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Abstract: Information extraction (IE) is a natural language processing (NLP) task which aims at
retrieving specific type of information from natural language text. Before the actual extraction of in-
formation, a natural language text usually undergoes some processing, such as part-of-speech (POS)
tagging. Nowadays, information extraction finds practical use in smart phones, which for example
are able to identify a phone number in an SMS text and provide a link for either calling that number
or storing it. There exist various approaches in extracting information from text, e.g., pattern-based
information extraction which uses predefined rules to extract entities and ontology-based informa-
tion extraction. These approaches often concentrate on a particular domain whose information is to
be extracted. This paper provides a light-weight, unified, and scalable methodology which uses a
generic approach for extracting information. This approach does not depend on any domain or rule.

1 Introduction

Information extraction (IE) is a technology based on analyzing natural language text with
the aim of extracting specific type of information [Cu06, HDGO0O0]. Depending on the sys-
tem, the information usually extracted may be directly presented to the user requiring it, or
saved in a database, or even used as a base for indexing purposes in information retrieval
(IR) applications such as web-based search engines, e.g., Google and Duckduckgo. People
sometimes tend to confuse between information extraction and retrieval. Compared to an
information extraction system, an information retrieval system is a technology which ac-
quires information resources that are related to the user’s requirements. These information
resources are often obtained from a large bank of information resources.

An example of an IE task is named entity recognition (NER). Named entity recognition
searches and retrieves entities such as names, places, and dates. This is used in applications
such as Google Mail, where dates are automatically recognized in texts and represented in
such a way that one can easily create a calendar event from them.

There exists different approaches to IE, such as ontology-based information extraction,
where unstructured or semi-structured natural language texts are processed through a
mechanism guided by ontologies to extract certain types of information. The output is
then presented using ontologies [WD10]. We present a light-weight, unified, and scalable
methodology for IE, which makes use of triple store databases to store extracted infor-
mation as triples. This provides a back-end architecture, which has the main function of
combining various IE approaches, such as Named Entity Recognition and Co-reference
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Resolution. We further use SPARQL as query language for extracting information through
the back-ends.

The remainder of the paper is divided into five sections. Section 2 gives an overview of
related work. Section 3 describes the main idea of this work followed by an algorithm.
In Sections 4 and 5 we present respectively the system developed in this work and the
experimental evaluation of this system, and finally, Section 6 gives an overall conclusion
of the work.

2 Related work

Most of the fields related to our work has to do with natural language, linguistic annota-
tion, and semantic web. Sonal Gupta [GM14] developed a system with two major func-
tions. At first, it provides an information extraction system capable of extracting entities
from a given text using patterns with bootstrapping. An advantage of this methodology
is that the patterns used for entities extraction are not fixed but generated from the text.
Further, the system provides a way of visualizing the extracted entities and patterns. The
methodology described in [CJ11] is an amelioration of standard template-based informa-
tion extraction, which uses predefined templates to fill semantic roles. This methodology
removes the requirement of having a fix template, but instead introduces the learning of
domains’ template from the input text.

[ARR13] proposes a methodology for extracting information based on ontology, i.e., an
ontology is used along to guide the extraction process. This methodology has a common
point with the methodology proposed in this paper in that, it is generic, since it can be ap-
plied to any domain. [Ar13] proposes a methodology for automatic information extraction
from natural language texts, based on the integration of linguistic rules, multiple ontolo-
gies and inference resources, integrated with an abstraction layer for linguistic annotation.
[Rul2] proposes a way of representing linguistic annotation using the RDF framework.

