
Recovering Runtime Structures of Software Systems from Static Source

Code
Thomas Forster, Thorsten Keuler, Jens Knodel

Fraunhofer Institute for Experimental Software Engineering

Kaiserslautern, Germany

{thomas.forster, thorsten.keuler, jens.knodel}@iese.fraunhofer.de

Abstract: While software building blocks and their

interdependencies can be recovered from the

source code using static fact extraction, behavior

and communication paths at runtime are typically

gathered from instrumented executions of the

system. However, more often than not it is not

possible to retrieve data from the running system –

either due to a high effort for instrumentation,

missing (hardware) infrastructure, or because of

advanced communication mechanisms hidden by

middleware, frameworks or platforms.

In this paper, we present an approach to semi-

automatically reconstruct runtime components and

connectors using source code analysis, pattern

matching, and expert knowledge. We present two

applications where we could recover runtime

communication paths and component interactions

despite the absence of runtime traces.

1 Introduction

Common practice is to reconstruct module views

based on source code parsing and component and

connector (in the following abbreviated with C&C)

views based on dynamic analysis. Recovering the

latter is a non-trivial task as reverse engineering

runtime information is challenging for several

reasons:

Understanding runtime traces and abstracting the

programming entities and their interactions towards

runtime components and connectors is a

challenging task, too. Here, the same problems arise

as in abstracting source code towards modules.

Code instrumentation may not always be possible

especially embedded systems where software

systems are often running on limited hardware

resources.

Code instrumentation bears the risk that important

components and connectors are not identified due

to code coverage problems similar to the challenges

found in software testing.

In this paper we show that it is possible to recover

large parts of the runtime components and higher

level connectors without system execution. In

particular, the contributions of this paper are:

 A light weight approach for recovering runtime

components and their communications paths

from source code.

 Tool support for graphical pattern matching on

module dependency graphs to identify

components, connectors, and ports.

 Two case studies (industrial and academic).

For further reading please refer to the full paper

published at the CSMR’13 [3]

2 Approach

We call our approach ReCoV – an acronym for
Reconstruction of Component-Connector (C&C)
Views. Recovery of C&C views without executing
the software system requires understanding of how
architectural components interact at runtime using
higher level communication paths, the connectors.
In short, understanding the architectural style and
its manifestations in source code is the basis of the
ReCoV approach. Our key assumption is that
whenever a communication port is detected (e.g., an
access to a connector middleware), we identified
parts of a runtime component’s interface.
Applications of our approach in industry so far have
reinforced this assumption. The ReCoV approach is
structured as follows:

Identification of relevant architectural styles
for communication: Initially we inspect the
available documentation to learn about predominant
styles defining the abstract communication
principles in the system. Ideally, we can get answers
to questions like: Is the system distributed across
different nodes? Is it running in different processes?
Is the communication paradigm time triggered,
event triggered synchronous, or asynchronous? How
is data exchanged? How are relevant architectural
styles realized in code, i.e. how are components and
connectors implemented? What are the component
and connector types?

Parsing of Source code: We parse the source
code automatically and relevant facts are extracted
and represented in form of a detailed source code
model capturing object oriented and procedural
language constructs like packages, classes,
interfaces, types methods and procedures, attributes
as well as the relations between these elements like
calls, variable accesses, import and inheritance
relations and so on.

Identification of Communication Ports in
Source Code, Graphical Pattern Modeling and
Matching: The goal of this step is to bridge the
abstraction gap between implementation and the

Softwaretechnik-Trends 33:2, Mai 2013 21

C&C models. We define graphical patterns
representing the generic module-dependency-
substructures (comparable to a regular expression)
formalizing the manifestations of the architectural
style at source level with a special focus on the
connector endpoints (i.e. the ports). Then we match
this pattern against the extracted source code model
automatically. Figure 1 shows an example of a
pattern describing a port as we model it in our tool.
The corresponding structural elements in the figure
have been marked with numbers to support the
explanation: We want to match all classes (#1) that
extend (#1.1) the ApplicationComponent base class
(#2). Moreover this class (#1) has to implement
(#1.2) an interface (#3) that itself extends the
interface IRemoteInterface (#4). (The fact that these
elements are interfaces is configured in the editor’s
property section for that element). To be sure that
we match servers that are really instantiated we also
check whether there is an instantiation call to #1
from another class (#5 and #5.1) and a subsequent
registration call (#5.2) to the AdaptationManager
(#6) where #1 is registered as service.

Figure 1: Server-Side Port Pattern

Using structural patterns like the ones in Figure
1 we search the extracted source code model and
return concrete matches as illustrated in Figure 2.

Figure 2: A matched Server-Side Port pattern

Recovery of Components and actual
connections: Based on the extracted ports we can
navigate to the code context in which the port was
detected and iteratively create component
abstractions and their attached ports. This process
may be supported by experts and existing
documentation. At this point we reconstruct the
actual connections between the ports of the
components. This can be done either semi-
automatically, by navigating from our C&C ports to
the source code, or fully automatically, by
analyzing the extracted model with context
knowledge about the communication patterns
manifestation in code.

Result Preparation: Eventually, the recovered
information can be presented in a graphical C&C
view and in a supporting spreadsheet to
communicate, analyze and consolidate the
reconstruction results and findings.

3 Applications of ReCoV

In the following we briefly describe the
application of ReCoV on a Qt [2] based system
developed by John Deere and a system based on
OSGi [1] .

As described in [3], the John Deere software is
part of a display system which is used in agricultural
vehicles such as tractors or combines. The code size
was approximately 300KLOC. One of the Qt
peculiarities is its communication paradigm of
“signals and slots” which are means to set up point
to point and broadcast connectors. Using the
graphical pattern matching and the context
knowledge of the Qt signal and slots connectors we
automatically recovered 734 possible runtime
connections, from which about 15% proofed to be
relevant. At first sight, this doesn’t seem significant,
however, using the tooling and its comprehensible
result preparation allowed an efficient filtering of
the false positives in a subsequent manual step.

The OSGi based system (120KLOC) uses
Remote Procedure Calls to communicate over a
network. Here typed interfaces are the
communication endpoints, hence our pattern
matching and subsequent dependency analysis
brought better results and we could fully
automatically recover 24 client server connections
from which 23 (96%) proofed to be relevant.

The full paper illustrating the approach and the case

studies in more detail was published at the

CSMR’13 [3] .

References
[1] http://www.osgi.org/Main/HomePage, OSGi home,

Retrieved 02/03/2013

[2] http://qt.nokia.com, Qt home, Retrieved 02/03/2013

[3] Becker, M, Forster T., Keuler T.& Knodel J. (2013)
Recovering Component Dependencies Hidden by
Frameworks – Experiences from Analyzing OSGi and Qt.
17th European Conference on Software Maintenance and
Reengineering (CSMR’13)

22 Softwaretechnik-Trends 33:2, Mai 2013

	Recovering Runtime Structures of Software Systems from Static SourceCode
	1 Introduction
	2 Approach
	3 Applications of ReCoV
	References

