
Relationships for Dynamic Data Types in RSQL
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Abstract: Currently, there is a mismatch between the conceptual model of an infor-
mation system and its implementation in a database management system (DBMS).
Most of the conceptual modeling languages relate their conceptual entities with re-
lationships, but relational database management systems solely rely on the notion of
relations to model both, entities and relationships. To make things worse, real world
objects are not static as assumed in such modeling languages, but change over time.
Thus, modeling languages were enriched to model those scenarios, as well. However,
mapping these models onto relational databases requires the use of object-relational
mapping engines, which in turn hide the semantics of the conceptual model from the
DBMS. Consequently, traditional relational database systems cannot directly ensure
specific consistency constraints and thus lose their meaning as single point of truth
for highly distributed information systems. To overcome these issues we have pro-
posed RSQL, a data model and query language introducing role-based data structures
in DBMSs. Despite the fact that RSQL is able to handle complex objects, it does not
support relationships between those objects. Therefore, this work adds relationships
to RSQL by augmenting the data model and extending its query language. As a result,
this extension allows for the direct representation of conceptual models with complex
objects and relationships in the DBMS. Thus, relationships can be directly addressed
in queries and the DBMS automatically ensures relationship consistency constraints
as well as cardinality. In sum, a DBMS equipped with the extended RSQL is apt for
storing and querying conceptual models and thus regains its rightful position as the
single point of truth for highly distributed information systems.

1 Introduction

Currently, there is a mismatch between the conceptual model of an information system

and its representation in a Database Management System (DBMS). For instance, if the

conceptual model is mapped to a relational database schema, this results in different views

on concepts specified on the conceptual level. Most of the widely used conceptual mod-

eling languages are based on objects and relationships to relate these objects, like ER

[Che76] or UML [RJB10]. However, relational databases only rely on the notions of re-
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lations to model both objects and relationships. To make things worse, real world objects

and their relationships can change over time and usually do. Hence, conceptual modeling

languages were enriched by features, like the role concept, to allow for the specification of

more complex and dynamic systems. Based on this observation, Bachman has proposed

the role concept in 1977 [BD77], where the core of an object is separated from its relation-

ship dependent parts, namely roles. This enables information system designers to model

dynamics of objects on the conceptual level by representing all relationship dependent at-

tributes and behavior in several roles. Hence, role-based modeling reduces the complexity

and allows for continuous evolution of highly distributed information systems. For in-

stance, imagine a person who can be a consultant and a customer. In object-oriented mod-

eling one would define subclasses using inheritance for each combination, which leads to

an exponential explosion of subclasses and to reinstantiation each time the person changes

the subclass at run-time[Ste99]. Contrariwise, using role-based modeling would only de-

scribe the core object and its extension that can be added and removed dynamically during

run-time. Thus, subclass explosion and run-time reinstantiation are avoided. However, the

semantics of the role concept is completely unknown to relational DBMSs, thus, the gap

between conceptual models and their representation in the database becomes even bigger.

This becomes a problem for highly distributed information systems that rely on a DBMS

as single point of truth. Because data objects are shared among several subsystems,

only the DBMS persists data and ensures their consistency for all applications and users.

Hence, the DBMS has to provide global consistency, whereas the subsystems have their

local perspective. However, current DBMS are not apt for this task, because they lack the

notion of complex objects and relationships. Thus, most of the semantics introduced in the

conceptual model is lost during the persisting and transformation process. Consequently,

most of the semantics and its validation is implemented in mapping engines running in

the various subsystems. Nonetheless, they cannot ensure the consistency of the whole

distributed information system. Hence, relational DBMSs must be extended to represent

roles and relationships directly to regain their characteristics as single point of truth.

One step in this direction was the introduction of RSQL in [JKVL14], which extends

a classical DBMS to represent dynamic, complex data structures with roles. This def-

inition comprises dynamic data structures and a query language, but does not consider

relationships as first-class citizens. Unfortunately, traditional relational methods are insuf-

ficient for directly representing relationships. Data in relational DBMS are stored based

on relational semantics and thus relationships must either be mixed into relations of other

concepts or mapped to a separate relation. In the former case, the relationship attributes

and references become intermingled with relations representing concepts. Whereas in the

latter case, the separate relation cannot be distinguished from concept relations within the

DBMS. Moreover, both approaches lead to fragile schemas, since every cardinality change

on the conceptual level causes extensive database schema changes. In sum, we extend

RSQL by first-class relationships that preserve the semantics of the conceptual model.

Hence, this paper has the following contributions. Firstly, we present a formal definition

for relationships as an extension to Dynamic Data Types. Secondly, we extend RSQL’s

Data Definition Language (DLL), Data Manipulation Language (DML), and Data Query

Language (DQL) to directly represent relationships. Hence, we introduce new database
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objects on the type as well as on the instance level. Furthermore, we argue that the direct

representation of relationships makes the DBMS more robust against cardinality changes.

These contributions ensure a direct representation of role-based objects and relationships

in relational DBMS. Finally, DBMS regain the ability to be the single point of truth for

highly distributed role-based information systems by providing and ensuring consistent

persistence of dynamic complex data objects and their relationships.

This paper is structured as follows: In the following section a running example is intro-

duced. Afterwards, Section 3 presents an extended formal data model. This is followed by

the RSQL extension in Section 4, its classification and related work in Section 5. Finally,

conclusions and future work are discussed in Section 6.

2 Running Example

The most important feature of the role concept for modeling is to express dynamics in

typecasting of objects. Basically, this concept distinguishes between Natural Types and

Role Types. Natural Types represent the core and immutable type of an object that cannot

be discarded without ceasing to exist. In contrast, Role Types represent the mutable type

of an object, which can be acquired and abandoned dynamically. Over time Naturals, the

instances of Natural Types, may start or stop playing several Roles. Thus, they can acquire

additional attributes dynamically. To constrain which Natural Types can play which Role

Types they are restricted by a fills-relation.