NIF? and LemonWordNet* are both existing RDF wrappers for Standford Core NLP and
WordNet respectively. Our methodology is not limited to a special nlp tool, as it allows
someone to easily wrap an existing nlp tool for integration with other wrappers in the
overall system. [KLA13] lets a user describe corpus-wide extraction tasks in a declarative
language and permits him to run interactive rule refinement queries. The methodology
used here has a similarity with ours, since the extraction actually takes place after issuing
database queries. But the difference is that, we use a triple store database (TSDB) since
it doesn’t require a schema. This allows an easy customization of back-ends, which will
be explained in detail in Section 4. Further, [KLLA13] uses the declarative language AQL’
for extraction. Our system uses the SPARQL RDF query language (SPARQL),® since the
extracted information is stored in a TSDB.

3 http://persistence.uni-leipzig.org/nlp2rdf

4 http://wordnet-rdf.princeton.edu

3 http://bigdataconsultants.blogspot.ch/2013/07/aql-annotation-query-language.html
6 http://www.w3.org/TR/rdf-sparql-query
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Mathias Soeken et al. [So14] proposed a triple store database information extraction method,
which also uses the SPARQL query language for extraction. Our methodology proposes
an improvement of this work with a back-end architecture, which enables different infor-
mation extraction approaches to be combined.

3 Abstract concept

In this section we describe the main idea of our work and the algorithm used to develop
the GIET system.

3.1 Main Idea

We propose a new methodology for extracting information from texts using triple store
databases. This method is not only light-weight, but also unified and scalable. Light-weight
is achieved by providing a back-end architecture with a simple interface that requires al-
most no dependencies. The method is also said to be unified since upon call of the simple
interface from the user, all required back-ends are activated. The activated back-ends are
responsible to retrieve the necessary information. Finally, the ability to extract just the
necessary information as requested by the user makes the method scalable.

Example 1: Consider the following sentence: “Smith goes to Africa occasionally.” The
task is to retrieve named entities, and their types from the sentence. Further consider
we have three different back-ends available. One back-end extracts words, another ex-
tracts named entities and the last one extracts part-of-speech tags from the sentence. The
SPARQL query looks like the following:

SELECT ?7word 7namedEntity
WHERE {

7w word 7word.

?w is 7namedEntity.

Each predicate of the query statement represents the type of information needed. There
are two query statements. The first statement consists of a subject which has a word and
the second statement says that this same subject should be a named entity. The word and
the named entity will be saved respectively in the variables word and namedEntity. Since
just named entities and their types are needed, the back-end extracting part-of-speech tags
will not be considered anymore from the interface. The two other back-ends now retrieve
corresponding information from the sentence and save them as triple in the triple store
database. The following shows the triples stored in the database:

<goes-2> word "goes"
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<Africa-4> word "Africa"

<Africa-4> is "LOCATION"

<Smith-1> word "Smith"

<Smith-1> is "PERSON"

<to-3> word "to"

<occasionally-5> word "occasionally"

Notice that each word in the sentence has a corresponding word-triple. This is very impor-
tant, as a sentence may contain the same word more than one time. Applying the above
query to the above triple store database yields the following query result:

namedEntity  ?type
Africa LOCATION
Smith PERSON

Tab. 1: Query result for example 1

Figure 1 gives an abstract overview of how this method is used to extract information. As
observed in the picture, inputs are a sentence as information source and a query. The sim-
ple interface executes an algorithm as described in the next section. In this algorithm, we
determine from the query the type of information to be retrieved, and which back-ends to
involve for retrieving this information. The back-ends to be involved for retrieval depends
on the type of information determined from the query. A back-end aims at retrieving in-
formation from the input sentence. There are no restrictions to how or which information
is extracted from the sentence. This means back-ends can retrieve information as is, or
enrich this information by using external dependencies. The advantage is that the simple
interface does not know about the existence of any external dependencies, which makes it
less coupled to the back-ends.

Figure 1 also shows a triple store database, where information is stored as triple after
being retrieved from the sentence. Afterwards, the query gets executed on the triple store
database to yield the requested information from the user.

3.2 Algorithm

This section describes the algorithm executed in the simple interface of the back-end ar-
chitecture. As mentioned in the previous section, inputs to the algorithm are a sentence as
information source and a query. Algorithm 1 shows the pseudo code of the algorithm.

