
Systematic Refinement of CPS Requirements using SysML,
Template Language and Contracts

Markus Grabowski 1, Bernhard Kaiser 2, Yu Bai 3,

Abstract: In these days, we encounter the transition from traditional closed and restricted-purpose
embedded systems towards networked Cyber-Physical Systems. This applies to many industries, but
in particular to the automotive industry, where assistance and automated driving functions are shaped
out of complex combinations of functions and electronic control units, and even the car as a whole
becomes part of a larger network of many vehicles plus infrastructure. Still, veriĄable assertions must
be available in the end to satisfy the safety case. The speciĄcation skills in industry often turn out
to be insufficient. Even today, the mandatory V-model is hard to apply in practice and expressing
appropriate requirements and reĄnements along with the evolution of the architecture is a hard thing
to do. When development becomes agile and centered around component reuse, things become even
more complex. We report about our experience with the application of contract-based development
and explain keystones of our approach. We present a new template language called SSPL that allows
the speciĄcation of requirements and assertions on every system architecture level and show how
contract-based requirements reĄnement can go hand in hand with architecture reĄnement in SysML.
We further present our Eclipse-based tool SAVONA that enables practical application of the approach.

Keywords: contract-based design; template language; system reĄnement; system veriĄcation; cyber
physical systems

1 Introduction

Almost all technology-related industries are facing a rapid transition from formerly closed,
local, restricted-purpose Embedded Systems to open, interconnected and jointly acting
Cyber Physical Systems (CPS), uniting different physical domains with IT and networking
technology. This affects existing industry branches, such as automotive and industrial
automation, but also enables entirely new application Ąelds, such as home automation,
sensor networks, and the Internet of things. This transition can exemplary be observed
by the automotive industry which is forced into the most dramatic transformation since
the invention of the car. Novel assistance functions have arisen, so that in many cases,
sensors and actuators made in a variety of technologies serve for many different functions.
Some of these components have been designed and released years before the functions
they are later used in. Consequently, the original developers of these components had

1 Assystem Germany GmbH, Berlin, Germany, mgrabowski@assystem.com
2 Assystem Germany GmbH, Berlin, Germany, bkaiser@assystem.com
3 Assystem Germany GmbH, Berlin, Germany, ybai@assystem.com

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 245

https://creativecommons.org/licenses/by-nc/3.0/
mgrabowski@assystem.com
bkaiser@assystem.com
ybai@assystem.com
https://creativecommons.org/licenses/by-sa/4.0/


no chances to overlook all future implications, and the architect wanting to reuse an
existing component today does not know under which assumptions it had been developed.
Still, systematic properties like correct behavior and safety have to be validated in the
end. Highly automated driving (HAD) not only accelerates this trend, but also enforces
open interconnections between vehicles and their environment (V2X), because the reach
of on-board sensors is limited and therefore external information about road conditions,
incidents etc. must be received and directly inĆuences safety-relevant maneuver decisions.
The single car is no longer the biggest conceivable system scope, but the whole traffic
system may act as a System-of-Systems (SoS). As new suppliers and off-board services
enter the automotive domain, technologies and development approaches from domains like
IT are harshly contrasting the traditional automotive processes like the V-model. In the light
of these tremendous changes, it can be expected that automotive industries will have to
adapt their way of specifying, developing, and releasing their CPSs towards more agile and
reuse/recombination-oriented approaches. It can be questioned if the traditional V-model
will carry the industry into the future at all, but even in places where the V-model is officially
mandatory, we have observed many Ćaws in its application in industrial practice. Foremost,
these Ćaws affect the Ąrst and most important process phases, the requirements engineering
and architecture speciĄcation. Requirements found in practice are often imprecise or badly
put in words, although the use of template languages has been encouraged for many years
[HJD04]. SpeciĄcations from car OEMs to suppliers often include many details about
process aspects like manufacturing, environmental tests, standards compliance etc. but
when it comes to the core function of the component (e.g. steering controller, radar sensor),
there is not much of the componentŠs behavior speciĄed in detail. Additionally, when Safety
Integrity Levels (ASILs) are assigned, it is sometimes not clear which property or service
exactly is subject to the ASIL. Moreover, requirements are often stated on a wrong scope.
For instance, a requirement towards a radar sensor, specifying the initialization of a braking
action when detecting certain obstacles, is clearly a requirement on vehicle scope, but not
on sensor scope; nevertheless, such kinds of requirements are often found in speciĄcations
towards the radar sensor supplier. On supplier level, requirements on system level are simply
passed through to software component developers, without performing the architectŠs core
duty: to decompose the requirement into sub-requirements for each component and verify
that the whole shows the expected behavior. Requirement speciĄcations are sometimes
only exchanged at project setup and not further kept up-to-date so that their usefulness as a
reference for veriĄcation and safety case creation can be doubted. Backward requirements
from suppliers to the OEM or assumptions about the usage environment are usually not
formally captured. Flaws in implementation or veriĄcation are often the consequence, in
the worst case leading to actual safety risks. Contract-based development approaches have
become more and more mature and popular in the last couple of years and actually have
the potential to support better requirements reĄnement, in particular when combined with
model-based development. Template-based assertion and contract speciĄcation languages
brought up by recent research projects [CE10, Bo15] have contributed a lot, but still need to
be extended to allow expressing all necessary kinds of requirements on system and software
level.

