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Abstract: Medical image segmentation often involves variants of deformable models
to account for both the variability of object shapes and variation in image quality. Seg-
mentation quality, however, highly depends on the initial estimate, and human guid-
ance is often needed to guarantee acceptable results. For automating segmentation,
our method employs a quality—of—fit function associated with a finite element model
of shape in a search for the optimum parametrisation. A global search with an evo-
lutionary strategy is employed to determine the set of optimum pose parameters for
initialisation of the shape models. A local search subsequently optimises the non—
rigid shape parameters by employing the deformable model paradigm. Experimental
results are presented for different medical applications, which include object detection,
localisation and segmentation, and show the good performance of our approach.

1 Introduction

The analysis of medical images demands efficient and precise automatic segmentation
techniques, because manual segmentation is usually not straightforward and reproducibil-
ity is not satisfactory. Since medical data often come noisy and incomplete, while the
anatomical structures of interest may vary dramatically from patient to patient and from
scan to scan, segmentation can be seen as an ill-posed inverse problem. The general idea
of solving ill-posed problems is to introduce some constraints to the solution [20], e.g.
smoothness constraints. Hence, segmentation of medical data often involves deformable
models [3,5,6,10,11,13,14,19].

Under the deformable model framework, segmentation is considered as the problem of
finding the contour C = 02 that represents the smooth boundary of a specific object 2 in
an image /. This ill-posed problem is reformulated as finding the contour C that minimises
the energy function

€(C) = (1 = Q)eim(CII) + Ceine (C), (H

where €;,,, is an energy term that depends on the underlying image, €;,,; is the regularisation
term that depends on the deformation of the contour, and ¢ € [0,1]. This minimisation
problem may be solved using gradient descend [5, 16], dynamic programming [1, 12],
stochastic relaxation [21,24] and the finite element method [4, 11], among others.

Success of deformable (shape) models, however, crucially depends on both reliable ener-
gies and the initial estimate, i.e. information about the object location, size and orientation
of the desired object in an image. Directly estimating a globally optimum solution is usu-



ally impossible due to the high dimension of the configuration space. Also, the solution
space is usually not convex, and multiple local optima may be found. Hence, currently
human guidance in terms of initialisation [18] and generation of application—specific sta-
tistical shape models [5, 14] or atlases [9], is often needed to guarantee acceptable seg-
mentation results. On the other hand, quality of the segmentations obtained by deformable
models is rarely evaluated, but may be specifically useful for controlling the segmentation
process.

This paper addresses these issues and presents a strategy for automating the deformable
model-based segmentation of medical data sets. Our algorithm computes the most plau-
sible explanation of the image content given a prior model of the desired object in terms
of segmentation with maximum quality. In contrast to [19], where a highly application—
specific segmentation plan is carried out by a single “self—aware” deformable agent, our
algorithm initialises and optimises multiple model instances in parallel. Unlike the ex-
haustive search method used in [12] for global optimisation, our shape search uses an
evolutionary strategy, which is inspired by the genetic algorithm Hill and Taylor employed
for model-based segmentation of medical data [15]. Our approach also employs a popula-
tion of individual solutions that undergo selection and “mutation” with the main difference
that only the optimum pose parameters of the deformable shape model are estimated by
the stochastic search. Further, no recombination (crossover) operators are used, and re-
productive success does not vary with the relative “fitness” of the individuals. Instead, a
rank—selection is implemented.

The search is organised by using a quality—of—fit (QOF) function, which not only accounts
for support provided by the image features (as in [14, 15]), but uses a combined crite-
rion according to equation 1. Compared with hybrid shape—based segmentation methods,
e.g. [2,3, 14], the QOF function allows evaluation of the model fit independent from the
specific formulation of the prior model. Its general formulation allows us to focus on
a-priori constrained prototypical models of shape variation (section 2.1), i.e. training re-
garding shape and appearance as in [2,3,5,8,12,14] is not required. Statistical information
can, however, be incorporated in a straightforward manner [7]. We will demonstrate that
the proposed objective function (section 2.2) allows determining success or failure of the
deformable model fit in an evolutionary shape search. Our search strategy is described in
section 2.3. Experimental results are provided in section 3 for different medical image seg-
mentation applications, which allows us to demonstrate the use of our method as a means
to detect, localise and segment the desired anatomical structures.

2 Method

By shape decomposition objects of similar types are represented using a combination of
a set of basis functions with global support, where the basis can be either pre—defined
in an a-priori manner [22], or obtained via training [S]. We assume that a prototypical
representation of shape sufficiently captures variation of the desired object class, and valid
instances of the object can be reconstructed from the set of a-priori constrained model



parameters. We therefore exemplarily employ the finite element decomposition of shape,
which supports an efficient simulation of deformation.