A Natural Type and its connected Role Types form a Dynamic Data Type (DDT) that is

handled as individual type by the DBMS. Thus, DDTs are the main data structure in a role-

based DBMS. However, Role Types are not exclusive to a single DDT, rather they can be

shared between several Dynamic Data Types. Furthermore, a DDT restricts the types of

roles that can be assigned to an instance of that DDT. This definition enables DBMS to

guarantee role-specific consistency conditions. Additionally, DDTs can only be related by

Relationship Types between Role Types. This enables relationships independently of the

DDT, since Role Types can be part of several DDTs.

Figure 1 illustrates a small banking application, that serves as running example. It de-

scribes Customers that are related to CheckingsAccounts. Between Accounts money can

be transferred and a Customer can have one or more Consultants. The example consists of

three DDTs: Person, Company and Account. Both, Person and Company can be a Cus-

tomer, but only Person is allowed to be a Consultant as well. Consultant and Customer

are related by a Relationship Type advices. The third DDT describes different facets of

Accounts. An Account can be a CheckingsAccount and in this role it has to be related

to exactly one Customer. Additionally, Accounts can play the roles of the Role Type

Source and Target to describe transactions of transferring money between Accounts. This

transaction is represented by the transfer Relationship Type. Moreover, a unique Target

counterpart for each Source has to exist.

One possible instance of this model is shown in Figure 2. It comprises two Persons Peter

and Klaus, as well as a Company Google, whereas Peter plays the role of a Consultant
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Figure 1: Role Modeling Example - Customers, Bank Accounts, and Transactions

Figure 2: Instance of the Role Modeling Example (Fig. 1)

and the other two are Customers. Each of these customers owns one CheckingsAccounts,

however, only Google is advised by Peter. Additionally, the model contains one trans-

action from Account2 to Account1, which play the roles Source and Target, respectively,

via the transfer relationship. To indicate, which Natural plays which Role, the Roles are

placed at the border of their respective players. Throughout this paper, both the role model

and its instance are used as a running example.

3 Dynamic Data Types and Relationship Types

This section introduces the notion of Relationship Types to represent dynamic relation-

ships. To do this, we henceforth, present a formal model for both the type and the instance

level. In particular, this definition is based on the formal model of Dynamic Data Types

(DDT) presented in [JKVL14]. Consequently, we augment this model by including Re-

lationship Types and the corresponding semantics. To be coherent, we present complete

definitions and examples for both levels, but focus on Relationship Types in the discussion.
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3.1 Type Level

In its core, the type level definition is comparable to Friedrich Steimann’s type defini-

tion for LODWICK in [Ste99]. Dynamic Data Types consist of Natural Types and Role

Types [JKVL14]. Roughly, Natural Types are rigid and non-founded. That means an

instance of a Natural Type, denoted as Natural, loses its identity by changing the type.

Naturals can exist independently of relations to other individuals in the systems. Role

Types are exactly the opposite of Natural Types, they are non-rigid and founded, whereas

the latter indicates their dependence on other individuals [Ste99, Gua92]. Consequently,

Relationship Types are defined between two Role Types representing their two ends. For

reason of simplicity and in contrast to LODWICK [Ste99], we focus solely on binary rela-

tionships with a limited set of cardinality constraints.

Definition 1 (Schema). Let NT be the set of all Natural Types, RT the set of all Role

Types, RST be the set of Relationship Types, and Card = {0..1, 1..1, 1..∗, 0..∗} be the

set of available cardinalities with NT ∩RT = ∅. The schema s is then given by the tuple

s = (NT,RT,RST, fills, rel), where fills ⊆ NT × RT is a relation for Natural Types

fulfilling Role Types and rel : RST → RT × Card× Card×RT is a function mapping

a relationship type to the two Role Types at its end and to the corresponding cardinalities.

Because Role Types cannot exist on their own and Relationships are prohibited to link the

same Role Type, we constrain the schema s by:

∀rt ∈ RT ∃nt ∈ NT . (nt, rt) ∈ fills (1)

∀rst ∈ RST ∄rt ∈ RT . rel(rst) = (rt, c1, c2, rt) (2)

Applying these constraints ensures that (1) there exists an association of a Role Type to

at least one Natural Type by using the fills-relation and that (2) each Relationship Type is

defined between two distinct Role Types. Henceforth, we use the infix notation nt fills rt.

The cardinality constraints introduced here differ in their semantics from ER, where car-

dinality constraints directly describe the relationship between two static entity types. In

our model we have to distinguish between two different relations, the rel-relation and the

fills-relations. The former describes the relation between two distinct Role Types and con-

straints on this relation basically define how often an individual Role can be related to a

counter Role. In contrast, the latter defines the relation between a Natural Type and a Role

Type to form Dynamic Data Types. However, constraints on this particular relation result

in constraining how often a Natural can play a Role of the same Role Type simultane-

ously, which is an internal Dynamic Data Type constraint. Such constraints, however, are

beyond the scope of this paper. Thus, the fills-relation is assumed to be unconstrained in

our definition. As consequence, one-to-one and one-to-many relationship constraints are

only ensured between Roles and not their various players, such that traditional relationship

constraints between two Natural Types cannot be enforced.

Example 1 Let bank = (NT,RT,RST, fills, rel) be a schema for the bank application

shown in Fig. 1, where NT = {Person,Company,Account} is the set of Natural Types,

RT = {Customer,Consultant,CheckingsAccount, Source, Target} are the Role Types,
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and RST = {owns, advices, transfer} is the set of Relationship Types. Furthermore,

the fills-relation is defined as:

fills
def
= {(Person,Customer), (Person,Consultant), (Company,Customer),

(Account, Source), (Account, Target), (Account,CheckingsAccount)}

and the rel-function is defined for each Relationship Type as:

rel(owns)
def
= (Customer, 1..1, 0..∗,CheckingsAccount)

rel(advices)
def
= (Consultant, 0..∗, 1..∗,Customer)

rel(transfer)
def
= (Source, 1..1, 1..1, Target)

As it turns out, the bank schema is a direct representation of the graphical model shown

in Figure 1 such that each Role Type, Natural Type, and Relationship Type is an element

of the corresponding set and each line is mapped to the fills-relation or the rel-function

depending on its kind. As next step, the notion of a DDT is defined as a composition of a

Natural Type nt and all Role Types it fills:

Definition 2 (Dynamic Data Type). Let s = (NT,RT,RST, fills, rel) be a schema and

nt ∈ NT be a Natural Type. A Dynamic Data Type is then defined as ddt = (nt,RTnt)

with RTnt ⊆ RT such that RTnt
def
= {rt ∈ RT | nt fills rt}

In addition to that, DDTs are considered as individual types consisting of one Natural

Type in its center and several Role Types, which are related in the fills-relation. Besides

that, each DDT gives rise to a number of Configurations in which instances of that DDT

might appear. To put it differently, a Configuration specifies by which specific Role Types

a DDT is extended. Thus, it is not defined by the user directly but deduced from the given

fills-relation.