246 Markus Grabowski, Bernhard Kaiser, Yu Bai



In this paper, we present an advanced template language that goes another step in transferring
contract-based development approaches into industrial practice, allowing the stepwise
requirements reĄnement to go hand in hand with model-based system design. After
collecting some requirements regarding a modern speciĄcation process that have guided us
when developing our approach, we will brieĆy give a short introduction on contract-based
design and template languages, as those are the key ingredients of our methodology. After
that, we present our System Specification Pattern Language (SSPL) with which behavioral
system properties can be described in a well readable and unambiguous way. Furthermore,
we describe the method of utilizing contract-based design and SSPL in a stepwise system
reĄnement process [Ka15]. Additionally, we shortly introduce our tool framework SAVONA,
which implements the method and offers support for creating system models and template
expressions and allows early system veriĄcation. At the end, we report on a Ąrst experience
with our approach applied on a research case study.

2 Requirements towards an approach to address these issues

Based on our own industrial project experience, we have collected some requirements for a
speciĄcation method that could help industrial companies mastering the aforementioned
challenges. The approach should not be restricted on a Waterfall or V-Model, but also
allow going bottom-up, i.e. assembling a new system from preexisting function blocks
or practicing agile development methods. It should address the system level and multi-
physics domains, thereby be based on industry-accepted standard languages such as SysML,
Simulink, Modelica, AADL, and the like. This implies interfacing to standard tools
and supporting co-working at different sites on black-box-level, which helps protecting
intellectual property. Tools exploiting the speciĄcation technique should provide side-by-
side development of architecture and requirements, thereby allowing the speciĄcation of
requirements on every level of the architecture. A Ąxed order of requirements formulation and
architecture modeling should not be imposed. All requirements or assertions shall be bound
to architectural components and formulated on their scope by only referring to externally
observable behavior at the componentŠs ports without making any assumptions about the
internal design and implementation. A central point is the guided and veriĄable reĄnement
of the requirements of the super-component onto the requirements of its sub-components.
Regarding the speciĄcation language for requirements or properties, the key requirement
is sufficient expressive power for most kinds of embedded systems and CPS, not stopping
at standard phrases like ŠThe System shall <perform action>Š. A highly extensible and
adaptable language is needed which still has a precisely deĄned syntax in Backus-Naur-Form
(BNF) or similar to enable automated parsing or bottom-up construction using a template
editor. If architecture development and requirements speciĄcation go hand in hand, the
architecture model including class hierarchy is a natural source for an ontology of terms to
be used. To assure correct and safe operation of the highly integrated system and to assure
safe reuse of components in the future, it is necessary to capture not only the requirements

Systematic ReĄnement of CPS Requirements 247



towards a component, but also the assumptions towards the operational environment under
which the component has been developed.

One approach that seems speciĄcally suited to match these requirements is contract-based
development (CBD), that will be at the core of the approach presented in this paper and
will be explained in more details below. However, with its origins in formal software
speciĄcation, existing approaches to CBD do not fulĄll all of the listed requirements. We
will complement CBD with approaches to specify assertions by templates that are close
to natural English languages for better understandability. We will also tightly integrate it
with architecture modeling, centered about SysML Internal Block Diagrams (IBD) as the
modeling technique for the static system and software architecture on all levels before more
speciĄc modeling techniques like Simulink, UML, or hardware block diagrams take over.

3 Fundamentals and related work

In this section, we give a short introduction to contracts and contract-based design.
Additionally, speciĄcation languages for requirements and contracts are discussed. Since
these topics are quite extensive we will also refer to some fundamentals and only shortly
outline related work.

