
Standard software versus high­

level languages

R.C. H UTTY

GEC-Elliott, Borehamwood, England

(Presented by P . Heywood)

1. l ntroduction

The purpose of this paper is to assess the merits
of using Standard Software as against a High­
Level Language for application programming .
Although some of the points made in this paper
are applicable generally to all fields of computing,
they are intended to refer mainly to the computing
field of process and industrial control.

2. Defi n i tions

As the terms 'standard software ' and 'high- level
language ' are often misused, their meanings, as
used in this paper , will be outlined.

Standard software

Standard software is that software which is
designed, coded and tested once, but used, with
little or no alterat..,.m , in more than one computer
system . Standard software for a particular com­
puter is normally developed by the computer
manufacturer . Standard software falls into three
categories :

1 . Basic standard software .
2 . Application standard software .
3 . Problem-orientated languages .

1 . Basic standard software refers to standard
software which is designed for a particular com­
puter range and is general-purpose enough to be
used in any computer system which utilises one
of the computers in the range . Basic standard
software, e .g . executives and operating systems,
is used in almost every computer system . Other
basic standard software, e .g . mathematical
routines, although general- purpose, is not neces­
sarily used in all systems .

2 . Application standard software, normally used
with the support of basic standard software, is

designed to satisfy the software requirements for
a particular application area. Application stan­
dard software is developed only once but can be
used in any computer system required to perform
the same kind of function, e .g . a DDC system .
Normally the only application programming work
required is the initialisation of parameter values
relevant to a particular system and a requirement
specification of the parts (usually optional) of the
software required for the system .

3 . Problem- orientated languages are similar to
high- level languages except that they are defined
for a specific field of application , e .g . sequence
control, and are machine- dependent . The soft­
ware for a system is written using the statements
of the language . However, the set of statements
available is restricted and designed only for the
narrow field of application . lt is therefore not
likely to be useful for any other field of applica­
tion .

High /eve/ /anguages

High- level languages are used for one- off applica­
tion programming. High- level languages are now
replacing assembly languages for one- off applica­
tion programming. The advantages and disadvant­
ages of using high- level languages instead of
assembly languages are not discussed here .

High- level languages, e .g . FORTRAN and
ALGOL, and their statements are designed for
general use . Real-time languages such as RTL
are included in this category.

High- level languages are not wholly general
but are designed for very much wider fields of
application than the narrow field for which
problem- orientated languages are suitable . For
example, real- time languages are designed for
all industrial control and real- time applications ,
whereas a sequence control language would only
be suitable for relevant industrial sequence
control applications .

1 5

3. Specific comparisons

For a comparison between the use of standard
software and a high-level language, every aspect
of a computer manufacturer's business, from
selling to commissioning, must be considered.

Marketing

The marketing of systems is enhanced by the
availability of extensive standard software,
especially application standard software and
problem-orientated languages. lt is possible to
provide meaningful publicity describing the parti­
cular item of standard software and its area of
application. Potential customers are able to
identify their company's requirements with soft­
ware designed to solve their own particular
problem. Standard software packages lend them­
selves to more illuminating advertising languages.
High-level languages can be advertised, but their
impact on potential customers is not as great.

Selling

Standard software makes the task of selling sys­
tems easier. Sales teams can aim at definite
market areas rather than a general area. Sales­
men are able to sell fixed price packages for
some types of application standard software and
are able to communicate with the potential custo­
mers via the standard software because it is
designed for the customer's application and is
readily familiar to and understood by the custo­
mer.

Tendering

Tendering of software systems currently involves
a higher degree of risk than is normal in an engi­
neering environment and therefore anything which
helps to reduce this risk is obviously advantage­
ous. Estimating the software content of a contract
is more accurate when standard software is avail­
able than with high-level languages. The problem
of estimating storage for a system is reduced if
standard software is used because a !arger
amount of store is pre-defined by standard soft­
ware than languages.

Not only storage estimates, but also the man­
power required (which is often proportional to the
storage requirements) , are easier to assess
because a standard software package inherently
defines what is required to be done to make it
suitable for a particular system. Even if it is not
possible for the whole of the software system to
be standard, at least that part which is standard
is likely to be estimated accurately. Standard
software enables the function of a software system

1 6

to be specified precisely. The customer there­
fore knows exactly what he will receive and the
programmer who will implement the system will
know what to provide.