Definition 3 (Configuration). Let ddt = (nt,RTnt) be a Dynamic Data Type; a Configu-

ration of this DDT is then given by c = (nt,RT c), where RT c ⊆ RTnt.

Notably, since Configurations are defined on the type level, playing multiple Roles of the

same Role Type simultaneously does not affect the Configuration.

Example 2 Applying these definitions to the schema bank = (NT,RT,RST, fills, rel)
gives rise to the following three DDTs:

ddtPerson = (Person, {Customer,Consultant})

ddtCompany = (Company, {Customer})

ddtAccount = (Account, {CheckingsAccount, Source, Target})

As a side note, each of these DDTs has a distinct number of possible Configurations, e.g.,

ddtPerson has four, ddtCompany has two, and so on. A Configuration characterizes a possible

subset of Role Types extending a given DDT. For more information on Configurations the

reader can refer to [JKVL14]. In conclusion, the extended schema additionally contains a

set of Relationship Types which relate two Role Types and impose cardinality constraints

on these relationships.
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3.2 Instance Level

In contrast to Steimann’s LODWICK [Ste99], we do not only instantiate Natural Types

to Naturals but also Role Types to Roles. Thus, we are now able to directly represent

relationships between two corresponding Roles.

Definition 4 (Instance). Let s = (NT,RT,RST, fills, rel) be a schema, N the set of all

Naturals, and R the set of all Roles with N ∩ R = ∅. An instance i of this schema s is

then defined as i = (N,R, type, plays, links), where type : (N → NT ) ∪ (R → RT ) is

a polymorphic function assigning a distinct Natural Type or Role Type to each Natural or

Role, respectively; plays ⊆ N ×R is a relation defining which Naturals play which Roles;

and links : RST → 2R
ε
×Rε

is a function from Relationship Types to their extend set with

Rε = R ∪ {ε} and ε /∈ R. As shorthand notation we define two index sets for Naturals

and Roles.

Nnt
def
= {n ∈ N | type(n) = nt} for nt ∈ NT

Rrt
def
= {r ∈ R | type(r) = rt} for rt ∈ RT

Moreover, we require the following five axioms to hold for any instance i of the schema s:

∀r ∈ R ∃! n ∈ N . n plays r (1)

∀(n, r) ∈ plays . type(n) fills type(r) (2)

∀rst ∈ RST . rel(rst) = (rt1, c1, c2, rt2) ∧

links(rst) ⊆ (Rε
rt1

×Rε
rt2

) \ {(ε, ε)} (3)

∀rst ∈ RST . rel(rst) = (rt1, c1, c2, rt2) ∧

(∀r1 ∈ Rrt1 ∃(r1, r) ∈ links(rst)) ∧

(∀r2 ∈ Rrt2 ∃(r, r2) ∈ links(rst)) (4)

∀rst ∈ RST ∀(r1, r2) ∈ links(rst) . rel(rst) = (rt1, c1, c2, rt2) ∧

(c1 ∈ {1..1, 1..∗} ⇒ r1 ?= ε) ∧

(c1 ∈ {0..1, 1..1} ⇒ ∄(r′1, r2) ∈ links(rst) . r1 ?= r′1) ∧

(c2 ∈ {1..1, 1..∗} ⇒ r2 ?= ε) ∧

(c2 ∈ {0..1, 1..1} ⇒ ∄(r1, r
′

2) ∈ links(rst) . r2 ?= r′2) (5)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ (links(rst) ∩R×R) .

(r1, ε), (ε, r2) /∈ links(rst) (6)

Both, the plays-relation and the links-function are the instance level equivalent to the fills-

relation and the rel-function on the type level. The former captures which Natural plays

which Role at the moment. To simplify things, we use the infix notation n plays r for this

relation. Whereas the latter maps each Relationship Type to its extension, i.e. the set of

tuples of Roles which are currently related. Consequently, each Relationship Type gives

rise to several relationships represented by the aforementioned tuples.

Besides the general definition of instances of a schema, it is crucial to discuss some of the

axioms required to hold for each instance, because these axioms enforce consistency with

163



respect to the schema. The first two axioms (1-2) ensure that the plays-relation assigns

exactly one Natural to each Role as its player and is type conform to the fills-relation

defined in the schema. Similarly, the next three axioms (3-6) constrain the links-function

to ensure its consistency according to the database schema. In particular, axiom (3) ensures

that links return only those tuples of roles for a given Relationship Type that have a type

matching the Role Types at the end of the Relationship Type’s definition.1 Similarly,

axiom (4) ensures that each Role which has a type at the end of a Relationship Type rst

must be present in that relationship’s extension, i.e. it must be in one of the tuples in the

set returned by link(rst). In addition to that axiom (5) applies the cardinality constraints

defined on the schema level to the instance level. In detail, this axiom ensures that ε is only

allowed in a tuple if the corresponding cardinality has a lower bound of zero, i.e. 0..1 or

0..∗, and that each role is related to at most one other role if the corresponding cardinality

has an upper bound of one, i.e. 0..1 or 1..1. These rules are applied to both ends of the

relationship with respect to the specific cardinalities. Consequently, this axiom ensures

that each relationship respects the cardinalities defined on the schema level. Last but not

least, axiom (6) ensures that whenever a role is linked to the empty counter role ε it is not

linked to another role within the same relationship type. In sum, this definition permits the

consistency of each instance i of a schema s.