3.1 Contract-based design

Initially intended as a veriĄcation method for sequential software, Bertrand Meyer [Me92]
introduced Contracts using preconditions (which must hold at program entry), post-
conditions (which must hold at program exit), and invariants (which must hold at every
point in time). This idea has been adopted later to component-based software and system
development. A system applying the ’contract-based’ design is represented by a system
model containing components, ports and signals. The system itself is seen as a hierarchical
composition of components, which can exchange information, energy or mass Ćow through
their interfaces, called ports, that are connected to each other via signals. In the contract-based
design paradigm, contracts are deĄned using assertions that allow black box speciĄcations
of components, which means while describing inputs and observable behavior from the
outside, the inner (structure and) working remains unknown. Those assertions need to
be distinguished between assumptions about conditions of their environment and the
guarantees that can be provided given that the assumptions are fulĄlled. This separation
into assumptions and guarantees allows arguing about the functioning of a component
composition, as for every contract can be veriĄed whether the assumptions are met by the
guarantees.
Applying contracts on a system and its components can lower the complexity of verifying the
implementation against the speciĄcation. Fig. 1 shows an example of a contract speciĄcation
for an airbag system. The systemŠs contract speciĄes that the airbag expects a given value

248 Markus Grabowski, Bernhard Kaiser, Yu Bai



Fig. 1: Example of a contract speciĄcation

range on the input port acceleration. If that assumption is fulĄlled the airbag guarantees that
whenever the value decreases below a certain value it sends a current pulse within 50ms.
The system is decomposed into two subsystems each having one contract. By assuming that
the functionality on subsystem IgnitionUnit depends on the output of subsystem sensorUnit

and that the subsystems would not be annotated with contracts, validating the contract of
the overall AirbagSystem would be very complicated, as the composed behavior of both
subsystems has to be computed, leading to large state spaces. By using contracts for the two
subsystems, we can validate the sub-contracts locally and avoid the complex state machine
composition [Ci12].

3.2 Template languages

Because formal expressions are hard to write and understand by non-experts, there is a
huge suppression in using them. That turns out to be very unfortunate as they provide many
striving characteristics, with which requirements engineering processes would beneĄt from.
A well-deĄned syntax and semantics offer only one way to interpret statements, making
things like automatic validation, tracing etc. possible. Expressions in natural language might
be easier to read, but they have no constrains in syntax and semantics resulting in ambiguous
statements which make automation nearly impossible without further work. In addition,
they will likely always need a person with an appropriate domain knowledge to interpret
and validate the expressions correctly.
Template Languages can close the gap between purely formal and unconstrained natural
language. They provide a well chosen set of allowed sentence patterns, which results in a
straight syntax to unify expressions making it easier to read for the recipient. Ideally, the
template language also has unambiguous semantics, leaving only one way to interpret an
expression. As an example, Hull et al. [HJD04] proposed to use Requirement Boilerplates

like ŠThe <system> shall <function> <object> every <performance> <units>.Š, where

Systematic ReĄnement of CPS Requirements 249



<keyword> are placeholders to be replaced by the requirement engineer. Similar approaches
have been done by [IKD09, Ma09, DSS12]. Having an expression written in a speciĄed
syntax and semantics, a machine, which has knowledge about the used grammar, can now
parse and process it further allowing automatic veriĄcation. With this, template languages
have the same advantages as formal languages. In addition, they feature a better readability
as they are only constraining natural language instead of expecting formal expressions. The
only drawback is the overhead of assigning keywords a meaning, so that a machine can
interpret them correctly.

4 System Specification Pattern Language (SSPL)

In a previous work [Gr17], we analyzed existing template languages to Ąnd out why
those are not currently used in practice yet. We focused on the semi-formal languages
Goal and Contract Specification Language (GCSL)[Bo15], Requirement Specification

Language (RSL)[CE10] and the Property Specification Pattern (PSP)[Au15] as these are
able to describe system behavior and have inĆuence on research and/or industry. Other
than that, they featured a well-deĄned semantics in combination with the possibility of
being translatable to a veriĄable formal language. Language attributes like readability and
expressiveness were evaluated by expressing real industrial system requirements with the
respective languages. Others like formalization capabilities have been evaluated by the
completeness of syntactic and semantic deĄnition. We found that none of the languages
features a highly readable and expressible syntax while providing unambiguous (and formal)
semantics. That gave us reason to come up with an own template approach called System

Specification Pattern Language (SSPL), which improves on the deĄcits of existing template
languages.