The first step of the algorithm consists of determining the type of information from the
query. As a next step, iteration takes place over the list of available back-ends where
only those back-ends are saved which can retrieve the information as determined from
the query. Further, each required back-end retrieves information from the sentence and
stores it as triple in a triple store database. A triple represents the kind of relation which
exists between two entities. Since the database used to store information is a triple store
database, SPARQL was chosen as query language for extraction.
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Fig. 1: Abstract overview of information extraction using our methodology

4

Algorithm 1

Input: sentence € String
Input: query € String
Output: result € QueryResult

1
2
3
4:
5:
6
7
8
9

. informationType < determinelnfosType(query)
: requiredBackends < {}
: for backend € availableBackends() do

if canRetrievelnfosOfType(backend, informationType) then
requiredBackends < requiredBackends U backend
end if

: end for

: listOfTriples + {}

. for backend € requiredBackends do
10:
11:
12:
13:
14:

triples « extractInformation(backend, sentence)
listOfTriples < listOfTriples U triples

end for

store <— storeInDatabase(listO f Triples)

result < execute(query, store)

4

GIET system

As seen in Section 3, our main idea is to provide a more generic way of extracting infor-
mation from a text. Below we present some freely available tools used.

Application service: The application service’

is a scalable tool realized in the Java

programming language, which helps to develop client-server applications using the
transmission control protocol (TCP) with very less effort. In using this tool, one has

7 https://github.com/rosmith/application-service
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to concentrate only on the logic of the application to be developed. Everything else
like the network communication is handled by the application service, provided it is
appropriately configured.

° Stanford CoreNLP: CoreNLP from the Stanford university is a Java annotation
pipeline framework, which provides most of the common NLP steps, from tokeniza-
tion through to co-reference resolution [Mal4].

° Apache Jena: Apache Jena® is a free and open source Java framework for building
semantic web and linked data. The main goal of this tool is to provide facilities for
both the application and the system programmers. The application programmer can
access and manipulate graph data through higher level interfaces whereas a system
programmer wishing to manipulate data as triples has a simple minimalist view of
RDF graphs [Ca04].

) Clear NLP: This is another Java framework for NLP, which was developed by Jinho
[CP11]. This NLP tool has almost same components as the Stanford CoreNLP, like
part-of-speech (POS) tagging and dependency parsing, just that both use different
approaches. Clear NLP provides an additional component known as semantic role
labeling (SRL) which is not yet provided by the Stanford CoreNLP.

° Extended Java WordNet Library (ExtJWNL): WordNet is an online lexical data-
base designed for use under program control. This database links English nouns,
verbs, adjectives, and adverbs to sets of synonyms that are in turn linked through
semantic relations that determine word definitions. WordNet contains more than
166,000 word form and sense pairs, where a word form is represented by a string of
ASCII characters, and a sense is represented by the set of (one or more) synonyms
that have that sense [Mi95]. ExXYWNL ? is a free and open source Java framework
for creating, reading and updating dictionaries in WordNet format.

e  Behind The Name (BTN) & Jsoup: BTN'? is a website which on request, gives
the etymology of a name, which can be either a person’s name or surname or even
a place’s name. Unfortunately, there is no existing library at the moment which
enables one to use the functionalities of BTN programmatically. For that reason,
one can make use of the library Jsoup,!! which is a Java library for working with
real-world HTML, to navigate in the HTML tree of a search result page and get
some relevant information like the gender or description of the searched name.

The GIET system is implemented in Scala'?. The source code is available in GitHub!3
under the MIT License, and a documentation can be found in the webpage'*, with an

8 https://jena.apache.org/documentation/inference/
9 http://extjwnl.sourceforge.net/

10 http://www.behindthename.com

T http://jsoup.org

12 http://scala-lang.org

13 https://github.com/rosmith/giet

14 http://giet-nlp.de
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interactive user interface to play around with. Fig 2 shows the workflow of information
extraction of the GIET system.

