
Asynchronous Service Discovery in
Mobile Ad-hoc Networks

Khaled Nagi

Computer Science Department.
Faculty of Engineering.
Alexandria University

El-Shatby, Alexandria, Egypt.
nagi@ipd.uni-karlsruhe.de

Birgitta König-Ries

Institute for Program Structures and
Data Organization.

Universität Karlsruhe.
D-76128 Karlsruhe, Germany.
koenig@ipd.uni-karlsruhe.de

Abstract: The wide availability of mobile devices equipped with wireless commu-
nication devices paves the way for building highly dynamic communities of ad-hoc
networks. For an asynchronous service discovery in this environment, we suggest
the use of mobile agents. Here, we concentrate on file sharing and exchanging ser-
vices. We adopt a new asynchronous approach for discovering and locating these
files, since the availability of files in this particular domain will change signifi-
cantly over time when nodes constantly join and leave the network. In this paper,
we present a typical application scenario, highlight the main components of the
system architecture and discuss the technical challenges facing us while trying to
port main infrastructural features of traditional database management systems to
our mobile light-weight software agents.

1. Introduction

Nowadays, almost all new mobile devices are equipped with wireless communication
devices. A consequence of this availability is that users - moving within their enterprise
or institution - can easily build highly dynamic ad-hoc networks and can exchange in-
formation and services among these devices on the basis of mutual collaboration. In
large institutions with several thousands of members, e.g., students in a university or
employees in a big company, the need for this informal exchange of information and
digital services is born. The ideal pattern for cooperation in these situations would be
similar to the Peer-To-Peer (P2P) network paradigm that originally emerged on the
Internet for exchanging files (e.g., mp3 files in the music exchange community) and later
digital services (e.g., web services in e-Commerce) and multi-agent systems in research
labs.

Common to all these P2P networks is the need for service discovery in a non-monolithic
environment. This can be accomplished using centralized yellow/white pages services as
in CORBA [1], FIPA [2] or completely decentralized as in Gnutella [3].

69

However, the environment of mobile ad-hoc networks differs in two important aspects
from these: First, users disconnect themselves more often and remain offline for much
longer times. Second, ad-hoc networks are characterized by the lack of an underlying
infrastructure; thus, a centralized approach to service discovery is not feasible. Most of
the work done in the area of service discovery in ad-hoc networks is to locate resources
on the network, such as connectivity to a broader area network, access to printers, scan-
ners, screen projectors, etc. This is usually done in the network layer by modifying the
routing protocols [4] or is integrated in the application layer [5]. In some scenarios, such
as file sharing and exchanging, it is also sufficient for them to receive the requested
service in a later point in time. This requires the service discovery process to be asyn-
chronous; a new approach for service discovery. This has also been noticed in the SOUL
project [6]. There, users send off mobile agents with service requests and offers which
meet in a market place, a geographic area with a high device density, negotiate there and
then return to their owners. In contrast to our approach introduced below, SOUL does
not combine synchronous and asynchronous service discovery and does not support
complex service descriptions.

The rest of the paper is organized as follows. In Section 2, we present the application
scenario drawn from everyday situation facing our students. Section 3 presents our asyn-
chronous approach for service discovery using mobile agents and highlights the advan-
tages of using mobile agents in this scenario. The system architecture and the implemen-
tation platform are described in Section 4. A comparison of our approach with ap-
proaches, which are purely based on static DBMS on mobile devices, is highlighted in
Section 5. Finally, Section 6 summarizes the paper and outlines the future work.

2. Application Scenario

The following application scenario from the DIANE project [7] illustrates the need for
asynchronous service discovery.

Anna is a computer science student. She has to pass her database exam in a two-week’s
time. That is why she is looking for solutions to all SQL exercises and unofficial summa-
ries of lectures made by her colleagues. In this academic environment, students are will-
ing to exchange their knowledge but there is no platform for this exchange and hence
there cannot be a centralized approach for service discovery. Anna might first try a syn-
chronous service search, i.e., she will propagate her service request in the ad-hoc net-
work using the mechanisms provided by the DIANE platform [8]. However, it is quite
likely that at any given point in time not everybody who would be able to provide some
information to her will be logged on to the net. Thus, in order to obtain a full set of re-
sults, Anna should use asynchronous service discovery.