4.1 Language Characteristics

To represent an applicable speciĄcation language, SSPL has been designed to feature highly
readable and well understandable expressions. We ran a study [Gr17] on the acceptance
of our template expressions from a readersŠ perspective and showed that SSPL performed
strictly better than other template languages and is even received as less ambiguous than
natural language.
SSPL enables the speciĄcation of simple and complex system behavior by allowing chains
of basic expressions. We were able to achieve an overall translation rate of about 92%[Gr17]
of all functional requirements from an automotive light system speciĄcation provided by
Daimler within the project ASSUME4. A full description of the language as well as its
syntax in Backus-Naur-Form and semantics in temporal logic can be found in [Gr17], where
we also provide supporting materials such as a language manual for an easy application of

4 Affordable Safe and SecUre Mobility Evolution. http://assume-project.eu/

250 Markus Grabowski, Bernhard Kaiser, Yu Bai



the language. Within this paper, we will shortly introduce the three general pattern types of
SSPL that are used to express functional system behavior:

Global Invariant Patterns allow the deĄnition of conditions that need to hold without
any constraints. They have no restricted scope and need to be fulĄlled at all points in time.
An example for this type of pattern would be

supply_voltage is always less than or equal 14V.

Trigger-Reaction Patterns specify system behavior that stands in some trigger-reaction
relation to each other. That is why this pattern type is the most important one when it comes
to the speciĄcation of system behavior. In SSPL, the reaction must occur at some point in
time after the trigger is fulĄlled, even if the reaction time is instantiated with e.g. 0ms. If a
simultaneous reaction is desired, please refer to the Simultaneity Patterns.
The Trigger-Reaction Patterns always feature the basic structure ŠWhenever <trigger>
then in response <reaction> within <time>Š, where the trigger and reaction parts can be
replaced by various expressions. A possible pattern instance would be

Whenever sys_temp increases above 120°C while temp_warning is ’OFF’

then in response temp_warning changes to ’ON’ within 50ms and then
sys_state changes to ’CRITICAL’ within 30ms.

Simultaneity Patterns describe the dependent fulĄllment of two or more conditions at the
same points in time. Equivalent to the logical implication, these patterns allow expressions
like

While voltage is less than 3V , start_up does not occur.

Each general pattern type features a variety of possible instantiations to support a broad
band of different system behaviors. Furthermore, SSPL is designed to use an existing system
architecture as ontology to derive suitable keyword replacements such as interface names.
Combining that with a scope restriction on the system component to be described results
in an overall increased quality of speciĄcations.

4.2 Introducing Macros

Sometimes it is unavoidable to use complex expressions within a pattern language, where a
natural language expression would be much shorter or easier to read and understand. That is

Systematic ReĄnement of CPS Requirements 251



why we introduce the concept of typed macros, which extends the expressiveness of our
pattern language towards a DSL while maintaining readability. Other than the approach
of the already existing template languages [Gr08, Au15], we oblige the user to deĄne a
meaning for each natural language phrase by specifying a corresponding pattern language
expression. Macros are not merely text replacement, but are typed according to a class
hierarchy. For instance, event is a built-in type of our language, and the domain engineer can
derive a subclass failure event from it. This way we ensure that even with natural language
elements, all built expressions within our pattern language have unambiguous semantics.
Macros can only replace a non-terminal from the BNF, as the semantics is only guaranteed
to be speciĄed on that level. Terminals can have different meanings due to their context and
can thereby not be used as a macro deĄnition.
To demonstrate the possible advantages of macros, we Ąrst translate the following example
without using them:

NL: Whenever any system critical error occurs the system must enter the safe
mode within 30ms.
SSPL: Whenever any of the following events occur:

- sys_err1 occurs
- sys_err2 occurs
- sys_temp increases above 120°C

then in response sys_mode changes to ŠSAFEŠ within 30ms.

We now want to simplify the pattern expression by replacing the event list with a macro. To
do this, we need to look into the syntax deĄnition of the pattern language and search for the
corresponding non-terminal expression

<any_event_occurs>: any of the following events occurs: <event_list>

We found out that the corresponding non-terminal is <any_event_occurs>, which will be the
type of our new macro we want to deĄne next. To be able to identify a macro more easily
when applied in a pattern expression we chose to underline it

Šany system critical error occursŠ is deĄned as:
any of the following events occur:

- sys_err1 occurs
- sys_err2 occurs
- sys_temp increases above 120°C

After deĄning the macro, we can now use it within our pattern language in every place,
where the non-terminal <any_event_occurs> can be inserted. The resulting expression using
the macro now looks very similar to the original natural language expression

252 Markus Grabowski, Bernhard Kaiser, Yu Bai



NL: Whenever any system critical error occurs the system must enter the safe
mode within 30ms.
SSPL: Whenever any system critical error occurs then in response sys_mode

changes to ŠSAFEŠ within 30ms.