—_—— — = — — — - -

BACK-END:
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query string
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Query
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Query
Parser
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IN-Memory
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Fig. 2: Information extraction workflow of the GIET system

The GIET system provides a scalable back-end architecture. This allows combining dif-
ferent information extraction approaches to form a unified IE system. The back-end ar-
chitecture consists of a pool of built-in extractors. An available extractor interface allows
an application programmer to provide a custom information extractor, which retrieves in-
formation according to the needs of the application programmer. It should be emphasized
that annotations can be represented by both data and object properties. According to the
task done by an extractor, the programmer decides which representation best suites. Fol-
lowing are some important built-in extractors in the GIET system with their corresponding
namespaces in brackets:

° Word extractor (word) wraps the Stanford tokenizer'® and aims at saving token
annotations of the sentence.

° Tagger extractor (tag) wraps the Stanford tagger [To03] and aims at saving part-
of-speech tag annotations for each token in the sentence.

° Dependencies extractor (dependency) wraps the Stanford parser [KMO03] and aims
at saving typed dependencies annotations such as nominal subject (nsubj), adjective
(i), etc.

° Coreference extractor (coref) wraps the Stanford co-reference resolution system

[Lel1] and aims at saving existing co-reference annotations in the text.

15 http://nlp.stanford.edu/software/tokenizer.shtml

1954



Ronald Smith Djomkam Yotedje

° Named entity extractor (is) wraps the Stanford named entity recognition system
[FGMOS5] and aims at saving named entity annotations.

° SRL extractor (srl) wraps the SRL component of the ClearNLP system [FGMO5]
and aims at saving semantic role annotations.

) BTN extractor (btn) uses both BTN and Jsoup to save people’s gender and name
definition. This shows that the GIET system is very flexible and allows someone to
add new information, which is not present in the sentence.

° WordNet extractor (wordnet) uses the extended JWNL to save lexical fields infor-
mation for the syntactic categories nouns, verbs, adjective, and adverbs. An example
of a lexical field'® for a verb is motion which contains verbs walking, flying and
swimming.

All of the above extractors are available in the extractor pool at the beginning of the extrac-
tion. Each extractor has a unique namespace, with which it can be addressed. Extraction
of information using the GIET system occurs as follow:

° The query string has a very simple format which abstracts the SPARQL query lan-
guage. This query string is first parsed to obtain a query object. A query of all tokens
in a sentence will look like the following:

SELECT 7token
WHERE {
?x word 7token.

}

In the above query string, one can observe that the triple statement has a predicate
without namespace. The predicate itself is a namespace and hence corresponds to
the extractor with the namespace word which is the WordExtractor, and will be the
only extractor retained for extraction, the rest will be kept uninstantiated in the pool.

° The query object helps to infer which extractors (built-in and custom) from the pool
are needed for extraction. After resolving the needed extractors, the query object is
reformulated to the following full SPARQL query.

PREFIX giet: <http://www.giet-nlp.de/annotator#>

SELECT 7token
WHERE {
7x giet:word 7token.

}

° The resolved extractor candidates are then used to retrieve information from the text.
The resulting triples are then saved in the in-memory triple store database which is
provided by the apache jena API as described above.

° The generated SPARQL query is then applied on the triple store database to extract
the required information.

16 https://wordnet.princeton.edu/man/lexnames.5WN.html
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5 Use case description

For the use cases, we used the mixed case Test Data 4 provided by the Message Under-
standing Conference (MUC-4)!”. The MUC was initiated by the former Naval Ocean Sys-
tems Center (NOSC) and financed by the Defense Advanced Research Projects Agency
(DARPA) with the aim of encouraging the development of new methods for extracting
information [GS96]. The test data consists of one hundred texts, all talking about terrorist
activities in Latin Amerika.