Programming

Standard software reduces the programming skill
required. This makes the software less expens­
ive, more controllable and reduces the risk.
Standard software should provide an over-all
software cost sa ving over the use of high-level
languages . A programmer's job is reduced when
using standard software because it has been pre­
defined and pre-structured. Programming may
be just a matter of supplying data to application
standard software.

lt is likely that non-computer people will be
able to 'program' a system using application stan­
dard software or problem-orientated languages.
Thus, engineers who specialise in the application
field for which the standard software is designed
can 'program' the software for his own applica­
tion, thereby providing a system which does
exactly what he wants it to do. Therefore, the
problem created by the difference between what
an engineer actually wants and what a programmer
actually provides is removed.

Commissioning

Commissioning problems are reduced when
standard software is used because there are
fewer bugs in well tried and proven standard
software than a first-time one-off program.

Documentation

Standard software reduces the amount of docu­
mentation to be produced for each -contract.
Standard documentation is a natural by-product
of standard software. However, high-level
languages provide a good degree of self­
documentation.

4. General comparisons

There are many points other than those associated
with each phase of a contract, which are general
and worth noting.

Staff changes

Staff changes during a contract pose fewer
problems when standard software is used, because
the software system and its requirements are
capable of being well defined initially and do not

usually change .

Machine dependence

Standard software is usually machine- dependent
and, as such, is designed to be as efficient as
possible, with respect to both storage and execu­
tion time . However, high level languages are
usually machine- independent, so when one of
these languages is required to be used on a parti­
cular computer the object code produced by the
compiler may be unsuitably inefficient - this
depends a great deal on the particular language­
computer com bination :

Suitability

lt is very difficult to define a high- level language
which is suitable for all applications within the
extensive areas of application for which they are
designed. For example, the inefficiencies
produced by high-level languages are likely to be
too large to be used as an alternative to basic
standard software . However, efficiency is not
always of prime importance .

Unfortunately, it is usually the case that
standard software, especially application stan­
dard software, does not provide exactly what is
required for a particular application , even though
the application is considered to be in the area
intended to be covered by the software . This
usually happens when a customer 's requirements
extend outside the norm for which the software
has been designed. Where the requirements are
not essential then it must be pointed out to the
customer the extra costs that are incurred by
either 'bending ' the standard software or program­
ming the system in a high- level language, as a
one- off system, as against using the standard
software intact . Where the requirements are
essential then there is no option but to 'bend ' the
standard software or to use a high- level language .

Oua!ity

The suitability of standard software depends upon
the quality of its design . A knowledge of the
functional requirements of standard software is
an important necessity before its design can begin;
this will ensure that the software is likely to
satisfy more applications than it would otherwise .
The design of standard software should ensure
that it can be easily made to fulfil the require­
ments of a particular application without
redundancy. This is often currently achieved by
using a modular approach in the design of the
software .

Tools for a good system construction facility
are necessary for modularly constructed software .

lt i s better to 'bend ' standard software than to use
only a high- level language since at least some of
the software will remain intact and as such be
well proven . The bending should be performed,
if possible, by the team who implemented the
software , in order to reduce the risk of errors .

Development cost

Standard software development costs must be
compared with the cost of producing a compiler
for a high- level language . If any appreciable
amount of standard software is developed then its
cost will be greater than the cost of developing a
compiler . Iiowever, it is usual to have available
both standard software and a high- level language
in order to completely cover all possible applica­
tions, and therefore development costs are
required for both.

5. Conclus ion

lt would seem that there will always be a require­
ment for high- level languages and standard soft­
ware because of the shortcomings of standard
software . Although standard software, where it
can be used, will usually be less expensive and
involve less risk than a high- level language , it is
only in simple applications that a system could be
made up completely of standard software . Hence,
in most systems, standard software requires to
be either supplemented, or replaced, by a high­
level language . lt is important that a high- level
language be compatible with the standard software.

As a general rule, wherever possible, standard
software should be used in place of high- level
languages .

Discussion

Q. In what level of programming language is your
standard software written and specified ?

A. lt is written in assembly language, and speci­
fied in terms of the facilities it provides (and the
implications thereof) in assembly language terms .

Q . How stable do you find your standards ?

A . Packages are always modified, but only
slightly.

Q . Are not modifications to standard software
difficult to test ?

A . Possibly so for an individual system, but not
essentially worse than testing the original package .

1 7

Q . Suppose ?, piece of standard software (let us
call it S) is slightly bent to form something we
shall call S ' . Then henceforth, is S or S ' the
new standard software ?

1 8

A . The software S ' may be eligible for standard­
isation , but is certainly not new standard softwar e
automatically .

	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828