Notably, ε represents an empty counter role, which can be replaced by a counter role later

on. This is necessary, because each role participating in a relationship, i.e., its Role Type

is at one end of a Relationship Type, must be in the extended set of that relationship.

However, this leads to problems for relationships with at least one lower bound of zero

indicating that one side of the relationship is not necessarily linked to the other side. To

overcome this issue, we introduce ε as an empty placeholder for the missing counter roles

for such relationships. This may result in Roles that are not related to any other Role

except an empty counter Role, which enables additional flexibility in our model. For

instance, the Customer Role Type can be related to a CheckingsAccount Role Type and a

Consultant Role Type. For a new Customer instance neither a responsible Consultant nor

a valid CheckingAccount may exist, because the account validation process is not finished

yet. Enforcing a strict counter Role in the sense of foundation avoids insertion of a new

Customer Role until the validation process is finished. Despite of that, a Role related to an

empty counter Role is still considered founded, because its existence is still dependent on

its player. As a result, ε is crucial to model relationships with a lower bound of zero.

Example 3 Let bank = (NT,RT,RST, fills, rel) be the schema defined in Example 1. An

instance of that schema is then i = (N,R, type, plays, links), where the components are

defined as follows:

N
def
= {Peter,Klaus,Google,Account1,Account2}

R
def
= {Con,Cu1,Cu2,CA1,CA2, S, T}

1Please note that Rε

rt
= Rrt ∪ {ε} enables the representation of roles to be related to ε.
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type
def
= {(Peter → Person), (Klaus → Person),

(Google → Company), (Account1 → Account),

(Account2 → Account), (Con → Consultant),

(Cu1 → Customer), (Cu2 → Customer),

(CA1 → CheckingsAccount), (CA2 → CheckingsAccount),

(S → Source), (T → Target)}

plays
def
= {(Peter,Con), (Klaus,Cu1), (Google,Cu2),

(Account1,CA1), (Account2,CA2),

(Account2, S), (Account1, T )}

links
def
= {(owns → {(Cu1,CA1), (Cu2,CA2)}), (transfer → {(S, T )}),

(advices → {(ε,Cu1), (Con,Cu2)})}

Like the schema bank, the instance i is simply created from Figure 2 by taking all the Nat-

urals and Roles into account, map their types accordingly, link the Roles to their players,

and assigning a tuple for each relationship in the figure. In addition to that, the instance

must also contain a tuple for the Role Cu1, because Customer participates in the advices

Relationship Type. Consequently, this relationship contains a tuple relating Cu1 to the

empty counter role ε.

Definition 5 (Dynamic Tuple). Let s = (NT,RT,RST, fills, rel) be a schema and

i = (N,R, type, plays, links) an instance of s. Furthermore, ddt = (nt,RTnt) is a Dy-

namic Data Type and n ∈ Nnt a Natural of this type. A Dynamic Tuple d is then defined

with respect to the set of Role Types RT d
n ⊆ RTnt currently played by n:

RT d
n = {rt ∈ RT | n plays r ∧ type(r) = rt}

Case 1 RT d
n = ∅ : then d = (n)

Case 2 RT d
n = {rt1, . . . , rtm} :

then the Dynamic Tuple is defined as d = (n, Rd
1, . . . , R

d
m) with

Rd
i ={r ∈ Rrti | n plays r} for all i ∈ {1, . . . ,m} and rti ∈ RT d

n

Such a Dynamic Tuple d has exactly one Configuration cd = (nt,RT d
n).

A Dynamic Tuple is built around a certain Natural and several Role sets, where each Role

set holds Roles of a specific Role Type. Moreover, the Configuration of a Dynamic Tuple

will change, if it starts playing a Role of a Role Type that has not been played or if it stops

playing the only Role of the corresponding Role Type [JKVL14]. Finally, we can define

whether two Dynamic Tuples are related by a certain relationship.

Definition 6 (Dynamic Relationships). Let s = (NT,RT,RST, fills, rel) be a schema,

i = (N,R, types, plays, links) an instance of s and o, p ∈ N two naturals in i. The Dy-

namic Tuple a = (o,Ra
1 , . . . , R

a
m) is then related to a Dynamic Tuple b = (p,Rb

1, . . . , R
b
n)

with respect to a given Relationship Type rst ∈ RST , noted as a rst b, iff there is an

i ∈ {1, . . . ,m} and a j ∈ {1, . . . , n} such that ∃r1 ∈ Ra
i , r2 ∈ Rb

j . (r1, r2) ∈ links(rst).
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This definition allows to identify whether two Dynamic Tuples are related by a specific

Relationship Type. Moreover, because each Natural can play Roles of the same type mul-

tiple times, Dynamic Tuples can be related to multiple Dynamic Tuples by the same Re-

lationship Type. Consider, for instance, the instance i of the schema bank containing the

following Dynamic Tuples and Dynamic Relationships:

Example 4 Let bank = (NT,RT,RST, fills, rel) be the schema (Example 1) and

i = (N,R, type, plays, links) its instance (Example 3); then i contains the following Dy-

namic Tuples:

dPeter =(Peter, {Con}) dKlaus =(Klaus, {Cu1})

dGoogle =(Google, {Cu2})

dAccount1 =(Account1, {CA1}, {T}) dAccount2 =(Account2, {CA2}, {S})

Besides that, these Dynamic Tuples are related by the following Relationship Types:

dKlaus owns dAccount1 dGoogle owns dAccount2

dPeter advices dGoogle dAccount2 transfer dAccount1

In sum, this formal model captures not only Dynamic Data Types and Relationship Types

but also Dynamic Tuples and Dynamic Relationships.

