can 
be found in [Cunt04]. 

4.2 Model checking techniques 

There are many techniques that make model 
checking more efficient. Using ROBDDs as a 
representation for sets of states and for the 
transition relations is one of them. It is only this 
choice that made our algorithms work for small 
examples.  In addition to using ROBDDs, we used 
two other techniques: optimisation of the variable 
order and partitioning of the transition relation. 
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Figure 3: The example used for the measurements 
in Figure 4 

Variable order 

It is well-known that the size (number of nodes) of 
the ROBDDs representing some boolean function or 
formula strongly depends on the chosen variable 
order. In turn, the computation time of the 
operations on ROBDDs depends on the size of the 
ROBDDs. 

So, it is important to find a good variable order for 
efficiently calculating the semantics of EPCs.  One 
heuristic for a good variable order is that related 
variables should be close to each other in the 
variable order.  For EPCs, it is quite easy to identify 
those variables (arcs) that are related:  Two 
variables resp. arcs are related, when they are 
attached to the same node.  The problem, however, 
is that each arc belongs to two nodes; so it is 
impossible to have all related variables close to each 
other in the variable order, in particular, when the 
EPC has cycles in its control flow arcs.  In order to 
calculate a good variable order, we thought of some 
sophisticated schemes. But, in the end, it turned out 
that a simple breadth first traversal of all nodes 
starting from the start events of the EPC provided a 
variable order with the best results. 

Though this variable order provided satisfactory 
results, we feel that there is some room for further 
improvement, which needs some further 
investigation. 

Partitioning the transition relation 

In the algorithm for calculating the transition 
relations of an EPC, we distinguish the ROBDDs for 
the transition relations for each node of the ROBDD. 
It is well known that this results in much less nodes 
for representing the transition relation than for 
representing all transitions within a single ROBDD. 

In order to make these ROBDDs even smaller, we 
imposed one additional assumption on the formulas 
representing the transition relation: we assume that 
all variables not occurring in the formula do not 
change. Expressed in a naive way, this means 
adding the formula a1 = a1' ∧ a2 = a2' ∧ … ∧ an = an' for all 
variables that are not touched by this node.  Adding 
this formula explicitly to the transition relation, 
however, would result in much bigger ROBDDs, 
which in turn would result in much longer 
computation times.  Therefore, we did not add this 
formula to the representation of the transition 
relation, but we implemented the procedure for 
calculating EX within the ROBDD library in such a 
way that these variables were implicitly assumed to 
be unchanged.  This unchanged variables 
optimisation resulted in significantly better 
computation times. 

4.3 Measurements 

In order to illustrate the benefits of the above 
optimisations, Figure 4 shows the computation times 
for calculating the semantics of the example of 
Figure 3 for the different optimisation techniques.  In 
order to see the influence of the size of the EPC, we 
measured the computation time for different 
numbers of nodes on the chain between Event 4 and 
Function 4. The x-axis represents the number of 
nodes of the EPC, the y-axis shows the computation 
times for the different optimisations. 

The first graph shows the computation time without 
partitioning the transition relations. The second 
graph shows the computation time with partitioning, 
but without the improvement for unchanged 
variables. The third graph shows the time when 
incorporating also the optimisation for unchanged 
variables in the transition relations. The fourth graph 
shows the time with an optimised variable order. 
Note that partitioning the transition relation along 
with an explicit algorithm for unchanged variables 
makes a significant difference in the computation 
times. 

The fifth graph shows that chain elimination can 
dramatically improve the simulation of EPCs. Note, 
however, that this example is a bit misleading 
because it was chosen to show the positive effect of 
chain elimination. In other examples, the figures are 
not as impressing and, in many situations, chain 
elimination is not applicable at all (see discussion 
above). 

Once the transition relation was computed, the 
simulation itself could be done in virtually no time. 

The above figures come from a technical example. 
In order to get some experience with real world 
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Figure 4: Benefit of the implemented optimisation techniques (compare to Figure 3) 

examples, we have done some experiments with 
some EPC models from the SAP reference processes 
of the ARIS Toolset5: 

For EPCs with 20 to 30 nodes the semantics was 
calculated within milliseconds to about 4 seconds, 
depending on the structure of the EPC. The chosen 
EPCs examples and the precise figures can be found 
in [CuKi04b]. 