70

In our scenario, Anna is supposed to state her requirements “I need all notices about
SQL lectures and exercises. Deadline: 15th of January 2003. Contact information: I am
daily at the library from 14:00 to 16:00, or you can mail me the document at
anna@student.myUni.edu”. This information is saved on her PDA and she needs to
propagate it to all students she comes across in order to increase her chance of getting as
many documents as possible before the exam. She would transfer this information to
Bob’s PDA upon meeting him at lunch break, which, in turn, will autonomously forward
this request to Allen’s and Marc’s PDA during their usual evening get-together. If Marc
has a relevant document, he already has Anna’s contact information; he would send her
the document.

However, answering these many requests manually for people he does not know does
not sound to be appealing. Marc would rather have a piece of software that handles the
request, autonomously identifies the required document and then asks him for permis-
sion to send the document. If the request arrives after the 15th of January, the software
will automatically remove this pending request and performs the necessary garbage
collection. If it arrives before the 15th of January, it would be ready for propagation to
the next PDA with the same hosting platform.

3. Asynchronous Service Discovery Using Mobile Agents

A search operation, in its most general case, is composed of data about the request and
the code implementing the search. For the search to be carried out, the data must be pro-
pagated through the network, whereas propagating the code is very dependent on the
nature of the application. Migrating both data and code is the basic definition of mobile
agents. In our work, we make use of mobile agents to propagate search requests without
loss of generality.

3.1 The degree of agency

Choosing the right degree of agency in the system depends on the following factors.
• The non-monolithic nature of the system: Recently, more and more developers are

moving away from providing large monolithic systems [9] A non-monolithic sys-
tem has the following implications for our application: The power of the code per-
forming the navigation to find the required document has to depend on the node
that dispatches this request not on the nodes on the course of navigation or even
the node that owns the requested documents. This promises more flexibility and a
better selectivity of the search request. Moreover, different nodes on the network
have heterogeneous capabilities. They have different power and storage con-
straints. Each node can install only the capabilities that satisfy its needs. Having a
non-monolithic system means that changing the system, e.g., upgrading the search
algorithm, in one node does not eventually lead to upgrading the system on all

71

nodes that are joining or even may join the network in the future. This does not
pose any further constraint on nodes joining the network to install special software
to exchange files with other nodes. On the other hand, it is harder to tune the over-
all performance of fully decentralized non-monolithic systems.

• The need for dynamic code adaptation: Mobile agents can sense their execution
environment and react autonomously to its changes by adapting their code dyna-
mically. In our application scenario agents propagate through the network chan-
ging their search plan according to the intermediate search results they find. For
example, an intelligent agent may autonomously change its plan during the course
of the search switching it from an exact match search to relevance search, if it
suspects the presence of very relevant documents not included in the original
search request. Another example would be an agent deciding to search for a distil-
ler after finding the requested document in postscript format, only.

• Definition of search plans: A search plan can be formulated as a partially ordered
graph of simple actions. If these actions are somehow well defined and standardi-
zed, their code can be installed on all nodes, resulting in a rather monolithic sys-
tem. In this case, only the graph of the search plan must be propagated as part of
the data of the search request. However, for smaller search requests, developers –
in our case computer science students- tend to prefer writing simple search scripts
over defining declarative and rather formal search plans. This, in turn, favors a
more agent-oriented approach. In our application scenario (and also all similar
scenarios without a centralized instance to undertake the development and the
coordination of the system), we assume that the users would tend to the latter ap-
proach.

3.2 Advantages of mobile agents

Furthermore, there are several typical characteristics of the mobile agent paradigm that
make it most appealing for this application environment.

• Mobility: we use code migration to overcome the continuous disconnections in
the ad-hoc network. In this application scenario, being connected to a neighbor-
ing PDA occurs for short periods followed by long disconnections.

• Agent cloning: together with code migration, agent cloning enables the user to
discover this virtual ad-hoc network in an asynchronous manner.

• Persistence: mobile devices have a severe physical limitation, which is their
sparse power supply. In order to save power, they are in hibernating mode for
long period of times. The persistence and self-invocation nature of mobile
agents enable them to overcome this limitation autonomously.