The quality of a model instance projected into the image and deformed according to
image—based forces, is evaluated using a quality—of—fit function, which estimates the prob-
ability that the image segmentation results are valid w.r.t. the prior model, and represent
the true solution. This allows object localisation and segmentation to be integrated in a
deformable shape search. The proposed evolutionary algorithm computes an optimal set
of affine transformation parameters for automatic initialisation of the shape models. The
optimum set of non-rigid shape parameters is found for each model instance by a local
search that is solved using the finite element method. The best solutions are selected from
a population of multiple deformed shape model instances and further evolved by initialis-
ing new shape instances with similar pose parameters.

2.1 Implementation of The Parametric Prototypical Deformable Model

A parametric deformable template 7 (p) represents the objects undeformed shape (rest
shape or equilibrium shape) and a set of parameters p that define how it deforms under
applied forces. The rest shape of a n—dimensional object can be understood as a continuous
domain 2 C R", and its deformation is described by a boundary value partial differential
equation. It is solved for the unknown displacement field u(x), x € €2, using the finite
element method yielding an algebraic function [4],

Ku(t) = £,(t) + £(£). )

Equation 2 relates at each time step ¢ of the numerical simulation the deformed positions
x(t) = x° + u(t) of all N finite element nodes of the deformable template to the forces
acting on it. Here, u(t) is the vector of nodal displacements and x° denotes the nodal rest
positions. K is a function of the elastic modulus E and Poisson ratio v, and encapsulates
the stiffness properties as well as the type of mesh and discretisation used. The vectors
f,(t) and f(¢) denote the dynamic body forces and external model forces, respectively. The
dynamic equilibrium equation has the form
0%u Ou

@|t>o = M_l(—cgbo — Ku(t) +1£(t)). 3)

To simplify analysis, C and M represent velocity—dependent damping characteristics and
a constant function of material density p, respectively [4,22]. The deformed positions can
be expressed in terms of a superposition of m = my — my displacement fields,
mo
x(t) =x"+ > dra (1), @
k=m

where m; > 1 and mge < s for s = nN degrees of freedom of the system. The modal
vectors ¢y, are solutions to the eigenproblem (K — wiM)¢;, = 0 and the q,, are the modal
amplitudes, computed as described in [22]. Letting

pt = (9?q<t))v ()



where 6 denotes the affine transformation from the model coordinate frame to the image
coordinate system, we can write equation 4 as x(¢) = 0(x” + >, ¢5q,(t)), and obtain a
compact characterisation of the deformed shape 7 (p?) = x(t).

The matching of model and data can be viewed as a local optimisation. In our case, a shape
model deforms from an initial estimate 7 (p°) into an object instance 7 (p‘) supported by
features derived from the image I, such that solving equation 3 yields a balance of internal
and external forces. External model forces f(¢) are created by a sensor—based sparse sam-
pling of a scalar potential field )V, whose local minima coincide with characteristic object
features in the image, i.e.

f(t) = —VW(x(t)). (©6)

For example, contour nodes that typically represent the boundary of the desired object are
usually associated with sensors that sample gradient magnitude maps of the form |V 1|
[16]. In contrast to the energy minimising formulation of deformable models according to
equation 1, the force formulation also permits the use of more general types of external
forces, which cannot be computed as the gradient of a scalar potential field WV, but e.g.
using local texture information [11]. In the general case, a force field may be defined
based on a map D(x) of the distance of each image pixel to the closest relevant point (that
may or may not be defined based on a Gaussian potential field),

f(t) = kD(x(t)), £>0. ™)

As already mentioned, the set of basis functions (cf. equation 4) may alternatively be
obtained by statistical analysis of training samples. The resulting Point Distribution Model
or Active Shape Model (ASM) introduced by Cootes et al. [5] also estimates points of
interest along the model boundary and iteratively deforms the model from its reference
shape into similar shapes that match the target points. The optimum displacement of the
model nodes may be based on the response to a linear filter or higher—order statistics
represented by an Active Appearance Model (AAM) [6]. Consequently, the presented
concepts for shape representation, fit and global search (cf. sections 2.2 and 2.3) also apply
to statistical shape models. Incorporation of statistical information simply requires a basis
transform [7] to determine deformations according to equation 4 by a set of constraints
corresponding to variation modes instead of physically—based vibration modes ¢y.