To be even more similar to the original expression, we can deĄne a macro of the type
<var_change> for the change to safe mode. The resulting template expression looks nearly
identical to the original one

Šthe system enters safe modeŠ is deĄned as:
sys_mode changes to ŠSAFEŠ

NL: Whenever any system critical error occurs the system must enter
the safe mode within 30ms.
SSPL: Whenever any system critical error occurs then in response
the system enters safe mode within 30ms.

When using macros it must be considered that there exist some drawbacks in comparison
to pattern expressions without them. Macros introduce a layer of abstraction to the textual
representation of the expression, as actual interface names and values can be masked behind
a natural language phrase. That given, the reader can not directly identify those key elements
and must look for the deĄnition of the macros. There is also the possibility that a bad macro
name is chosen, which could lead the reader to a false interpretation. To be completely sure
on the meaning of an expression that uses macros, studying their deĄnitions is essential.

5 Method and Tool Integration

Only providing the raw templates without any further guidance may result in user despair.
The large number of possible statements or the variety of expressions can easily confuse
the user, making the work harder instead of bringing more ease to it. In addition, the user
might even be unsure at which step during the development process the templates should be
used. At some process steps, it might not be useful or even impossible to apply template
expressions.
In the following section, we provide solutions to all of the problems above. We introduce a
development process that combines the component- and contract-based design approach
with our previously proposed pattern language. Furthermore, we present our prototypical
Tool-Framework SAVONA, which implements the described development process and
allows an easy application of our pattern language.

Systematic ReĄnement of CPS Requirements 253



5.1 System Development Process Using Contract-Based Design

To exploit our template language for integrated architecture reĄnement, we suggest following
the contract-based top-down process Ąrst presented in Kaiser at al. [Ka15]. The chosen

Fig. 2: Activity diagram showing the phases of the suggested contract-based development process of
[Ka15]. Gray activities include the application of SSPL.

development process can be applied to the standard V-Model process and consists of
following phases: System Definition, Formalization, Functional Refinement, Allocation and
Technical Refinement (see Fig. 2). We describe each of them with regards to the interplay
with our template language.

System Definition Phase At the beginning of the development process, the sys-
tem engineer creates a static model of the system architecture. For that, the top-level
interfaces of the system need to be deĄned, as they are essential for the interaction with the
systems environment. The system to be developed is Ąrst modeled as a black box, because
at the current development phase there is no information given on the inner workings of

254 Markus Grabowski, Bernhard Kaiser, Yu Bai



the system. Aside, the top-level system requirements need to be speciĄed. It is advised
that they are captured in natural language at this development phase, as it is much faster
and sufficient for the Ąrst attempt on gathering relevant information. In addition to the
requirements on the system, environmental conditions do also need to be recorded. They
are later used to form assumptions on inputs the system has to work with and to formulate
guarantees the system has to assure in order to fulĄll the environmentsŠ assumptions.

Formalization Phase Next, the requirements and assumptions are formalized us-
ing our SSPL language, which should be supported by a convenient tool, offering natural
language typing with syntax highlighting and/or a template-wizard with pick lists. We
use the existing system architecture as ontology to get information for Ąlling out the
templates, e.g. available interfaces serve as variable names to replace the corresponding
placeholders and available components in the model are potential subjects to requirements.
SSPL formulates assertions, which can be used in the role of an assumption or a guarantee
and can be allocated to any component within the architecture (at Ąrst, the system, which
is the top-level component). It is assured by the tool that only behavioral aspects that are
visible on the current scope can be mentioned in the assertion, i.e. talking about internal
variables or interfaces is not allowed, as well as talking about foreign components. The
possibility to use macros and deĄnitions keeps the assertions compact and readable.