4 RSQL Extensions for Relationships

The query language is the interface users and applications use to interact with database

management systems. Hence, extending the DBMS also requires the interfaces being ex-

tended to the new specifications. SQL has been designed to store data in and retrieve them

from relations, thus, it directly operates on tables having no notion of relationships and

roles. Usually, relationships in relational DBMS are represented as additional columns

in tables or as a separate table. Depending on the cardinality one of these options is im-

plemented. In the most general case, a N:M cardinality between the participants forms a

separate table that is handled as a normal table having foreign key constraints as references

to other tables. The DBMS simply cannot distinguish between tables storing entities and

tables that store relationships. The other cases, 1:N and 1:1, lead to additional columns in

tables that store entities, which means entities and relationships are mixed in that represen-

tation. Attributes of relationships can no longer be distinguished from entity attributes. It

becomes worse, if cardinality changes, since the mapping of relationships depends on that

cardinality. For instance, a 1:N cardinality is changed to N:M. That means, the additional

columns introduced in one of the participant tables will be dropped and the relationship

forms a separate table including the relationship attributes. All queries considering this

relationship have to be rewritten, which makes database schema and queries fragile. Addi-

tionally, the resulting database schema significantly differs from the conceptual model, due

to a lot of mappings to store the concepts and relationships relationally. That difference

disables users to query for desired concepts without specific database schema knowledge.
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〈select〉 ::= SELECT 〈projection-clause〉 FROM 〈from-clause〉 ( WHERE 〈where-clause〉 )?

〈from-clause〉 ::= 〈config-expression〉 (, 〈config-expression〉)*
( , RELATING 〈relation-clause〉 )*

〈config-expression〉 ::= ( 〈nt-name〉 〈ntAbbreviation〉 | _ )

( PLAYING 〈logical-derived-config-expression〉 )?

〈logical-derived-config-expression〉 ::= 〈derived-config-exrpession〉
| NOT 〈logical-derived-config-expression〉
| ( 〈logical-derived-config-expression〉 〈junctor〉

〈logical-derived-config-expression〉 )

〈derived-config-exrpession〉 ::= 〈rt-name〉 〈rtAbbreviation〉

〈relation-clause〉 ::= 〈rtAbbreviation〉 WITH 〈rtAbbreviation〉
USING 〈rst-name〉 〈rstAbbreviation〉

Figure 3: Data Query Language Syntax

To enable users and applications to store and query for role-based data, we proposed RSQL

as extension to SQL [JKVL14]. RSQL enables role specific integrity constraints on the

query language level. It relies on Dynamic Data Types on the type level and Dynamic Tu-

ples on the instance level, but without considering relationships between them. As shown

before, traditional relational methods are infeasible for representing relationships properly

in a relational DBMS. To overcome these limitations of traditional relational DBMS and

to enable cardinality-independent first-class relationships, RSQL has to be extended. This

extension comprises the creation, manipulation, and retrieval of relationships.

4.1 Data Query Language

The Data Query Language (DQL) is used to retrieve stored data from DBMS and in case

of RSQL, qualified Dynamic Tuples are returned based on given Configurations. Figure 3

provides an overview on the select statement. In general, the select statement starts with

‘SELECT’ followed by the 〈projection-clause〉. This clause filters columns in the result

set. After that, the 〈from-clause〉 describes Configurations based on 〈config-expression〉
and their relationships by the 〈relation-clause〉, followed by an optional 〈where-clause〉.

To handle complexity of Dynamic Data Types, RSQL provides 〈config-expression〉 as a

sophisticated type description. A single 〈config-expression〉 describes a set of Configura-

tions. Dynamic Tuples matching one of these Configurations will be added to the result.

Specifying multiple 〈config-expression〉 in one select statement produces a Cartesian prod-

uct. To filter the Cartesian product based on related Dynamic Tuples, the 〈relation-clause〉
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SELECT p2 . name, a . balance

FROM Person p1 PLAYING Consul tant co ,

Person p2 PLAYING Customer c ,

Account a PLAYING CheckingsAccount ca ,

RELATING co WITH c USING advices ad ,

RELATING c WITH ca USING owns o

WHERE ca .limit > 1000 AND p1 . name=” P e t e r ” ;

Figure 4: Example Select Query

inside the 〈from-clause〉 is used. This is done with the prefix ‘RELATING’ followed by

two Role Type abbreviations combined by a ‘WITH’. To define which Relationship Type

has to be used, its name and the corresponding alias after ‘USING’ have to be specified.

This 〈relation-clause〉 defines, via which Role Types Dynamic Tuples have to be connected

with each other. Additionally, the Relationship Type and its abbreviation have to be spec-

ified to enable projection operations on its attributes. This specification is also necessary,

because Role Types can be connected multiple times. The Role Type abbreviations have

to be defined in the 〈config-expression〉 of a Dynamic Data Type in advance. Of course,

users can define multiple 〈relation-clause〉 to filter multiple connected Dynamic Tuples.

Implementing a 〈relation-clause〉 enables users to produce more robust queries than in

SQL. Relationships become explicit to users, thus, they do not have to be mixed with

other concepts. Attributes of relationships are addressed via the relationship itself. This

enables cardinality free querying, since the user specifies a relationship and not its imple-

mentation within the DBMS. If the cardinality of a relationship changes conceptually, the

DBMS schema will slightly change, only by altering the cardinality of the correspond-

ing Relationship Type. But this means, no attributes have to be moved to other relations

and additional tables are avoided. Thus, changing cardinality does not affect the query

statement at all, but its results, so that applications have to handle the query result differ-

ently. Moreover, it is more intuitive for users writing queries with explicit relationships to

distinguish between entities and their relationships.

Figure 4 illustrates a query for the balance of all Customers of Peter who has an Account

limit that is higher than 1000. At first, three Configurations are specified, two are based

on DDT Person and one is based on DDT Account. Afterwards, these Configurations

are related by Relationship Types advices and owns within the from-clause. This filter

aims at selecting only related Dynamic Tuples. Lastly, the result is filtered by the the

checkingsAccount limit higher than 1000 and Consultant’s name Peter.

4.2 Data Manipulation

The Data Manipulation Language (DML) in RSQL creates, deletes, and indirectly mod-

ifies Dynamic Tuples. Typically, Roles and Naturals are addressed by this language part

and the DBMS automatically creates Dynamic Tuples. Adding Relationships between
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〈insert-nt〉 ::= INSERT INTO 〈nt-name〉
( 〈attribute-name〉 ( , 〈attribute-name〉 )* )

VALUES ( 〈value-expression〉 ( , 〈value-expression〉 )* )

〈insert-rt〉 ::= INSERT INTO 〈rt-name〉
( 〈attribute-name〉 ( , 〈attribute-name〉 )* )

VALUES ( 〈value-expression〉 ( , 〈value-expression〉 )* )

OF 〈config-expression〉 ( WHERE 〈where-clause〉 )?