2.2 The Quality—of-fit Function

Regularisation has close connections to Bayesian Maximum A Posteriori (MAP) estima-
tion [20], i.e. each deformed model instance provides a locally optimum segmentation
result'. For using the model in a search for the desired object, a high value of the asso-
ciated quality—of—fit (QOF) function should indicate cases, where model and data match
perfectly without significant deformation. Otherwise the QOF-value should be low. We
therefore propose an objective function that combines a measure of deformation Q);,; of

"Minimising the energy of the contour C = 952 defined in equation 1 is - with suitable assumptions - equiva-
lent to finding from an initial estimate C° the contour C that maximises a posterior probability ¢(C|T, ¢, C?).



a model instance with its correlation with the data @);,, for estimating the total quality
similar to equation 1,

Q(T) = (1 - C)QL/YL(T) + CQint(T)v C € [Ov 1]' (8)

We aim at formulating @;,,, and @Q;,,; such that their values are normalised to the interval
[0, 1], where values close to 1 indicate high quality. The QOF-value Q(7) indicates the
probability that the image segmentation result is valid w.r.t. the prior model 7 (p), and
represents the true solution to the segmentation problem.

The quantity Q;,, is usually determined by comparing the expected data with the candidate
segmentation. Several approaches employ the evidence for edges along the model bound-
ary [15], and evaluate the data fit as the average sensor response at each model node [2,9].
This simple approach may, however, not always be appropriate because object boundaries
may or may not be indicated by high intensity gradients, while the intensity may vary in
the object interior due to noise and pathological effects. Other methods are based on the
local AAM search, which is driven by normalised texture differences between the model
and the image [6]. For example, Heimann et al. employ the statistical evidence for the
shape by using the posterior probabilities of local grey—value appearance [14]. We pre-
sented a similar approach that does not require training of textural information [11]. In
all aforementioned cases the correspondence of the model with the expected data can be
estimated using a force formulation according to equation 7. Hence in the ideal case, at
the final step ¢ of the simulation the nodal forces are assumed to vanish, i.e.

Qim(T) = F(u(f:(1)]*)). )

Here, 1 computes the mean value over all nodes 7 and F maps the resulting values to the
interval [0, 1], e.g. using the negative exponential.

As the space of possible solutions is constrained by the prior model, the obtained segmen-
tations are assumed to be of similar shape, and the “degree of similarity” in terms of the
deviation from the reference shape is rarely evaluated. Bergner et al. compute the ratio of
the sum of all spring lengths over the sum of their rest lengths for a mass spring model of
shape [2]. A drawback is the lack of specificity of their objective function that penalises
global deformations, while the influence of local deformations may be neutralised due to
averaging. Similar criteria were used in [9, 12], but apply only to specific representations
of the prior model. The shape decomposition approach, on the other hand, allows a com-
parison of shape instances based on their coordinates in the shape space S(7) [17]. It
is spanned by the set of non-affine deformation parameters associated with 7, such that
similar shapes correspond to nearby locations. Hence, the quantity @;,: can be computed
from the non-rigid deformation of the shape model instance in its un—rotated reference
frame. In our case the strain energy, which is associated with the modal displacements, is
adapted from [22], such that

Qint(T) = F(n(qy(t)wy ?)). (10)

In order to exclude the effect of global variations and reduce the influence of the high—
frequency modes, which are sensitive to noise, we only consider the modal amplitudes



from a low—dimensional embedding (@, ... ¢m,). We select the m < s intermediate
modes that explain a proportion 3, e.g. § = 0.25, of the total variation (section 2.1).

Note that in contrast to other approaches, e.g. [9, 12, 14], the proposed quality—of—fit can
be evaluated for any decomposition—based shape model, e.g. ASM [5]. In this case the f;
(in equation 9) may be evaluated as described in equation 7, and the q,, (equation 10) are
coordinates in a statistically constrained shape space S(7).

2.3 The Deformable Shape Search

Solving the segmentation problem requires estimation of the optimal set of parameters p*
(equation 5), which represent the affine and non-rigid deformations of the shape model
7T that best matches the image. If we assume the model to be adequate w.r.t. the shape
constraints and response to the crucial image feature detectors, the model is deformed
from an initial estimate 7 (p°) into a similar shape by minimising an associated energy
function (equation 1). In our case, the desired solution to equation 3 yields a balance of
internal and external forces, and shall optimise the quality—of—fit. A solution 7 (p*) with a
maximum QOF-value Q(7') indicates the globally optimal segmentation iff the model is
properly initialised. Hence, a global search is performed for possible initialisations.