• Decentralization: Mobile agents are by nature decentralized and do not rely on a
central device or an infrastructural component as every agent is treated in the
same way.

72

• Autonomy: minimizes the need for system management from the part of the
hosting system under the assumption that the mobile agents have no harmful in-
tentions.

• Intelligence: the paradigm enables the users themselves to enhance the search
capabilities of their mobile agent by individually developing more intelligent
algorithms to deal with the inherent heterogeneity of the service description.

3.3 Difference to typical Peer-To-Peer applications

The main difference between our approach and typical Peer-To-Peer (P2P) systems used
in the Internet is the asynchronous behavior. The asynchronous nature of mobile agent
extends the search to nodes that may join the network at different times or even within
several days. Furthermore, a direct implementation of these P2P file exchange systems
over ad-hoc networks is not possible for the following reasons:

• The highly dynamic topology of ad-hoc networks: Nodes can move arbitrarily.
This implies that nodes that are physically close, e.g., in one-hop distance at one
point of time may well be at different sides of the network at another point of time.
This makes it hard to maintain efficient overlay structures. Also, nodes are connec-
ting and disconnecting from the network all the time, so that it is not possible to
rely on the existence of any given node.

• The limited resources of the nodes in terms of power and memory capacity as most
of the hosts rely on batteries for supplying power. Since sending is very energy
demanding, this restricts severely the amount of messages that can be send. The
lack of memory prevents the extensive replication of information across the nodes.

• The limited bandwidth: In a wireless environment, bandwidth is usually restricted
and therefore the traffic that is needed for the maintenance of the network as well
as the traffic caused by applications must be kept minimal.

4. System Architecture

4.1 Main components of a mobile agent

Figure 1 illustrates the main components of the mobile agent. The service discoverer
resides at the heart of the agent. Here, the search intelligence is implemented. Since each
node has its own semantics concerning the representation of meta-information about the
documents, we use a representation of a domain specific ontology. We base this repre-
sentation on work done within the DIANE project [10]. Using the description of the

73

required service and a cached subset of the domain-specific ontology, the agent commu-
nicates with the hosting environment for service discovery through the interaction man-
ager. Having discovered an interesting service, the contact information is sent to the
hosting environment to establish the Peer-To-Peer communication and the information
interchange (either synchronous through file transfer using the wireless communication
interface or asynchronous using mail). The persistence manager is responsible for serial-
izing the agent before entering the hibernation mode or before migrating to another de-
vice. In general, it is responsible for managing the life-cycle of the agent, killing itself
upon completion of its task or cloning itself before the migration. The migration man-
ager is responsible for establishing the negotiation before code cloning and transfer
whenever a new device is in the neighborhood.

Contact
info

Service
Discoverer

Description of
required
service

Subset of
domain –
specific
ontology

Interaction
Manager

Migration
Manager

Persistence
Manager

Hosting Environment

Mobile agent

Contact
info

Service
Discoverer

Description of
required
service

Subset of
domain –
specific
ontology

Interaction
Manager

Migration
Manager

Persistence
Manager

Hosting Environment

Mobile agent

Figure 1. The main components of a mobile agent

4.2 Architecture of the hosting environment

Figure 2 illustrates the main components of the hosting platform and the life-cycle of an
agent in this platform. The hosting platform encapsulates the runtime environment for
the agents to execute. It maintains a directory of information services that the owner of
the mobile device is willing to publish and share with other users in the ad-hoc network
community. For the matching process, a domain ontology must be always present on the
hosting platform to support the search process [10]. The query processor is responsible
for answering the search requests coming through the interaction manager of the mobile
agent. The communication manager interacts with the outside world. It receives migrat-
ing agents into and out of the system coming from the transport layer. It also interfaces
with the email system for establishing the offline contact to the service requester.

74

Hosting Plattform

Agent
nAgent

1Q
ue

ry
Pr

oc
es

so
r

Ontology

Communication
manager

Transport
layer

Email
system

............

Searchable
metadata of
published
services

1

2

3

4

5

Hosting Plattform

Agent
nAgent

1Q
ue

ry
Pr

oc
es

so
r

Ontology

Communication
manager

Transport
layer

Email
system

............