Functional Refinement Phase Until now the system has only been modeled and
speciĄed at its top level. In the functional reĄnement phase, the system will no longer be
considered as a black box, but is reĄned and modeled by using sub-components within the
functional architecture.
This step involves design decisions by the engineer, as he or she comes up with suggestions
on components, which realize the functionality of the current system level, which are
also described on black-box level, addressing only the visible behavior at the ports. Each
new sub-component is initially described by a natural language description and a feature
list. The external interface (the ports) is deĄned and connected to other components via
signals. In order to budget reaction times or value ranges more easily it is suggested Ąrst to
assign assertion to the signals. This involves some arbitrary assignment of sub-functions to
components and some arbitrary budgeting of reaction times, accuracy, ASIL etc., which
is all part of the architectŠs design decisions and should be guided by experience what is
feasible for the later technical implementation of the components. After this assignment and
budgeting, new assumptions and guarantees are formed as template expressions based on
the signal and super-block assertions but tailored to the scope of the component they are
assigned to. This means that only interface names are available for usage in the template
expressions if there exists the corresponding interface on that exact component. The
formalized assumptions and guarantees are bundled as one or more contracts and assigned
to the corresponding components. The contracts are then validated and veriĄed against
the architecture and the other assigned contracts. The validation includes a compatibility

check, which veriĄes that only ports with compatibly types are connected, and a consistency

check, which veriĄes that each constraint in a contract is satisĄable. The most important

Systematic ReĄnement of CPS Requirements 255



veriĄcation step compares contracts on lower architecture level against contracts on the
next higher level and checks whether the sub-components contracts allow the satisfaction
the super-components contracts. This is called refinement check and must in most cases be
performed manually today, by a review that is guided by the tool on detailed level. The more
patterns of our language can be underpinned with formal semantics, the more of this type
of veriĄcation can be performed formally. Detailed information about the formal reĄnement
check of contracts can be found e.g. in [CT12]. The reĄnement is repeated iteratively.

Allocation Phase When the architecture has reached a level of details where ac-
tual technical components can take place of the lowest-level subcomponents, the allocation
phase starts. Each black box component is replaced by one technical component with
matching interfaces. The assigned contracts of the black box component become the
requirements for the technical implementation and the veriĄcation obligations for the
technical components. For each replacement, a Ąnal reĄnement check must be done to
verify that the system contracts are still valid.

Technical Refinement Phase After specifying the system and modeling the static
architecture, it now comes to the creation of dynamic models. Each technical component
of the static architecture needs to be reĄned with a dynamic model (e.g. state diagrams)
which represents the behavior based on its contractsŠ speciĄcation. The dynamic model is
reĄned iteratively until a sufficient model depth is reached and veriĄcation is performed
with existing means (e.g. testing, model checking, simulation) to show for each technical
component that it fulĄlls its guarantees, provided that the assumptions hold.

As shown in [Ka15], the advantage of the contract-based model-integrated approach is
that it works not only in a top-down manner, as suggested by the V- or Waterfall-Model,
but also bottom-up. As long as pre-existing components are annotated with assumptions
and guarantees, they can be stored in a library and reused later in a new context, and
after re-executing the incremental veriĄcation, it becomes clear whether the resulting
system is correct and safe, or the component has to be modiĄed or replaced by another
component due to detected inconsistency. As this plug-and-play approach works quite fast
and contract violations are visible immediately, it supports agile development approaches to
safety-critical automotive systems in an ideal way. In this case, the claim is usually not to
write a complete speciĄcation, but only to Ąx the properties in contracts that absolutely must
be guaranteed (e.g. to fulĄll the safety case) and leave the rest as Ćexible design decisions
to the development team.

5.2 Tool Support

Combining our methodological and template language approaches resulted in the prototypical
tool-framework SAVONA. Based on Papyrus5, it features the creation of system models

5 https://eclipse.org/papyrus/

256 Markus Grabowski, Bernhard Kaiser, Yu Bai



as Internal Block Diagram (IBD), which is provided by SysML. Due to its appearance, it
Ąts perfectly into the component-based design paradigm and fulĄlls the property to model
a static system architecture. In addition, Internal Block Diagrams can be used either in
the system architecture, component architecture or in the hard- and software architecture
by using the same model elements. As SysML is widely used as a modeling language for
system engineers, the users of our tool-framework do not need to get used to any new
modeling language. Additionally, various verification mechanisms have been implemented
to ensure the validity of the modeled architecture, such as the detection on inconsistent port
assignments, detection of invalid connectors, and the detection of cycles within the system
architecture. We thought about different ways to support the user at writing template

Fig. 3: Assertion Editor: Using the IBDŠs static system architecture model as ontology for SSPL
pattern instantiation in SAVONA.

assertions and ended up providing two ways, which allow the user to specify assertions by
using our patterns more easily. The Ąrst option the user has is to use an Assertion Wizard,
which guides him or her through a preselected set of available pattern constructs together
with examples. If the user has decided on a pattern, he or she just needs to adjust minor
details such as variable names or conditional relations until the assertion is completed. The
other option is to directly type assertions in a text editor called Assertion Editor (see Fig. 3),
which features automatic syntax checks content assistance and auto-completion. A more
detailed description of the SAVONA tool and its features can be found in [Gr17].