The optimum set of affine transformation parameters is determined using an evolutionary
strategy. Our deformable shape search initialises and optimises multiple model instances
in parallel. Similar to genetic algorithms [15], our algorithm computes the most plausible
explanation of image content given a prior model in terms of segmentation with maximum
quality. A population of candidate solutions is evolved to one or several local optima
within the search space by computing a ranked selection. We therefore evaluate the fitness
of each instance using the QOF—function (8) introduced in section 2.2. According to the
principles of stochastic optimisation [23], randomness is introduced in the direction of
the global search. Since in our case the objective function to be maximised depends on
the parametrisation of the deformable model, spontaneous variability is introduced similar
to a random search by a “mutation” of the pose parameter values of selected individual
solutions. Our implementation of the stochastic (Monte Carlo) sampling does not include
cross—over mutations or recombination, but employs a zero-mean Gaussian mutation (cf.
equation 12) to account for the non—convex nature of the objective function (Figure 2(a)).

Model instances are initialised by a transformation of the prototype 7 (p°) from the model
coordinate frame to the image coordinate frame. Assuming the center of mass of the rest
shape at the origin of the local frame of reference, the transformation 6 defines the position
¢, orientation ¢ and scaling s of the model instance in the image. For the evolutionary
shape search the pose parameters £ = {¢, s, ¢}, are considered as variates with a presumed



Gaussian? distribution £ ~ N (1, ), such that random, real-valued samples

© = p(E) + 1, an

where
r=2z4<(§) and z ~ N(0,1). (12)

In contrast to [2,14,15], training data for estimating the parameters /i and < of the probabil-
ity density functions are in our case not available. We therefore specify an initial region of
parameter values we are interested in. More specifically, we use pre—set tolerances ¢ from
the parameter values z’ of a single model instance 7* generated from the representative
manual segmentation, which serve as estimates for ji (see sect. 3 for settings we used in
our experiments). This kind of assumptions may be introduced by a human expert [9, 19],
but can often also be derived from inspection of the images and example segmentations>.

The search procedure is summarised in algorithm 1. In contrast to [14, 15], a rank selection
is used instead of employing probabilities for the selection of individual solutions. We
organise the iterative search by employing a priority queue R of candidate solutions, where
we use the quality—of—fit of the current model instances as the priority (step 4 of algorithm
1). Solutions with high quality Q(7) > 79 = ¢ — 7, are selected (step 5), and further
evolved until the overall quality of the current model instances,

q=m(max(Q(T) : T €b)), (13)

converges. The threshold 7 is predefined. For determining ¢, clusters of model instances
with high energy are built by assigning them based on their center of mass to one of the
bins b, which define a regular grid over the image*. This clustering allows to discard
redundant shape instances. We identify close solutions for which the maximum distance
of corresponding nodes is below a threshold d,s¢r, €.2. Juser = 2mm, and select the
higher rated instance from each cluster of close solutions.

New shape generations are then generated in each iteration of the global search based on
the parametrisation of the regionally (per cluster) best fitting shapes in terms of pertur-
bations of the particular pose parameter values (step 6). Therefore, to the selected pose
parameters 6§ we add a random vector created from a multi—variate zero mean Gaussian
(step 7). More specifically, for each new instance we use in equation 11, i(§) = o', where
v’ is the actual value for £ from an instance with high quality, and in equation 12 we let
¢(€) =< € [0, 1]. The values for ¢ decrease over time, e.g. from G5, to 0.05. This stra-
tegy is related to annealing type optimisation methods, and helps to improve convergence.

2Gaussian sampling may be inadequate, for example for determining the optimum scaling (which depends
on the selected field of view), or position of the desired objects. Alternatively, a uniform distribution may be
initially assumed. Later this information can be refined by employing a match list of known solutions. Such
importance sampling would also allow avoiding repetitive computations by discarding parametrisations in case
of close proximity in the parameter space.

3The application—specific search ranges help to increase efficiency and robustness of the search. If no prior is
known, a coarse exhaustive search can be performed by employing uniform sampling. In medical applications,
however, the set of possible affine transformations can often be constrained a—priori on the basis of standardised
acquisition parameters and general anatomical knowledge.

4Since the exact relation of the image size s and object is not in advance, we relate the size of a bin to the
size of the template 7 * constructed from the example segmentation, such that the bins are of size 0.5/i(s), where
a(s) = s;ls:r* . Alternatively, the bin size may vary dynamically with the size of the current best fitting shape.



Algorithm 1 Evolutionary shape search.

1: Initialise a population of shape model instances P(0) = {7 (p9)},j = 1,...,J(0),
according to the pre—set distribution parameters in equations 11 and 12.

2: repeat {T = (T + 1)}

3:  Deformable Shape Fit:
Fit each new individual model instance to the data by solving equation 3 to obtain
a set of locally optimum solutions P(T') = {7 (p)},j = 1,..., J(T).