Searchable
metadata of
published
services

1

2

3

4

5

Figure 2. Hosting Platform and typical life-cycle of a mobile agent

Using these components in the hosting platform, a typical life-cycle of a mobile agent
can be summarized as follows.

The migrating agent arrives from the transport layer through the communication layer
(step 1). Then, it is allowed to reside in the hosting platform and perform its search for
information by querying the directory of published services (step 2). If an interesting
service is found, the user is asked for permission before establishing contact with the
information requester, usually via email (step 3). Following deadline and resource con-
sumption constraints, the agent may clone itself (step 4) and migrate to other devices
upon their presence in the physical neighborhood (step 5).

4.3 Implementation platform

Our mobile agents will be hoping between different platforms: notebooks, PDAs, ta-
bletPCs, smartphones, etc. in order to guarantee total interoperability, we sought a host-
ing environment, which is available on all their hardware platforms, and operating sys-
tem. Our decision was to use Java. The Java platform is becoming the standard platform
for deploying agents as compared to earlier LISP and other typical AI languages. Several
Java-based platforms, such as FIPA-OS [11] and JADE [12], are becoming a defacto
standard in the world of static agents. MicroFIPA-OS [13] and LEAP [14] are their
counterpart for PDA and other light weight devices.

75

The Java 2 Micro Edition (J2ME) [15] is now available on almost all the lightweight
platforms and is compatible with the Java 2 Standard Edition (J2SE) found on more
powerful notebooks. J2ME provides a light version of the most popular Java libraries. It
defines standard interfaces for exchanging messages over wireless networks, telephony
systems, lightweight graphics, etc. To facilitate development, several emulators are
available for programming and testing on the standard PC.

5. Database-like Infrastructural System Requirements

In contrast to an approach purely based on static DBMS on mobile devices, our proposed
solution for asynchronous service discovery is certainly a very flexible one and promises
a wider search potential. However, this approach poses lots of design challenges. In
order not to end up with a virus-like system spreading across the mobile devices and
consuming their scarce resources, almost every infrastructural support offered by tradi-
tional DBMS and distributed systems in general must be revisited, embedded in our
mobile agents or hosting platform, and optimized for use in this new paradigm. Here, we
outline some of these requirements and compare them to standard approaches used in
Distributed Database Management Systems and Distributed Systems.

• Persistence services: we definitely need low cost persistence services for serial-
izing the mobile agents before hibernations. This infrastructural support is pre-
sent since the early days of object-oriented database management systems and
seems to be one of its few components that commercially survived.

• Agent replication: we need replication management for cloned agents. The al-
gorithms for managing cloning have their roots in the distributed database sys-
tems. However, since the consistency constraints are far more relaxed, these al-
gorithms must be, in turn, simplified.

• Agent coordination: another usage of agent cloning is to assign different agents
subtasks in a distributed information retrieval process. The coordination of
these spawned agents can be easily modeled using open nested transactions. In
our work done on static agents [16], we deomsntrated the feasibility and the be-
infits of using a variation of the open-nested transaction model to model agent
coordination and govern both their cooperative and competitive behavior.

• Ontology modeling: in this highly decentralized system with no standardizing
instance, ontology modeling becomes a difficult task as opposed to well-defined
database schemes. Here, we base our solution on work previously done within
the DIANE project [10].

76

• Security: Security issues in the field of mobile agents are much more complex
than in the the field of distributed database management systems. Here, it is a
two-fold problem. Taking the side of the hosting nodes, executing the foreign
code of a mobile agent certainly represents a security threat. Although user au-
thentication and authorization as in DBMS seem to be an appealing solution, it
is practically very difficult to achieve due to the large flexibility and execution
possibilities of a mobile agent as compared to simple SQL statements. In the
past few years, many research efforts concentrated on protecting the hosting
platform from malicious agents. This protection varies from the use of authenti-
cation and authorization to a complete monitoring of the execution of the agent.
Considering the side of the mobile agent, revealing its plans by expressing it in
a declarative way to the hosting platform for execution is the security threat.
Malicious nodes can manipulate the honest agent turning it to a virus-like piece
of software spreading through the network. In our scenario, we assume the hon-
esty of both agents and hosting nodes; a realistic assumption for a community
of students or employees of the same organization having a common interest of
sharing information among them.