6 First experience with case study and industry projects

After the initial benchmark of our template approach by translating an automotive light
system speciĄcation provided by Daimler, we are currently applying the method and tooling
on two case studies. Both are provided by us within the AMASS6 project. One of them is a
platoon of model cars with a 1:8 scale, where we want to cope with autonomous driving by

6 Architecture-driven, Multi-concern and Seamless Assurance and CertiĄcation of Cyber-Physical Systems,
https://www.amass-ecsel.eu/

Systematic ReĄnement of CPS Requirements 257



developing a cooperative & adaptive cruise control (CACC).
The other case study we are contributing is a standalone direct current (DC-)motor drive
system, which is used in the model cars. This system is so simple that it allows an easy
understanding and veriĄcation, while still exhibiting all relevant properties of a typical
embedded system, in particular the combination of discrete-state logic with event typed
input signals and continuous-value dynamics with continuous input and output signals.
By applying our proposed model- and contract-based development approach we are are
facing various system properties to design and specify. To give an example, we present the
following natural language requirement that describes a part of the DC-Drives control unit:

ŠIf the measured rotational speed Spd_Act_Meas is less than 1 rpm for more
than 20ms and the rotational speed target Adj_Spd_Tgt is equal 0 rpm then the
voltage output V_Mot to the motor shall be reduced to a range of [0.1V,1V]
within 10ms and stay within that range for at most 15ms. After that, the voltage
output will be set to 0V and remain so until the rotational speed target greater
than 1 rpm for a duration of at least 50ms.Š

Fig. 4 shows a possible signal trace that fulĄlls the given requirement. An appropriate
translation with SSPL results in the following:

Whenever Spd_Act_Meas is less than 1rpm for more than 20ms
and ( Adj_Spd_Tgt is 0rpm )

then in response
V_Mot is always in the range from 0.1V to 1V for at most 15ms

starting after at most 10ms
and then ( V_Mot is always 0V starting without any delay

until ( Adj_Spd_Tgt is greater than 1rpm for at least 40ms )).

Fig. 4: Possible signal trace fulĄlling the given requirement from section 6.
In the Ąrst 10ms, the target speed decreases to 0rpm and thereby stops the rotation of the motor as
voltage on V_Mot is decreased. In the interval [10ms:30ms], the measured speed target speed are 0,
resulting in the fulĄllment of the trigger.
With a couple milliseconds delay, the motor voltage enters the given range and reaches 0V with a
duration less than 15ms. After that, a new target speed is set and holds for 40ms, resulting in an
increasing output voltage and measured rotation speed.

