
Towards Integration of User Interaction and Context Event

Processing in Intelligent Living Environments

Simon Lehmann Jan Schäfer Ralf Dörner Ulrich Schwanecke

Design Computer Science Media Department

RheinMain University of Applied Sciences

Wiesbaden, Germany

{simon.lehmann,jan.schaefer,ralf.doerner,ulrich.schwanecke}@hs-rm.de

Abstract: Event processing plays a significant role in the current development of in-
telligent living environments. It ranges from processing of information produced by
a magnitude of sensors to gain insight into the activities of the inhabitants on a more
global scale, to the processing of immediate and rather short-lived events of user in-
put on and around interactive systems embedded in common household furniture like
tabletops or tablets. Based on the work conducted separately in those two fields, we
found that the still evolving field of complex event processing (CEP) provides the
methods and tools to handle those distinct use-cases equally. Especially the appli-
cation to interactive systems, while being novel and uncommon, is well suited and
further shows the broad applicability of CEP. The comparison of the two application
fields shows that, even though the events occurring in them are distinguished by their
intention, commonalities do exist and provide integration points. Furthermore, the in-
tegration of those applications within the context of smart homes allows to provide
demand-oriented resource management, which realizes self adaptation and control.

1 Introduction

Intelligent living environments, also known as smart homes, aim at providing its residents

with useful services and assistance for everyday activities. These services cover different

aspects, such as health monitoring, energy management, environment control, security,

communication, or productivity tasks. Social and ethical challenges aside, major technical

challenges in this field of research are modeling and prediction of the activities and actions

of the residents, multi-modality of interaction with various kinds of computer systems, and

intelligent monitoring of systems components [HSB09].

On a technical level, these applications are all based on the processing and interpreta-

tion of context events happening throughout the system and its environment. Be it events

produced by sensors for monitoring of the residents location, events coming from user

input devices, or events of the internal state of the system. So looking at the way event

processing is done in different areas of intelligent living environments, which are usually

treated separately, allows to gain insight about the individual requirements, but also the

commonalities shared by all parts of the system.

In this paper, we explore the possible points of integration of two areas of event processing

111

111



in an intelligent environment setting. We identify those areas, where each application field

can benefit from the other, but also define the central characteristic which distinguishes

both fields from each other, namely the intention of the processed events. Additionally, we

introduce a demand-oriented resource management and discuss how it is made possible

within that context.

We base our work on two concrete systems. The first deals with systems management.

The second employs complex event processing to handle the interaction with more com-

plex input devices of interactive tabletop systems, which is a rather novel and uncommon

field of application. Even though the two systems are not interacting with each-other and

were developed separately for their individual purpose, both use complex event processing

methods and techniques. More specifically, both use Esper [Esp11] as an underlying tech-

nology, which provides the additional benefit of having similarities on a technical level.

In the following, we will first give a brief overview of what complex event processing is

and how the general methods and techniques are provided by a concrete implementation,

Esper. We then proceed to describe the two areas of application, and how they relate to

the context of intelligent living environments, in more detail. Individual requirements,

challenges and results are presented with each application. After that, the distinguishing

characteristic of both application fields is defined in more detail, followed by a discussion

of possible points of integration between those systems. Finally, we present our proposal of

a demand-oriented resource management and conclude with a short summary and outlook

on future work.

2 Complex Event Processing with Esper

Complex event processing means the detection, analysis, and general processing of corre-

lated raw or simple events, which results in more abstract and meaningful complex events

[Luc02]. As a very general term, it covers a large field of techniques and methods for

detection of relationships or patterns of events, event abstraction, modeling of events and

event hierarchies, and abstraction of the whole process of event processing. It builds upon

the concept of the event driven architecture (EDA), in which loosely coupled components

communicate by emitting and consuming events [LS11]. In an EDA, any notable change

of state or thing that happens is considered an event, which is propagated to all compo-

nents interested in them. The components evaluate the information of the events and take

any necessary action, which might include generation of further events [Mic06].

The software library Esper provides a general purpose component for complex event pro-

cessing in Java or .NET. It is based on the principle of continuous queries [TGNO92],

where processing, filtering and dissemination of events happens by querying the engine,

which continuously tries to match and process events according to the active queries.