〈insert-rst〉 ::= INSERT INTO 〈rst-name〉 ( ( 〈attribute-name〉 ( , 〈attribute-name〉 )* )

VALUES ( 〈value-expression〉 ( , 〈value-expression〉 )* ) )?

INSTANCES 〈rtAbbreviation〉 , 〈rtAbbreviation〉
FROM 〈config-expression〉 , 〈config-expression〉 ( WHERE 〈where-clause〉 )?

〈update-rst〉 ::= UPDATE 〈rst-name〉
SET 〈assignment-expression〉 (WHERE 〈where-clause〉)?

〈delete-rst〉 ::= DELETE FROM 〈rst-name〉 ( WHERE 〈where-clause〉 )?

Figure 5: Data Manipulation Language Syntax

Roles to the system implies large-scale changes of how Dynamic Tuples are handled. The

DBMS, as single point of truth in a distributed software system, has to ensure consistency

and in case of RSQL it has to ensure role-specific integrity conditions. This also includes

ensuring the cardinality of relationships. For instance, Roles of Role Types that have to be

part of a relationship cannot exist on their own. The example illustrated in Figure 1 shows

such a Relationship Type. There, a Source and Target Role Type are connected by a trans-

fer Relationship Type having 1..1 and 1..1 cardinality. This means, for each Source there

has to be a Target and neither of them can exist without being in the transfer Relationship.

That small example requires two Roles to be created at the same time and relating them.

To ensure consistency with respect to the model, the insert operations must be embedded

in a transaction and at the end of each transaction the validity is checked.

The DML comprises insert, update, and delete statements for Naturals, Roles and Rela-

tionships. In Figure 5 the syntax of relationship focused statements is presented. A Natural

can be added to the system by using the 〈insert-nt〉 statement. It is comparable to insert-

ing a tuple into a relational table using SQL. The 〈insert-rt〉 statement extends a Dynamic

Tuple by a certain Role. It also comprises an attribute and value assignment as well as a

configuration description to determine the Dynamic Tuple that has to be extended. In addi-

tion to these statements, the new 〈insert-rst〉 statement has been introduced which relates

two existing Roles of Dynamic Tuples to each other. The process of relating Dynamic

Tuples is the following: Firstly specify which Role Type the Roles belong to, secondly

specify the Dynamic Tuples in which the corresponding Roles are present, and thirdly fil-

ter the particular Roles. The statement also starts with ‘INSERT INTO’ followed by the

Relationship Type’s name. Afterwards, users can specify attributes and values for those
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BEGIN TRANSACTION ;

INSERT INTO Source ( id , tan ) VALUES (1 , 0321) OF

Account a WHERE a . iban = ” 0815 ” ;

INSERT INTO Target ( i d ) VALUES ( 2 ) OF

Account a WHERE a . iban = ” 4711 ” ;

INSERT INTO t r a n s f e r ( c rea t ion , execut ion , amount )

VALUES ( ” 1 1 . 0 9 . 2 0 1 4 ” , ” 1 2 . 0 9 . 2 0 1 4 ” , 500)

INSTANCES s , t

FROM Account a1 PLAYING Source s ,

Account a2 PLAYING Target t

WHERE s . i d = 1 AND t . i d = 2 ;

COMMIT ;

Figure 6: Data Manipulation Language Examples within a Transaction

in an optional clause. The attribute and value assignment is optional, since Relationship

Types without attributes may exist. Then, the first process step follows by stating the

corresponding Role Type with their abbreviations in the ‘INSTANCE OF’ clause by. Af-

terwards, the ‘FROM’ clause follows having exactly two 〈config-expression〉 to specify the

second process step. There, each Role Type stated in the first step has to be present in one

〈config-expression〉. So far, users defined via which Role Types the resulting Dynamic Tu-

ples have to be connected. In case Roles of the same Role Type are present multiple times

in the same Dynamic Tuple, the ‘WHERE’ clause has to filter exactly one of those Roles

to determine the unique Role that will be related. In general, inserting a Relationship is

independent of the Roles that might have been inserted in the same transaction, it connects

the Roles that have been described in the ‘FROM’ and ‘WHERE’ clauses.

The 〈update-rst〉 statement updates values in Relationships. It is similar to updating Nat-

urals or Roles. Users have to specify ‘UPDATE’ and the corresponding Relationship Type

name at the statement’s very beginning. The system will figure out for itself which type

has to be updated by the user provided name, since names have to be unique over all types.

To delete Relationships and detach the corresponding Roles, the 〈delete-rst〉 statement has

to be used. The syntax of this statement is similar to traditional delete statements, how-

ever, the Relationship Type name has to be specified. If a Relationship is deleted, Roles

participating in this Relationship may also be deleted in case they are constrained with a

lower bound cardinality of 1 and the last participating Role on one relationship side. This

can cause knock-on effects for a series of other Roles and Relationships and the user must

be aware of this. Roles participating in this particular Relationship as optional with a lower

bound cardinality of 0, are not affected. The other way around, a deletion of a Role may

also cause the deletion of a Relationship.

The statements in Figure 6 show an example for inserting two Roles and relating them

within a transaction. At first, we create a new transaction, because the following insertions

will lead to inconsistent states during the transaction. Afterwards, two Roles are inserted

into the database. After each insertion, the stored data is invalid with respect to the schema,

that requires that Source and Target have to be connected to exactly one counter Role. To
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〈create-nt〉 ::= CREATE NATURALTYPE 〈nt-name〉
( 〈attribute-definition〉 ( , 〈attribute-definition〉 )* )

〈create-rt〉 ::= CREATE ROLETYPE 〈rt-name〉
( 〈attribute-definition〉 ( , 〈attribute-definition〉 )* )

PLAYED BY 〈nt-name〉 ( , 〈nt-name〉 )*

〈create-rst〉 ::= CREATE RELATIONSHIPTYPE 〈rst-name〉
( ( 〈attribute-definition〉 ( , 〈attribute-definition〉 )* ) )?