4:  Evaluation:
Evaluate the quality of fit Q(7 (p’)), Vs (equation 8) and generate a ranked list
R(T) of the population P(T").

5:  Clustered Rank Selection:
Select from the priority queue R(7T') the J4 < J(T') best fitting instances per bin g
with Q(7 (p})) > 7¢. Discard the Jp < J 4 redundant candidate solutions.

6:  Reproduction:
Generate new instances based on the selected p§- ,i=1,...Ja— Jp,1e.

pgew,j = (enew,jv q?) ’

where 0,,c. j = 0(&;) (and 7 = 0 in equation 11), and q} = 0.
7 Gaussian Randomisation:
Introduce variability in the values p?ww’ j»J =1,...Ja, by adding a small random
vector to Ope ; (quation 12).
8:  Initiate Blind Search:
Replace the J(T') — (Ja4 — Jp) instances by a new population according to step 1.
9: until convergence.
10: return the list of ranked solutions R(T").

Shape model instances with low quality (and redundant shapes, resp.) are replaced in step
8 by new instances. Misleading shape searches due to an insufficient parametrisation as
well as an exponential increase in the number of solutions can thus be avoided, while the
additional new trials keep the search independent of known solutions.

The search converges if no improvement in overall quality ¢ (and quality of the best fitting
model instance provided at the top of the priority queue) can be achieved with a pre—
defined minimum and/or maximum number of trials. Depending on the desired precision,
the search may be terminated when a solution T(pg-) € R can be reported with a QOF-
value above a pre—defined threshold 7. On the other hand, if the QOF-value Q(7 (p}))
of the best candidate solution is below the pre—defined threshold, the desired object was
not detected in the given image.



Figure 1: Example images used in our experiments. From left to right: transversal MRI slice (A),
sagittal MRI slice (C), TCS image (B), TCS image acquired using Tissue Harmonic Imaging (THI).

3 Experimental Evaluation

We chose three representative medical applications to validate our approach to deformable
shape search:

A Segmentation of the mesencephalic brain stem (midbrain) in transversal slices from
cerebral MRI data sets,

B Segmentation of the midbrain in transcranial sonographies (TCS),

C Segmentation of the corpus callosum in sagittal slices from MRI data sets.

30 T1-weighted MRI data sets were available (from 30 subjects, scanned at 3 Tesla) with a
resolution of 2562 isotropic pixels of size 1mm?. The 20 TCS data sets from 9 patients and
1 healthy subject were acquired with varying imaging protocols in clinical routine. The
subjects were scanned using conventional B—-mode ultrasound (and using Tissue Harmonic
Imaging (THI) in 14 of the 20 data sets). The TCS data sets had an in—plane resolution
of 666 x 888 isotropic pixels with a variable spacing between 0.13mm and 0.27mm.
Example data sets are provided by Figure 1.

All data sets were available in 8 bit format, but varied w.r.t. the signal to noise ratio,
as well as magnetic field inhomogeneities (in the MRI data) and echomorphology of the
midbrain (in the TCS data sets), respectively. An automatic segmentation without prior
shape information and initialisation close to the desired solution was prone to fail due to
inter—subject anatomical variability, as well as the low contrast to neighbouring structures.
The segmentation of the midbrain from the TCS images was particularly challenging due
to the highly variable quality of the temporal bone window of the scanned subjects, the
non—deterministic characteristic of ultrasound data, artefacts (e.g., due to reflection and
absorption of the ultrasound by the calvaria), and pathological changes in the echotexture.

The segmentation was performed in all cases in 2D allowing an evaluation of our method
using qualitative and quantitative analyses based on ground truth segmentations provided
by neuroscientists. We constructed 2D—shape models, which prototypically represent the
rest shape of the corpus callosum and midbrain, from a randomly selected expert seg-
mentation in one example data set per application. These segmentations were available in
terms of manually delineated contours. The finite element models were build on the basis



of a triangulation of the segmentations, and implemented using linear shape functions for
interpolation of the field variables over the finite element mesh.

3.1 Parameter Settings

We conducted three different experiments, where we first evaluated localisation and seg-
mentation accuracy under the assumption that the desired anatomical structure was con-
tained in the input images (exactly once). In the second experiment (C) we selected from
each MRI data set 2 sagittal slices, which did / did not contain the desired structure, respec-
tively, in order to explore the ability of the proposed method to also detect the presence of
the desired object in the input image.

The segmentation consisted of two steps, finding the optimum pose parameters using the
presented evolutionary strategy and searching for the locally optimum non-rigid shape
parameters by employing the finite element method for optimisation.