Queries are formulated using the event processing language (EPL). The EPL is a SQL-like

declarative language, which supports selecting events from streams, conditions, sliding

windows (time and length based), aggregation functions, joins, pattern matching, insertion

into event streams and many other features known from relational databases (examples of

112

112



EPL queries are given in section 3.2.2).

The engine provides two mechanisms for querying events. The first allows full processing

and manipulation of event streams in the engine and is available by normal EPL statements.

The second method allows notification about events matching a specified pattern, which

is expressed by the pattern syntax of the EPL. While the second method is in fact a subset

of the first, it has the benefit of a reduced syntax and also remove some overhead, as they

are implemented using state machines only.

From a software development point of view, Esper allows to extend its functionality in

many ways (e.g. custom sliding windows or aggregation functions), which allows using it

in novel contexts and use cases. It also does not define a specific event representation or

how processing of events is executed, i.e. single- or multi-threaded.

3 Event Processing in Intelligent Living Environments

3.1 Home Service Platforms

With increasing integration of distributed systems in living environments, the amount of

generated data that has to be processed and interpreted by home service platforms is also

on the rise. Ambient sensors collect, (pre)process and forward large amounts of data

generated by inhabitants and their environment including but not limited to vital signs,

deduced activities, device states and environmental parameters such as temperature or

humidity. Together, these values represent the context, which is needed to develop context-

aware, adaptive applications for the platform.

3.1.1 Information Integration and Deduction

Applications in intelligent living environments rely on context information to be able to

adapt dynamically to the changing user’s needs or preferences. Unless an application is

very simple (e.g. clock or weather display), it requires deduced information, which can be

gained by combination and interpretation of events created by the platform’s components

(devices and software). The resulting deduced information represents more abstract infor-

mation of higher value for application development (e.g. a recognized inhabitant activity).

If the platform is able to produce and provide this abstract knowledge for applications, it

removes the burden from applications to calculate it individually.

The more heterogeneous the systems in an intelligent living environment are, the harder it

becomes to interpret and relate the events generated by them. This can be solved by man-

ually mapping input and output of each to be integrated system to each different system or

application. A much more elegant approach to solve this problem is to integrate all context

producing and consuming components into a common context model, a context ontology,

which is managed by the service platform. This allows to semantically integrate and pre-

pare information from arbitrary sources for consumption of context data by applications.

113

113



An approach for this context model has already been presented in [Sch10], which uses the

Web Ontology Language (OWL) [Gro09] for ontology modeling. Here, the sub-ontologies

of each system contributing to the context model have to be based and integrated with a

common basic ontology.

A common context model offers additional benefits. Just like arbitrary context providers

or consumers, context processors such as CEP engines can use the information stored in

the model to deduce high-level information easily, which itself can become part of the

model and, thus, be consumed by components of the system.

3.1.2 Information Filtering and Extraction

Creating and managing a context model is not cheap in terms of required processing power,

as incoming and outgoing information has to be imported and exported constantly, which

always requires information mapping of some kind (e.g. from OWL/XML to some trans-

port protocol or to Java). Some sensors or applications produce large amounts of raw data,

from which only the right information is required. As the raw data should not become part

of the context model (to prevent bloat and unnecessary computational effort), this data has

to be preprocessed. Often, the producing component is able to do this itself, but this is not

always possible. Then, a CEP engine is used as context preprocessor. Instead of relying

on information from the context model as input, it receives input streams directly from the

data sources. In this case, only the processed output becomes part of the model and, thus,

can be used by other applications.

3.2 Interactive Tabletop Systems

Interactive tabletop systems have been in the focus of HCI researchers for about two

decades and gained more interest in the past years due to the development of powerful

hardware for a variety of input methods. Additionally, the key benefits associated with

interactive tabletops – like ease of use, intuitiveness and support for collaborative work –

make them suitable for the use in the field of ubiquitous/pervasive computing, which is

getting more and more important [TGS06].

Despite the general interest in interactive tabletops and the broad research of tools and

techniques for various ways of interaction, the general processing of interaction events

happening throughout such a system has not received much attention. Traditionally, input

events are handled by some abstraction layer of the operating system, which provides an

event dispatching mechanism for user interface toolkits. Events are typically processed by

an event loop, i.e. a continuously running process which takes any occurring event as their

input and publishes them to one or multiple subscribers. Besides the routing of events

from their source to the appropriate user interface components, no additional processing

takes place. Any complex event processing which extracts higher level information from

events are provided by specialized frameworks on the application level, e.g. for gesture

detection.