CONSISTING OF ( 〈relation-participation〉 ) AND ( 〈relation-participation〉 )

〈relation-participation〉 ::= 〈rt-name〉 BEING ( 0 | 1 ) .. ( 1 | * )

〈drop-rst〉 ::= DROP RELATIONSHIPTYPE 〈rst-name〉

Figure 7: Data Definition Language Syntax

restore the validity we insert a new Relationship of the type transfer. In the first process

step we state the desired Role Types. Afterwards, we define two distinct Dynamic Tuples

in the FROM clause, one playing a Source Role and one playing a Target Role. Usually,

this will not be the first transfer on the corresponding accounts, which implies that both

Dynamic Tuples of the Accounts probably have multiple Source and Target Roles already.

To uniquely identify the desired Roles, we filter the Dynamic Tuples in the ‘WHERE’ clause

by the Source id and Target id attribute. Finally, the transaction will be checked and, if

valid, committed.

4.3 Data Definition Language

The Data Definition Language (DDL) specifies the schema of a database. There, all type

information will be provided to the DBMS. Dynamic Data Types are created, altered and

dropped indirectly. Creating a new Natural Type creates a new Dynamic Data Type and

creating a new Role Type extends existing ones. Role Types, as parts of Dynamic Data

Types, can be related by Relationship Types. Also cardinality of Relationship Types is

defined using DDL statements.

A Natural Type is created by a 〈create-nt〉 statement. This statement starts with

‘CREATE NATURALTYPE’ followed by a distinct name and a set of attribute definitions.

Note, all types form a common name space, such that each defined type has a distinct

name. An existing DDT is extended by Role Types using the 〈create-rt〉 statement. After

‘CREATE ROLETYPE’ and a unique name, attributes have to be specified, and at least one

Natural Type has to be given after ‘PLAYED BY’ clause. This clause avoids isolated Role

Types. Alter and drop statements also exist for those types, but are out of scope here.

To relate Dynamic Data Types with each other, Relationship Types have to be used. This
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CREATE RELATIONSHIPTYPE advices CONSISTING OF

( Consul tant BEING 0 . . ∗ ) AND ( Customer BEING 1 . . ∗ ) ;

CREATE RELATIONSHIPTYPE t r a n s f e r s

( c rea t i on Timestamp , execut ion Timestamp , amount Money )

CONSISTING OF ( Source BEING 1 . . 1 )

AND ( Target BEING 1 . . 1 ) ;

Figure 8: Data Definition Language Examples

enables the DBMS to handle relationships explicitly and provides information about rela-

tionship attributes and cardinality. This information will be used by the DBMS to check

the validity of DML operations. A Relationship Type is created using the 〈create-rst〉
statement. It starts with ‘CREATE RELATIONSHIPTYPE’ and a unique name. Af-

ter that, it is optional to specify attributes for this Relationship Type. This is op-

tional, since Relationship Types without attributes may exist. To relate Role Types two

〈relation-participation〉 clauses have to be combined with a prefix ‘CONSISTING OF’.

The first 〈relation-participation〉 denotes the left part of the Relationship Type and the

second one the right part. A 〈relation-participation〉 consists of a Role Type name and

its cardinality. The Role Type name specifies the corresponding Role Type that will be-

come part of this relationship. The cardinality is constructed using ‘BEING’ followed by

the lower bound. There, users can choose between ”0” and ”1”. Afterwards, the upper

bound is defined while having two options: ”1” or ”*”. Relationship Types can be altered

and dropped as well, but for reasons of brevity we focused on creation only. RSQL also

provides a statement to alter Relationship Type attributes, the referenced Role Types, and

cardinality, but here we focused on the creation of Relationships.

Figure 8 illustrates syntax and semantics of the DDL. At first, the type level is created

assuming that the Dynamic Data Type Person and DDT Account already exist. The first

statement establishes a Relationship Type advices between Consultant and Customer with-

out attributes. Moreover, the Consultant’s cardinality is 0 to ∗ and the Customer’s is 1 to ∗
denoting that each Consultant needs at least one Customer. A Consultant will be forced

to be related to a Customer and has to participate in such a relationship. In contrast, the

Customer can exist without this relationship, but can also have more than one Consultant.

The second statement creates a new Relationship Type transfer between Source and Target

with three attributes as well as 1 to 1 and 1 to 1 cardinality, respectively.

5 Comparison

The role concept has been proposed by Bachman in 1977 [BD77]. Over the past decades

the idea of separating different concerns of data objects has been adapted to many mod-

eling languages, especially in conceptual modeling. Henceforth, we first classify our ap-

proach and discuss other related query languages, afterwards.
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5.1 Classification

To classify our role-based data model, we employ a previously defined classification

scheme developed to evaluate role-based modeling and programming languages [Ste99]

and its extension [KLG+14]. Consequently, we can classify RSQL’s formal model in ac-

cordance with the features of roles: (1) Roles have properties and behaviors. Yes, roles

have properties. (2) Roles depend on relationships. Yes, roles can be defined to depend

on relationships. (3) Objects may play different roles simultaneously. Yes, by definition.

(4) Objects may play the same role (type) several times. Yes. (5) Objects may acquire and

abandon roles dynamically. Yes. (6) The sequence of role acquisition and removal may be

restricted. Partially, because cardinality constraints can be used to restrict the order of role

creation. (7) Unrelated objects can play the same role. Yes. (8) Roles can play roles. No.

Similar to Lodwick we disregard roles playing roles. (9) Roles can be transferred between

objects. Yes, this can be done by altering the player of a role. (10) The state of an object

can be role-specific. Yes, because a Dynamic Tuple combines the state of the natural and

its roles. (11) Features of an object can be role-specific. Yes, because an object is defined

as a Dynamic Data Type. (12) Roles restrict access. This feature is not applicable, because

we currently assume that each user has full access to all defined Dynamic Data Types. (13)

Different roles may share structure and behavior. No, currently, our formal model does not

support inheritance between roles. (14) An object and its roles share identity. Yes, because

they are encapsulated in a Dynamic Tuple inheriting its identity from the object. (15) An

object and its roles have different identities. Yes, they have different identities in the for-

mal model. (16) Relationships between roles can be constrained. Yes, by supporting the

definition of cardinality constraints. (17) There may be constraints between relationships.