Example 2: To illustrate some important use cases, we make use of the following two
sentences from the second text of the test data.

The prosecutor of the military court trying the people responsible for the
killing of 124 inmates accused of terrorist activities held in the Lurigancho
Prison on 19 June 1986 has asked for 25 years imprisonment for the person
responsible for the killing.

Prosecutor Juan Carbone Herrera requested the 25 years imprisonment for
General Rolando Cabezas Alarcon of the Republican Guard “for ordering the
shooting of 124 of the San Pedro prison inmates (Lurigancho).”

The above sentences contain two named entities of type person, two of type location, one
of type date, and two others of type number and duration, which are actually referring to
the same entity, i.e. 124 and 25 years, respectively. With the following query, we aim at
extracting any entity being dependent of a verb. We are also interested in the verb govern-
ing this entity, the part-of-speech of both the entity and its’ governor (verb), the type of
entity it is, and the position of both in the sentences. According to the text, we expect to
have one result.

select 7dependent 7governor 7namedEntity 7pos 7gpos 7tag 7gtag
where {

// nsubj relates a verb and its subject.

?x nsubj ?y. // nsubj acts as an object property

?x word 7governor.

?y word 7dependent.

?y is 7namedEntity.

?x position 7gpos.

7y position 7pos.

7X tag 7gtag.

7y tag 7tag.

It should be noted that, the user is the one providing the sentence and the query. The
query mostly depends on what the user needs to extract from the sentence. After giving

17 http://www-nlpir.nist.gov/related_projects/muc/index.html
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the above sentence and user-defined query to the system, the system creates a query object
from the above query string, and infers from it, which of the extractors in the pool should
be instantiated for retrieving the required information.

In our case, we have eight query statements with five different namespaces from different
extractors. These extractors will retrieve all corresponding information from the sentences
and save them in the triple store database. After applying the query on the database, we
receive exactly one result as expected:

?dependent  ?governor  ?namedEntity  ?pos  ?gpos  ?tag  ?gtag
Herrera requested PERSON 4 5 NNP VBD

Tab. 2: Query result for example 2

Further constraints could be applied, such as restricting the named entities to be of type
location, which will of course have no result, or restricting the governor to belong to the
lexical field communication, e.g.:

select 7dependent 7governor 7namedEntity 7pos 7gpos 7tag 7gtag
where {

?x nsubj ?y.

?x word 7governor.

7y word 7dependent.

7y is “namedEntity.

?x position 7gpos.

?y position 7pos.

?x tag 7gtag.

7y tag 7tag.

7w communication 7d.

7w word 7c.

FILTER (?governor = 7c)

Due to the three last lines of the above query, the WordNet extractor will be instantiated to
retrieve words belonging to the lexical field communication and the filter makes sure that
there is at least one word belonging to the lexical field communication which is the same
as the governor.

Our system relies much on external dependencies, such as Stanford CoreNLP and Word-
Net, which have been used to implement the built-in extractors. This makes the quality of
the query results to be strongly dependent on these external dependencies. In the above
query, we could further constrain the query, such that the dependent have the gender male.
However, there will be no result with this additional constraint, since the dependent in the
sentence is Herrera, which is not available in the database of Behind The Name, used by
the BTN extractor.
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6 Conclusion

In this paper, we provided a generic methodology for information extraction. This method-
ology provides a scalable back-end architecture, which enables to combine different ap-
proaches for extraction. The methodology is light-weight due to the unawareness of the
eventual dependencies used in the back-end architecture and the fact that with a single
query, different information can be extracted, also makes the methodology unified.

In future work, we plan to develop a declarative domain specific language (DSL) for query-
ing. The motivation is that, not every programmer knows what is SPARQL and how to use
it, so a DSL will give the chance to these programmers to make use of the advantages
of our system, without having to know how a SPARQL query works. We also intend to
output the results of our system according to state-of-the-art formats for representation of
linguistic annotation like NIF.
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