In our experiments the local shape searches were parametrised using £ = 0.9,v =
0.25,p = 1 and kK = 100. We computed application—specific external model forces.
The distance—based potential functions D (equation 7) were pre—computed for the MRI
data sets on the basis of intensity gradient magnitude maps. In application B texture—
based forces were estimated at runtime on the basis of first and second—order statistics
over the actual segmentations [11]. In order to improve the runtime of the local searches,
we pre—computed the first—order statistics over the TCS images. As convergence criterium
we used a minimum change in nodal displacements and a maximum number of iterations
(t < 1000) of the numerical simulation, respectively.

For the deformable shape search we let in all experiments 3 = 0.25, i.e. m = 11 inter-
mediate modes were used in equation 10 for application A, and m = 6 for applications B
and C. We further let { = 0.5, 7 = 0.1, and 7,5¢, = 0.7 was the required minimum QOF-
value of the final solution. For mapping the quality—of—fit values according to equation 8
to the interval [0, 1], we used the negative exponential function F(Q) = exp(—aQ?) with
a=0.1. We set 0,56 = 2mm and ¢ = 0.4.

The initial constraints on the search space were ¢(¢) = 0.1s;, with s; being the image
width, ¢(3p) = 2° and ¢(s) = 0.1i(s), except for (C) where {(¢) = 0.2s;. The global
search was run for a maximum number of 7" = 20 iterations with a population of initially
J(0) = 40 instances in the localisation/segmentation experiments. We chose the particular
number of instances according to the application—specific restrictions on the search space,
i.e. ahigher number of J(0) = 60 initial individuals was chosen for experiment C, because
here a larger region of possible locations in the image coordinate frame was explored.

Iteration of the global search stopped if the overall quality did not improve after 7" > 5
iterations and the quality of the best rated solution in the rank list R was above T, se-
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Figure 2: Figure (a) shows the quality—of—fit evaluated for a small region of 81 x 81 positions
around the true location within an example image (application C), using a population of shape model
instances with fixed optimum size and orientation. Multiple local maxima can be identified in this
subregion of the search space. Figure (b) shows the influence of the regularisation parameter ¢
(equation 8) on the significance of the QOF-values. For the default value ¢ = 0.5, true and false
positive segmentation results can be identified based on a threshold 7,ser = 0.7.

3.2 Experimental Results

Since our method is based on the assumption that valid instances of the object can be
reconstructed from the a-priori constrained model parameters (cf. section 2.3), we first
evaluated the constructed shape models w.r.t. target error. We found that segmentation
was always successful given a proper manual initialisation close to the object of interest
in the data (note that in this experiment we manually selected from the MRI data sets
(C) the sagittal slices containing the corpus callosum). In all cases, the resulting seg-
mentations showed a high overlap with the ground truth segmentations of 0 = 95 + 2%
(n = o). Moreover, the QOF-values increased during the deformation process at average
from Q(7 (p°)) = 0.42 to Q(7 (p')) = 0.75. We also found from this experiment with
user initialisation that slight deferministic changes in the parametrisations not necessarily
resulted in further improvement, i.e. not in all cases the segmentation quality was inversely
proportional to the distance from the reference segmentation. The non—convexity of the
quality—of—fit function over the search space is illustrated in Figure 2(a).

Our results from the second experiment (automatic localisation) indicated that the stochas-
tic search algorithm 1 can, however, cope with this situation, as it may less likely get stuck
in local optima compared with deterministic methods. Table 1 shows that in all cases low
values indicated a misled shape search, while the best fitting instance represented a valid
solution (type 1—error was p < 0.05) close to the true solution. Typical results of our
method are displayed in Figure 3.

Both the adequacy of the deformation and significance of the QOF—function (8) depend,
however, on the actual choice of material parameters. All our experiments have been



Figure 3: Typical segmentation results with a QOF Q(7") > Tyser = 0.7 for the example applica-
tions studied (The images were cropped only for displaying the regions of interest.). The solution in
the top right figure was favoured by the expert but assigned a smaller QOF-value @ = 0.78 (rank 9
of the priority queue) compared with the solution in the top middle right figure (best rated solution
with @ = 0.81). Such cases happened rarely, but need further evaluation. The bottom right figure
shows a false positive solution reported by our algorithm in the detection task (C) on the basis of a
QOF-value Q > Tyser. The overlap with the ground truth segmentation was below 90%.

done with the same set of empirically chosen parameter values (listed in section 3.1) that
yielded plausible deformations. From our experience, the method is robust to changes in
the parameter values.