No, currently the definition of inter relationship constraints is not allowed. (18) Roles can

be grouped and constrained together. No. (19) Roles depend on compartments. No, there

is no notion of Context or Compartment in our model. In consequence, all other features,

i.e., Feature 20 to Feature 26, can not be fulfilled at all. As a result, this apporach focuses

on the relational nature of roles, but allows for shared as well as own identities for roles

by introducing Dynamic Data Types.

5.2 Related Work

Henceforth, we recollect the various related approaches with respect to the underlying data

model and role-based query language.

Considering the former, the definition presented here has similarities to LODWICK’s def-

inition in [Ste99]. Both are founded on Naturals and Roles on the type level, but on the

instance level roles do not exist in LODWICK. Furthermore, LODWICK’s formal model

is able to express arbitrary n-ary relationships, RSQL’s data model can only express bi-

nary ones. Additionally, Roles and Naturals in RSQL have different identities, but they

are combined to Dynamic Data Types, which can be identified solely by a specific Natu-

ral. However, Dynamic Tuples in RSQL are identified by value based identification rather

than unique object ids, i.e., they inherit their identity directly from the contained Natural.

173



In direct comparison to LODWICK, RSQL is superior because it can resolve the identity

issue of roles and includes the definition of cardinality constraints.

The related query languages can be grouped along three different classes: role-based query

languages, conceptual query languages, and regular query languages. In the first class, the

Information Networking Model (INM) uses roles in relationships to describe that objects

play roles in a certain relationship to other objects [LH09a, LH09b]. Like RSQL and the

underlying formalism, it also supports dynamic and many-faceted object types. Further-

more, INM provides features to model context-dependent information and thus, it intro-

duces contexts to group roles. Relationships also exist in INM, first as normal relationships

or role relationships. Via role relationships context information is modeled and normal re-

lationships are the same as in traditional modeling languages. Nevertheless, relationships

cannot be constrained by cardinality. Moreover, there exists a query language for INM,

called Information Query Language (IQL) [HFL10]. The IQL utilizes tree expressions,

like XPath, to hierarchically describe the desired data. Moreover, they describe a DBMS

that persists INM-based data in a key-value-store (Berkeley DB). In contrast, RSQL aims

at a relational DBMS to take advantage of the richer role semantics to (i) store role-based

data more efficiently and (ii) optimize queries. Key-value-stores cannot take advantage

of in-DBMS optimizations, because no information about the stored data is known to the

DBMS. Optimizations have to be performed outside of the DBMS, which causes overhead

in transferring and processing the data.

Conceptual query languages abstract implemented database models to conceptual models.

Hence, users query based on conceptual levels without any knowledge about the imple-

mented data representation. This approach has become popular in the 1980’s and 1990’s.

At that time, a lot of entity-relationship based conceptual query languages for relational

DBMS have been proposed, since data were modeled using ER and stored relationally.

Examples of query languages based on ER or extended ER are SQL/EER [HE92], the

query language presented in [LT94], or CABLE [Sho79]. Nevertheless, these query lan-

guages are usually mapped to SQL, thus they only abstract for users and relational DBMS

remain the same. Moreover, they have no notion of roles but of relationships and RSQL

comprises both notions. However, query languages exist that have a notion of roles, for

instance ConQuer [BH96] that is designed for Object Role Modeling (ORM) [Hal98]. In

contrast to RSQL, ConQuer queries are also mapped to SQL.

In comparison to general query languages, RSQL enables users and applications to query

information based on a conceptual model, which relates it to conceptual query languages.

Nevertheless, RSQL does not abstract database objects to conceptual entities. RSQL is a

regular query language that directly describes database objects that are handled in a DBMS

without abstraction. This also requires introducing new database objects in a DBMS and

creating new first-class citizen. The only approach that has introduced roles as first-class

citizen in a DBMS is DOOR [WCL97]. DOOR also has the notion of rigid and non-

founded types (Natural Types in RSQL) and founded, non-rigid types (Role Types) on the

type level as well as on the instance level. However, DOOR does not support relationships

between roles.
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6 Conclusions

To lower the mismatch between role-based conceptual models and their DBMS implemen-

tation, we extended our data model and query language RSQL by introducing first-class

relationships. Hence, role and relationship semantics are preserved in the DBMS and not

hidden in mapping engines. This improves the interoperability in highly distributed infor-

mation systems that run role-based software and allows DBMS to guarantee role specific as

well as relationship specific consistency constraints. In detail, we introduced Relationship

Types on the type level and Relationships on the instance level in our data model. Addi-

tionally, cardinality constraints are directly bound to this newly introduced types. Conse-

quently, RSQL has been adapted to the new data model by introducing special statements

to create Relationship Types and insert Relationships, respectively. By making relation-

ships explicit, they do not have to be mapped to tables and queries can be created inde-

pendently of the relationship implementation. This has the following two effects. Firstly,

cardinality changes no longer entail query reconstruction, which produces more robust

queries. Secondly, users can create queries without having knowledge about the relational

mapping and normalization of relationships. Additionally, the DBMS gains knowledge

on the stored data objects that can be used to optimize query processing and enforce re-

lationship consistency constraints. In summary, RSQL enables users and applications to

directly represent and query for role-based data objects including their relationships and,

at the same time, the implementing DBMS can ensure role-based consistency constraints.

We have presented a formal data model definition and a query language that captures that

definition. To constrain Dynamic Data Types and the set of Configuration they describe,

we will introduce constraints between Role Type (e.g. prohibition of two Role Types).

Additionally, we aim at cardinality constraints on the fills-relation to represent real one-

to-one relationships in our system. As a next step, we will implement both the data model

and RSQL within an extended relational DBMS. Hence, we will introduce new database

objects to teach the DBMS the notion of Dynamic Data Types and Relationship Types. To

process Dynamic Tuples, we are going to implement specialized database operators that

can be used for query processing as well as for query optimization.
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