• Scalability: is the most crucial design challenge in this scenario. “How many
agents can reside in the mobile device with its limited resources” is the decisive
question, whose answer will tune the operating parameters of the system. Simu-
lation models extracted from the world of distributed information systems form
the basis for our simulation study.

• Predictability: is a very difficult problem on the level of the macro agent soci-
ety. Similar to scalability, simulation is our only means to improve the predict-
ability of the system. Our experience [16] in this area, shows that here too,
many simulation parameters have their roots in the simulation models of dis-
tributed information systems.

6. Summary and future work

Mobile ad-hoc networks offer new possibilities for users to share information. In such
environments, service discovery cannot always be done synchronously. In this paper, we
present an approach for asynchronous service discovery based on mobile agents. We
present the reasons for choosing mobile agents for our approach. Then, we highlight the
basic architectural components of the system and present the required infrastructure that
must be adopted from the well-established database technology.

77

Beside the developement of a functional protytype based on the J2ME, we are currently
working on an extensive simulation model to analyze the behavior of the system. In our
analysis, we concentrate on performance metrics, such as the degree of propagation of
agents within the network as compared to the purely synchronous approach. We also
investigate the impact of each of the control parameters on the performance of the mobi-
le agents and the resource consumption in the network in terms of superfluous migrati-
ons. Here, we target some good settings of the control parameters before the actual
deployment.

References

[1] CORBA Trading Object Service
http://www.omg.org/technology/documents/formal/trading_object_service.htm

[2] The Foundation for Physical Agents. http://www.fipa.org
[3] Gnutella File Sharing. http://gnutella.wego.com
[4] R. Koodli and C. Perkins. Service Discovery in On-Demand Ad-Hoc Networks, MANET

Working Group Internet Draft, October, 2002.
[5] J. Wu and M. Zitterbart. Service Awareness and its Challenges in Mobile Ad-Hoc Networks.

In: Proc of the GI Jahrestagung 2001, Volume 1, Vienna, Austria, 2001.
[6] SOUL Project. Self-Organized Ubiquitous Learning. http://bowmore.uni-

trier.de/soul/publikationen.htm
[7] DIANE: Dienste in Ad-hoc-Netzen. http://www.ipd.uni-karlsruhe.de/DIANE
[8] M. Klein, B. König-Ries. Multi-Layer Clusters in Ad-hoc Networks - An Approach to Ser-

vice Discovery. In: Proc. of the International Workshop on Peer-To-Peer Computing. Pisa,
Italy, May 2002.

[9] D. Kotz. Future Directions for Mobile Agent Research, available at:
http://dsonline.computer.org/0208/f/kot.htm

[10] B. König-Ries, M. Klein. Information Services to Support E-Learning in Ad-hoc Networks
In: Proc. of. First International Workshop on Wireless Information Systems (WIS2002), Ciu-
dad Real (Spain), April 2002.

[11] The FIPA-OS platform, http://fipa-os.sourceforge.net/
[12] The JADE (Java Agent DEvelopment Framework), http://sharon.cselt.it/projects/jade/
[13] Supporting software agents on small devices. In Proc. of the first international joint confer-

ence on Autonomous agents and multiagent systems, Bologna, Italy, 2002.
[14] The LEAP (Lightweight Extensible Agent Platform), http://leap.crm-paris.com/
[15] Java 2 Micro Edition, http://java.sun.com/j2me/
[16] K. Nagi. Transactional Agents: Towards a Robust Multi-Agent System. Lecture

Notes on Computer Science (LNCS 2249), Springer-Verlag. 2001.

78

http://www.omg.org/technology/documents/formal/trading_object_service.htm
http://www.fipa.org
http://gnutella.wego.com
http://bowmore.uni-trier.de/soul/publikationen.htm
http://www.ipd.uni-karlsruhe.de/DIANE
http://dsonline.computer.org/0208/f/kot.htm
http://fipa-os.sourceforge.net/
http://sharon.cselt.it/projects/jade/
http://leap.crm-paris.com/
http://java.sun.com/j2me/