5 EPC Tools 

The algorithms for calculating the semantics of an 
EPC and for simulating an EPC based on this 
semantics is integrated into an Eclipse [Ecli] based 
tool, which we call EPC Tools. EPC Tools is open 
source and can be down-loaded from the EPC Tools 
web site [CuKi04a]. 

Figure 5 shows a screen-shot of Eclipse with the EPC 
Tools plugin running. EPC Tools comes with a 
graphical editor and an interactive simulator for 
EPCs. Moreover, it is easy to import EPCs from other 
tools because EPC Tools supports the EPC exchange 
format EPML [MeNü04a], and there are converters 

                                                           

5 ARIS Toolset is a registered trademark of IDS Scheer. For 
more information see http://www.ids-scheer.com/ 

between the AML format of the ARIS Toolset and 
EPML [MeNü04b]. 

Moreover, EPC Tools checks simple semantical 
properties of the EPC. For example, it indicates 
whether the EPC is clean, i.e. whether both 
transition relations coincide.  This is important, 
because unclean EPCs can easily lead to different 
interpretations and should be considered harmful. 
EPC Tools identifies unclean EPCs right away. In 
addition, EPC Tools checks whether an EPC might 
deadlock and whether there are contact situation, 
i.e. whether there are situations in which nodes are 
only blocked because of process folders on their 
outgoing arcs. Often, such contact situations indicate 
bad design. 

The properties checked right now in EPC Tools, 
however, are quite preliminary. Once the semantics 
of the EPC is calculated, we could easily do much 
more. For example, we could check some soundness 
properties similar to the soundness criteria for 
workflow nets as proposed by van der Aalst 
[AaHe02] or we could check properties by applying 
model checking. This should take less time than 
calculating the semantics. 

Overview on the functionality 

The EPC Tools plugin can be used to edit, to 
simulate, and to analyse EPCs with the help of 
graphical control elements integrated into the 

 0

 2000

 4000

 6000

 8000

 10000

 12000
1

2

4

3

5

 14000

 10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27

tim
e 

in
 m

s

nodes

1

3

2

4

5

Naive approach using model checking

+ unchanged variables optimization

+ partitioning of the transition relation
(+ variable order optimization)

+ variable order optimization

+ chain optimization

(− variable order optimization)

 



Enterprise Modelling and Information Systems Architectures  
Vol. 1, No. 1, October 2005  

On the semantics of EPCs 23  

 

 

Figure 5: EPC Tools in the Eclipse environment 

Eclipse environment. The editor functions are 
provided by a tool palette containing buttons for 
adding nodes and arcs to the EPC. Pushing the 
“select” button allows a user to move, rename, and 
scale nodes directly by clicking on them. Some other 
functions like undo commands are accessible 
through a context menu (cf. Fig. 5). In addition, EPC 
Tools provides a print function and allows a user to 
zoom into and out of EPC diagrams by using the 
standard Eclipse toolbar and the main menu. 

The simulator functions are located in the lower part 
of the panel in the middle. It is possible to highlight 
all currently enabled nodes (button “refresh 
enabled”), and then to simulate one step by 
specifying a node or by randomly choosing a node 
(button “step simulation”). The randomised 
simulation (button “random simulation”) can be very 
useful when simulating several steps consecutively 
by simply clicking one button. A checkbox defines 

whether the simulation should be done according to 
the optimistic or according to the pessimistic 
transition relation.  In the same panel, there are 
some LEDs corresponding to the properties of the 
EPC. This information is updated by pushing the 
“refresh info” button.  Then, the LEDs light up green 
or red in order to indicate the valid and invalid 
properties. 

 

6 Conclusion 

In this paper, we have shown that the semantics of 
an EPC can be efficiently calculated by using 
ROBDDs and techniques from model checking. With 
the presented optimisations, the simulation of 
medium size EPCs works quite well and is practically 
feasible—even when taking into account the non-
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local semantics of the XOR-join and the OR-join 
connector. Moreover, it is quite easy to adapt this 
algorithm to slightly different semantics of EPCs (see 
[Kind04b] for some alternatives): We need to 
change only the temporal formulas for defining the 
transition relations of the different types of nodes of 
EPCs. 

The presented algorithms have been implemented in 
a new Tool for EPCs, which is Eclipse based and is 
called EPC Tools.  This tool comes with a graphical 
editor and it is easy to extend it by new features. 
EPC Tools is open source published under the GNU 
Public License, which might make it a good starting 
point for an open source tool for EPCs. It can be 
downloaded from [CuKi04a]. 
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