A rigid template matching, i.e. an exhaustive search for the optimum affine set of pa-
rameters using a correlation measure as objective function, also provided reliable initial
estimates for applications A and C. For the non—deterministic TCS data (B), however,
false positive solutions could be avoided in 9 of 10 cases only by combining texture—based
forces [11] and the proposed deformable shape search. This optimisation strategy is com-
putationally more expensive. However, from the third experiment on object detection (case
study C) we can conclude that an initially less constrained search space (e.g., assuming an
uniform distribution of the object locations) was efficiently reduced by employing match
lists of known solutions (i.e. importance sampling). By avoiding repetitive computations
the overall running time was reduced by about 40%.

The best rated segmentations provided at the top of the priority queue always compared
well with the manual segmentations (see table 1). Average overlap was 94 + 1% and
boundary errors were at the order of 1mm for experiments 2 and 3, where we evaluated
our method to the automatic localisation/detetction and segmentation of specific shapes.
These results compare with the results from experiment 1, were the shape model instances
were manually initialised. This clearly shows that the combination of a prototypical shape
template — and reliable, i.e. image modality dependent, model forces — with the proposed
search strategy allows for both localising and segmenting the desired objects.



As expected, the detection rate for application C could be improved using a more liberal
threshold 7., only at the cost of an increasing false positive rate (increasing e.g. for
Tuser = 0.6 from 0.03 to 0.2). The proposed QOF-function, however, was more signifi-
cant compared with an purely image—based objective function (realised by letting ( = 0
in equation 8), as used in [15].

Figure 2(b) provides statistics over the quality of segmentations resulting from successful
and misleading shape searches, which were computed by applying to all data sets the
deformable shape search with different parametrisations for the regularisation factor { €
[0,1]. For an analysis, we classified the candidate solutions from the final populations
P(T') according to their overlap with the manual segmentations as true and false positives,
respectively. A false positive was defined by an area overlap of o < 90%. Our results
indicate the importance for evaluating segmentation quality of including the amount of
non-rigid deformation necessary to fit the data. Most notably, in the detection experiment
no false negative solution was reported at the top of the priority queue R(7T') for ¢ €
[0.4,0.6]. In all cases QOF-values above 0.7 could be interpreted as a high probability
for the true solution, while no preferred value ¢ € [0.4,0.6] for the influence of the strain
energy became evident from our results.

In contrast to the method proposed by Hill and Taylor [15], where the search space is
spanned by the set of affine and non-rigid parameters, our global search computes the opti-
mum pose parameters only. By incorporating a population of deformable model instances,
however, hidden dimensions are added to the problem making the presented search also
more efficient than regular sampling [23]. Our approach, however, cannot guarantee to
find the globally optimal parameter set. This would require a recursive subdivision of the
parameter space and analysis of all possible matchings for transformations with parame-
ters contained in the respective region, possibly resulting in an exhaustive search.

We finally applied the shape search for all data sets with an increased initial population size
J(0) = 100. Several strategies (e.g., a-priori constraining the search space, importance
sampling, clustered ranking, pre—computation of image—based force fields, etc.) allowed
rendering the search efficient. The computational load, however, was at the order of 80%

instances TP FP .
time
J(0) overall @ > Tyser rate Q 5 rate  Q
(A) 40 406 9 1.0 0.74 08=+0.2 0 - 1004
(B) 40 418 12 1.0 081 1.24+0.3 0 - 2733
(©) 60 559 14 0.97 085 0.64£0.1 0.03 0.82 1128

Table 1: Segmentation results. The table provides the number of instances initialised, the size of
the population P (7") after convergence, and the number of instances from R(7") with a QOF—value
above Ty ser, the fraction (%) of true positive (TP) and false positive (FP) solutions and their average
QOF-value @), the average squared distance J (in 7mm) to the manual segmentations, and the average
running time (given in seconds) for a complete search (on a 2.4GHz P4, Matlab/C). Note that the
running time in (B) is largely dominated by on—line computation of the texture—based external model
forces according to [11].



higher compared with the original settings (sect. 3.1), while no improvement over the re-
sults presented in table 1 was achieved. This effect may be due to the noise and ambiguity
in the data as well as the possible lack of specificity and/or sensitivity of the prior model,
and needs further evaluation.

4 Conclusion and Outlook

This paper presented an approach to automatic medical image interpretation by employ-
ing a quality—of—fit function in a deformable shape search. Given our assumptions on
the decomposition—based representation of specific shapes are met, the proposed evolu-
tionary strategy controls the segmentation process and returns multiple model-based in-
terpretations of the image along with a confidence measure from the interval [0,1]. A
major difference to existing shape search strategies [2,5,9, 12, 14, 15, 19] is that the pre-
sented quality—of—fit function allows evaluation independent from the specific formula-
tion of the parametric model regarding its basis and external model forces. Experimental
results showed its adequacy for deciding upon the success of the segmentation. In all
cases where small deformations were required to bring the prototypical model into corre-
spondence with the data, the resulting segmentations were indicated by high QOF-values,
while poorly fitted model instances yielded low values. This effect was independent from
the application/modality—specific external model-forces and image quality.