114

114



In contrast to the input devices used with PCs (e.g. keyboard and mouse), applications

for interactive tabletop systems make potential use of a wide variety of input methods.

Additionally, also other interactive systems do make use of more input devices as their use

cases increase. Thus, the need for processing and aggregation of input events arises, which

addresses the rising complexity and interdependence of the constantly generated input

events by multiple input devices. Based on a previously described architectural approach

[LDS+10], we propose a unified tabletop input layer (UTIL) to provide a middleware for

processing of interaction events in tabletop systems. At its core it employs Esper for all

event processing and querying tasks. The general architecture is implemented in large

parts by the Esper engine, with additional components specifically built for the purpose of

processing interaction events.

The collection of events from the various event sources is implemented by device de-

pendent collectors, one per input device – an input device being any programmatically

accessible source of input events, which does not necessarily correspond to a physical

device. The collection process is handled individually for each device, though most use

some OSC/TUIO-based protocol for communication. The collectors are responsible for

producing the raw event objects, which are then fed into the processing engine. The rules

for processing of simple input-events sent by the collectors to complex events are realized

as EPL queries that put new or combined events into the event stream.

The interactive applications running on the tabletop system subscribe to events through a

centralized query manager, which is provided by the middleware. Applications can con-

nect to it and use it transparently to issue event queries. The application queries are based

on the EPL pattern language, which are a subset of the full EPL. They allow for full spec-

ification of patterns of events and the issuer of the pattern gets notified whenever an event

matches the given criteria. Application queries are fed into the same engine instance re-

sponsible for the processing of the rule queries described earlier. These are two design

decisions which are related to each other: Giving application developers the ability to

use full EPL queries would have two drawbacks while providing only little benefit of en-

abling applications to use the full potential of the event processing engine. The drawbacks,

however, are two-fold. First, writing full EPL queries is much more complex than EPL

patterns, thus imposing additional complexity on the application developers. Second, it

also enables applications to directly interfere with the processing of the events, which is

shared by all applications running concurrently. Thus, giving application developers only

a limited subset of the full EPL for their queries, it enforces a true read-only access to

the processing system and relieves them of quite some complexity which should not be

needed on the application layer.

3.2.1 Processing of Spatial Data

Interactive systems are usually comprised of one or several input devices or sensors to

allow users of the system to manipulate artifacts in the system. Most of this input deals

with spatial information such as the position of a device itself (e.g. a mouse), body-parts of

the user (e.g. fingers or hands) or other objects. When processing events mostly consisting

of such spatial data, tools specifically designed for this purpose are required. Processing

115

115



events based on two or three dimensional spatial data has mostly been done in the area

of geo-information processing [Lip09], but also in multimedia communication systems

[GYJO10]. Esper itself only supports time or scalar value based processing of events, i.e.

events can be processed depending on their temporal relations or based on the amount

of events or other scalar valued attributes. Thus, we had to provide a set of single-row

functions, aggregation functions, and data window views has to be provided as extensions

to Esper to support processing of spatial data in two or three dimensional space.

3.2.2 Gesture Detection

The main purpose of UTIL is to find patterns and correlations of inputs produced by the

users. Simple examples include the detection of a two-finger scroll gesture or a multi-

finger pinching gesture. These use only one input device and thus also one modality. More

advanced examples are correlation of input from different devices, such as multitouch and

three-dimensional hand tracking above the table for determining which touches belong to

which hand.

INSERT INTO AverageDirectionEvent

SELECT ISTREAM * as cursor,

avgDirection(position) as dir

FROM Cursor2DEvent.win:length(LENGTH)

GROUP BY cursorId

INSERT INTO PreCornerEvent

SELECT cursor.cursorId AS cursorId,

first(cursor.pos) AS pos,

first(dir) AS firstDir,

last(dir) AS lastDir,

(last(dir)).angle(first(dir)) AS angle

FROM CursorDirectionEvent.win:length(LENGTH)

GROUP BY cursor.cursorId

HAVING leaving()

INSERT INTO CornerEvent

SELECT cursorId, pos, angle

FROM PreCornerEvent

MATCH_RECOGNIZE (

PARTITION BY cursorId

MEASURES A[0].cursorId AS cursorId,

avgPosition(B.pos) AS pos,

(CASE WHEN avg(B.angle) < 0

THEN min(B.angle)

ELSE max(B.angle) END) AS angle

PATTERN (A B+ A)

DEFINE

A AS abs(A.angle) < ANGLE_THRESHOLD,

B AS abs(B.angle) >= ANGLE_THRESHOLD

)

Figure 1: EPL queries used for detecting corners in 2D strokes drawn with a finger.