As the proposed evolutionary strategy was shown to work successful with little, prototypi-
cal prior information, our method may become an option especially for the segmentation
of higher dimensional data. We believe that our approach provides a means to replace cur-
rent strategies that rely on purely image—based criterion functions [14, 15] and/or require
statistical a-priori information [3,5,6,9,12,14], which may not always be available. Future
research will focus on the detailed evaluation of the influence of the various parameters
on possible random and systematic errors of our approach. In particular, we aim at find-
ing an optimum parametrisation on the basis of exemplar-based segmentations in order to
improve the a-priori information involved in both the local and global search.

References

[1] Amini A., et al.: Using Dynamic Programming for Solving Variational Problems in Vision.
IEEE Trans Patt Anal Mach Intell 12(9) (1990) 855-867

[2] Bergner S., et al.: Deformable structural models. Proc. IEEE ICIP (2004) 1875-1878

[3] de Bruijne M., et al.: Shape particle filtering for image segmentation. In: Barillot C., et al. (Eds.)
Proc. MICCAI’04, LNCS 3216, Springer (2004) 168-175

[4] Cohen L.: On active contour models and balloons. CVGIP Imag Underst (1991) 53(2) 211-218

[5] Cootes T., et al.: The use of Active shape models for locating objects in medical images. Imag
Vis Comp 12(16) (1994) 355-366



[6] Cootes T., et al.: Active Appearance Models. Proc. ECCV (1998) 484-498

[7] Cootes T. and Taylor C.: Combining point distribution models with shape models based on
finite—element analysis. Imag Vis Comp 13(5) (1995) 403-409

[8] Cremers D., et al.: Nonlinear Shape Statistics in Mumford-Shah Based Segmentation. Proc.
ECCV (2002) 93-108

[9] Dornheim L. and Dornheim J.: Automatische Detektion von Lymphknoten in CT-Datensétzen
des Halses. Proc. BVM (2008) 308-312

[10] Engel K., et al.: A two—level dynamic model for the representation and recognition of cortical
folding patterns. Proc. IEEE ICIP (2005) 297-300

[11] Engel K. and Toennies K.: Segmentation of the midbrain in transcranial sonographies using a
two-component deformable model. Proc. MIUA (2008) 3-7

[12] Felzenszwalb P.: Representation and detection of deformable shapes. IEEE Trans Patt Anal
Mach Intell 27(2) (2005) 208-220

[13] He L., et al.: A comparative study of deformable contour methods on medical image segmen-
tation. Imag Vis Comp 26 (2008) 141-163

[14] Heimann T., et al.: A Shape-Guided Deformable Model with Evolutionary Algorithm Initial-
ization for 3D Soft Tissue Segmentation. In: Karssemeijer N. and Lelieveldt B. (Eds.) Proc.
IPMI'07, LNCS 4584, Springer (2007) 1-12

[15] Hill A. and Taylor C.: Model-based image interpretation using genetic algorithms. Imag Vis
Comp (1992) 10(5) 295-300

[16] Kass M., et al: Snakes: Active contour models. Int J Comp Vis 1(4) (1988) 321-331
[17] Kendall D.: A survey of the statistical theory of shape. Statistical Science 4 (1989) 87-120

[18] Maleike D., et al.: Lymph node segmentation on CT images by a shape model guided de-
formable surface method. Proc. SPIE 6914 Medical Imaging (2008)

[19] MclInerney T., et al.: Deformable organisms for automatic medical image analysis. Med Imag
Anal 6(3) (2002) 251-266

[20] Poggio T., et al.: Computational vision and regularization theory. Nature 317 (1985) 314-319

[21] Rueckert D. and Burger P.: Contour fitting using stochastic and probabilistic relaxation for cine
MR images. Proc. CAR (1995) 137-142

[22] Sclaroff S. and Pentland A.: Modal matching for correspondence and recognition. IEEE Trans
Patt Anal Mach Intell (1995) 17(6) 545-561

[23] Spall J.: Introduction to Stochastic Search and Optimization. John Wiley & Sons (2003)

[24] Stegmann M., et al.: Extending and applying active appearance models for automated, high
precision segmentation in different image modalities. Proc. SCIA 2001