A more complex example for interaction event processing, is a two dimensional touch

gesture detection based on strokes drawn on the surface of a table. It should be noted

that, while the main goal of UTIL is to enhance processing of events from multiple input

devices, it also allows to provide complex event processing for a single input device.

116

116



The general algorithm behind this gesture detection is based on the ideas presented in

[WX10] and [WEH08]. First, corners in strokes drawn with a finger on the surface are

detected. Based on the corners, shapes comprised of multiple corners can be detected.

As shown in figure 1, the corner detection is fully implemented using only EPL queries.

First, the average motion-direction is computed over a window of multiple cursor posi-

tions. Second, the angle between sequential directions is determined. Finally, corners are

detected by looking for a sequence consisting of an angle below a threshold, followed by

one or more angles above the threshold, and terminated by an angle below the threshold.

Every time such a sequence is found, the average position and greatest angle is used as the

position and angle of the final corner. Additionally, the start and end of each stroke is also

considered as a corner.

The actual gestures are described using the match-recognize feature of Esper (which is also

used in the final step of the corner detection), which allows to specify regular expressions

of events. An example of this is shown in figure 2. The detected gestures are translated into

gesture events, consisting of the average position of all corners that make up the gesture

and an identifier of the gesture.

60-150°

a

1
-3

ti
m
e
s
a

INSERT INTO GestureEvent

SELECT cursorId, "YES" AS type, pos

FROM CornerEvent

MATCH_RECOGNIZE (

PARTITION BY cursorId

MEASURES A.cursorId AS cursorId, B.pos AS pos

PATTERN (A B C)

DEFINE

A AS A.angle = 0,

B AS B.angle BETWEEN 60 AND 150,

C AS (C.angle = 0) AND ((B.pos).distance(C.pos)

BETWEEN (1 * (A.pos).distance(B.pos)) AND

(3 * (A.pos).distance(B.pos)))

)

Figure 2: EPL query used for detecting a ‘Yes‘ gesture based on the previously detected corners.

4 Intentional versus Non-Intentional Events

The two fields of application for event processing presented here share many principal

characteristics. Of course, all general characteristics of event driven architectures and

event processing systems are found. However, they also share more specific traits, like the

presence of multiple, heterogeneous event producing devices, the general need for inte-

gration and filtering of those events to deduce and extract higher level information, or the

overall application area of dealing with human activities. Especially the last characteristic

provides several opportunities for integration of both systems.

Considering all the commonalities, the question arises where to draw the line between

event processing for home service platforms and interactive (tabletop) systems. It could

be argued that they are actually the same, as user input in an interactive tabletop system

can be considered just as another sensor like temperature or vital signs. Vice versa, the

117

117



context information collected from ambient sensors could be eventually interpreted as just

another input to an interactive system (using a very broad definition of that term).

However, not all characteristics are identical. The two fields of application can be distin-

guished by the intention of processed events: on the one hand, events like ’opening a door’

or ’walking across a room’ are considered non-intentional with respect to the home service

platform, which only observes these events through ambient sensors. The actions behind

the events were not performed to trigger some behavior of the system and a response to

that action is usually not its primary purpose. While anything that happens because of

non-intentional events may possibly be expected by the residents, this is only expected

by habit. On the other hand, events like ’touching a display surface’, ’pressing a key’, or

’saying a defined command’ are considered intentional with respect to the home service

platform. The actions are performed just for the purpose of interacting with the system and

a reaction is expected. Moreover, the feedback is usually expected to be instantaneously

and directly observable. Anything happening only after a certain delay1 is then considered

to be non-responding and may even confuse the users.

5 Points of Integration

The two distinct systems provide one the one hand context events, and direct interaction

events on the other. As the comparison in the previous section shows, the separation

of both systems should not be easily removed. However, there are potential points of

integration, which can be identified.

Applications running on one or more interactive tabletops or surfaces in the living environ-

ment could benefit from additional information about the context in which they are used.

For example, knowing that a person has entered the room could lead to activation of the

interface next to him or her. This means turning the context events into direct interaction

events. In addition to the use as simple input events, the context events can of course also

be used in aggregation and creation of complex input events. Moreover, the context events

can be employed in the realization of multimodal interfaces, where selection of the input

modality for interaction might depend on the context in which the application is used. Of

course, care must be taken not to interpret to many of the context events as direct interac-

tion, because the users might not have intended this meaning and might not know why the

interactive system behaves in a certain way.

In the other direction, the direct interaction events produced by the input devices them-

selves and also the complex events derived later could be fed into the context event pro-

cessing system. They provide very fine grained information about the current activity of a

person and thus can greatly support otherwise more coarsely captured data about the con-

text. For example, the information that someone is currently interacting with the tabletop

system in the living room can be used to simply infer that there is someone in the living

room and how long they have probably been there. Also, as direct interaction with system

usually requires the main focus of a user, it can be inferred that the person is busy working

1delays of up to a few hundred milliseconds are usually acceptable, depending on the kind of interaction

118

118



or some other task and in case of elderly people, that they are alive and well. Similarly to

the use of context events as input to the interactive system, simply feeding all input events

also into the context event processing system is probably not useful. Especially as the

interaction events are very fine grained, it might be advisable to apply rate limiting2 and

aggregation on the events.

In the following section, we outline how the integration of the two systems allows for self

adaptation by managing the resources based on the demand for events.

6 Demand-Oriented Resource Management

Home service platforms in smart homes have to provide as many services as needed and,

at the same time, as few as possible. The former results from the requirement, that resi-

dents expect all services to be available when they need them, especially when it comes

to interactive systems (as discussed above, delayed or even no response of the system is

usually not acceptable in this context). The latter results from the limited resources (pro-

cessing time, memory, bandwidth, energy, etc.) and the demand for reduced overall energy

consumption. To provide a solution to this problem, usage of resources has to be managed

based on demand. While this is not a novel concept in itself, we introduce how it can

specifically be applied to intelligent living environments.

In demand-oriented resource management, de-

Figure 3: Overview of the demand chain in
a demand-oriented resource management
for intelligent living environments.

mand is driven by the event consumers, which

are the applications and components interested

in the available context and interaction informa-

tion. As most services in smart homes are even-

tually provided to the people living there, the

demand for context and interaction information

depends on the interaction of residents with the

system. For example, if no one is currently us-

ing an interaction device (such as an interactive

tabletop system), it would be sensible to turn

the device off as well as turning off any services

used by it. Vice versa, if someone enters a room,

at least basic input detection of the interactive

system has to be turned on again, in order to al-

low the potential user to start interaction. Also,

all intermediary processing of events should be

gradually started or stopped, depending on the

need for it. This interdependence of the home

service platform and the interactive systems are the reason why a demand-oriented re-

source management in an intelligent living environment requires integration of both sys-

tems.
2Input events are generated at rates of hundreds to a few thousand events per second, depending on the number

of devices and people involved. For example, two input devices with a sampling rate of 60 Hz and two people

actively using multitouch gestures with two fingers each, will generate 480 events per second

119

119



In the context of complex event processing, managing resources means to manage de-

vices, event sources/streams and processing rules. Figure 3 gives a general overview of

the managed components and how each component is driven by the demand from other

components. Processing rules, which translate to continuous queries in Esper, are the

most specific components. They realize a specific processing step, operate on one or sev-

eral event streams and may produce events for other rules or consumers. While the event

processing engine tries to optimize execution, some resources are still consumed in the

form of processing time and memory. As the most specific components, processing rules

would be the first candidates for deactivation in case no demand is detected. Event sources

or streams are more general, as they are used by a multitude of processing rules or con-

sumers. The streams do usually not require much processing time, but the events have

to be stored and possibly sent to other nodes for processing. When all processing rules

or consumers interested in a specific event stream have been deactivated, the stream it-

self would be disabled, which means that no storage or transfer of events occurs. Finally,

devices are the coarsest level to manage. They host all event generation, processing or

consumption and the main resource consumed by them is energy. As all the previously

named components are running on one or more devices, they can be deactivated or shut

down, whenever all components currently running on them are deactivated.

These components are disabled or deactivated whenever no demand for the individual

components is detected. When demand for certain information is detected again, the pro-

cess of reactivation is done in reverse and only activates those components which are

necessary to fulfill the demand. The management of event processing in this way results

in a self adapting system, which efficiently uses resources based on the interaction and

activities of the users.

7 Conclusion and Future Work

In this paper, we presented two important application areas for event processing in intelli-

gent living environments and explored their characteristics and commonalities within that

context. The potential points of integration indicate, that the two application areas can ben-

efit from each other when information is shared between them. On the other hand, we also

showed, that even though many similarities exist, each application area deals with a dif-

ferent kind of events, which are characterized by the intention behind them. Furthermore,

we propose a demand-oriented resource management in intelligent living environments

and outline how it can be realized by integration of user interaction and context event

processing.

Based on this, several challenges have to be addressed and more work is required to realize

a fully integrated system capable of providing both context and user interaction informa-

tion and maintaining a self adapting operation. The integration of interaction and context

information requires further analysis of their individual characteristics, in order to identify

which information can and should be shared and how this information should be inter-

preted by the other system. Furthermore, the analysis of dependencies in the event pro-

cessing systems requires to instrument the whole system in an appropriate way. Also, the

120

120



demand-oriented resource management requires a reliable way to detect demand based on

the user interaction. As the user interaction itself can only be detected when input devices,

input event sources and input event processing rules are active, it has to be examined how

efficient resource management can be realized even though interdependencies like those

exist.

References

[Esp11] EsperTech Inc. ESPER - An Event Stream Processing and Event Correlation Engine
(Version 4.4.0). http://esper.codehaus.org, October 2011.

[Gro09] W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview
(W3C Recommendation). http://www.w3.org/TR/owl2-overview/, Octo-
ber 2009.

[GYJO10] Mingyan Gao, Xiaoyan Yang, Ramesh Jain, and Beng C Ooi. Spatio-temporal event
stream processing in multimedia communication systems. In Scientific and Statistical
Database Management, pages 602–620. Springer, 2010.

[HSB09] Annika Hinze, Kai Sachs, and Alejandro Buchmann. Event-based applications and
enabling technologies. In DEBS ’09: Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, pages 1–15, 2009.

[LDS+10] Simon Lehmann, Ralf Dörner, Ulrich Schwanecke, Johannes Luderschmidt, and Nadia
Haubner. An Architecture for Interaction Event Processing in Tabletop Systems. In
Ralf Dörner and Detlef Krömker, editors, Self Integrating Systems for Better Living
Environments: First Workshop, Sensyble 2010, pages 15–19. Shaker Aachen, November
2010.

[Lip09] Michael Lippautz. Location-Aware Complex Event Processing in Mobile Environments.
PhD thesis, Salzburg University of Applied Sciences, 2009.

[LS11] David Luckham and Roy Schulte, editors. Event Processing Glossary - Version 2.0.
Event Processing Technical Society, July 2011. http://www.complexevents.

com/2011/08/23/event-processing-glossary-version-2-0/.

[Luc02] David Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman, Amsterdam, 2002.

[Mic06] BM Michelson. Event-driven architecture overview. Patricia Seybold Group, 2006.

[Sch10] Jan Schaefer. Towards a Platform for Self-Organizing AAL Applications. In Ralf
Dörner and Detlef Krömker, editors, Self Integrating Systems for Better Living Envi-
ronments: First Workshop, Sensyble 2010, pages 109–116. Shaker Aachen, November
2010.

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous queries
over append-only databases. ACM SIGMOD Record, 21(2):321–330, June 1992.

[TGS06] Edward Tse, Saul Greenberg, and Chia Shen. Motivating Multimodal Interaction around
Digital Tabletops. In Video Proc. ACM CSCW Conf, Computer Supported Cooperative
Work, pages 6–7, 2006.

121

121



[WEH08] Aaron Wolin, B Eoff, and T Hammond. ShortStraw: A Simple and Effective Corner
Finder for Polylines. 5th Annual Workshop on SketchBased Interfaces and Modeling,
pages 33–40, 2008.

[WX10] Lin Weiguo and Jin Xin. A sketch recognition algorithm for Pen-based Human-
Computer interaction. In International Conference on Computer Application and Sys-
tem Modeling (ICCASM), 2010, volume 2, pages 248–251. IEEE, 2010.

122

122