258 Markus Grabowski, Bernhard Kaiser, Yu Bai



7 Conclusions and outlook

The presented approach and prototypical tool addresses a large part of the requirements
listed in the introduction section. Furthermore, Ąrst experiences with applying the approach
and tool onto a small DC motor drive system, as well as a more complex case study of an
autonomous and networked model car, including its CACC / Platooning function have been
made. Although even the latter case study is still much simpler than actual vehicle systems,
we could gain a good impression about the applicability to real-world automotive systems.
However, even these small case studies show that there is still a long way to go towards an
industry-mature speciĄcation and modeling approach. One enhancement with high priority
is to implement a formal check of the reĄnement for as many assertion patterns as possible, in
order to unburden the developer with the manual review steps necessary today. VeriĄcation
possibilities on lowest level should also be kept in mind, e.g. by enabling the automated
generation of observers from the pattern expressions, which check the compliance of actual
(model-in-the-loop) simulation runs or (hardware-in-the-loop) test runs. As the speciĄcation
languages on system, component, hardware, and software level are quite different, it is
desirable to extend the pattern language by a set of predeĄned macros towards a variety of
domain speciĄc languages to improve user acceptance. Regarding the extension of semantics,
we are working especially on further patterns for continuous signal properties. Examples are
properties like stability or bounded output signal range, or the settling time of a controller.
A potential extension we are investigating is to provide patterns for frequency domain
properties. Another extension of our approach would be directed towards structured data
types at interfaces plus speciĄcation patterns for set, quantiĄer, and ordering information, in
order to deal with object lists etc. For safety and reliability/availability assertions, but also
in order to specify the nominal properties of environment-perceiving sensors, probabilistic
patterns should be provided. Potential veriĄcation approaches for these assertions could
be probabilistic model checking, but, more promisingly, Monte-Carlo simulation of the
underlying behavioral models. To bridge the different levels of abstraction, a tool will have
to offer different views with the option to hide details or aspects that are not of interest
on a higher level of abstraction. This could on long term be complemented by a sort of
Šapproximate reĄnementŠ that relaxes the veriĄcation step from one level of abstraction
toward the next lower level by allowing that the reĄned system not fully complies with the
speciĄcation on higher level, but only Šwell enoughŠ.
Regarding the transition from ES to CPS and SoS, the technique should ideally be extensible
towards runtime certiĄcation mechanisms, i.e. it should be possible to specify different
sets of assumptions and guarantees as meta-information at runtime, so that partial systems
willing to cooperate can check in which constellation assumptions and guarantees match, so
that a template safety case prepared at development time is fulĄlled at runtime, meaning
that safe operation is assured.

Systematic ReĄnement of CPS Requirements 259



References

[Au15] Autili, Marco; Grunske, Lars; Lumpe, Markus; Tang, Antony: Aligning Qualitative, Real-
Time, and Probabilistic Property SpeciĄcation Patterns Using a Structured English Grammar.
IEEE Transactions on Software Engineering, 41(7):1-1, 2015.

[Bo15] Boyer, Benoît; Quilbeuf, Jean; Etzien, Christoph; Marazza, Marco; Senni, Valerio; Stra-
mandinoli, Francesca; Peikenkamp, Thomas: GCSL syntax, semantics and meta-model.
Technical report, DANSE Research Project, 2015. DANSE Deliverable 6.3.3.

[CE10] CESAR: DeĄnition and exempliĄcation of RSL and RMM. Deliverable D_SP2_R2.1_M1,
Costefficient methods and processes for safety relevant embedded systems. Technical report,
CESAR, April 2010. Zugriff am 29.08.2016.

[Ci12] Cimatti, Alessandro; Roveri, Marco; Susi, Angelo; Tonetta, Stefano: Validation of require-
ments for hybrid systems: A formal approach. ACM Transactions on Software Engineering
and Methodology (TOSEM), 21(4):22, 2012.

[CT12] Cimatti, A.; Tonetta, S.: A Property-Based Proof System for Contract-Based Design. In:
Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO
Conference on. pp. 21Ű28, Sept 2012.

[DSS12] Daramola, Olawande; Sindre, Guttorm; Stalhane, Tor: Pattern-based security requirements
speciĄcation using ontologies and boilerplates. In: Requirements Patterns (RePa), 2012
IEEE Second International Workshop on. IEEE, pp. 54Ű59, 2012.

[Gr08] Grunske, Lars: SpeciĄcation patterns for probabilistic quality properties. In: Software
Engineering, 2008. ICSE Š08. ACM/IEEE 30th International Conference on. pp. 31Ű40,
May 2008.

[Gr17] Grabowski, Markus: Why Templates on System Behavior Are Not Used in Practice Yet: A
Proposal for Enhancements, Application and Formalization. MasterŠs thesis, Technische
Universität Berlin, 2017.

[HJD04] Hull, Elizabeth; Jackson, Ken; Dick, Jeremy: Requirements Engineering. Springer, 2004.

[IKD09] Ibrahim, Noraini; Kadir, Wan MN Wan; Deris, Safaai: Propagating requirement change into
software high level designs towards resilient software evolution. In: Software Engineering
Conference, 2009. APSECŠ09. Asia-PaciĄc. IEEE, pp. 347Ű354, 2009.

[Ka15] Kaiser, Bernhard; Weber, Raphael; Oertel, Markus; Böde, Eckard; Monajemi Nejad,
Behrang; Zander, Justyna: Contract-Based Design of Embedded Systems Integrating
Nominal Behavior and Safety. Complex Systems Informatics and Modeling Quarterly
(CSIMQ), 2015 (4):66Ű91, Oct 2015.

[Ma09] Mavin, Alistair; Wilkinson, Philip; Harwood, Adrian; Novak, Mark: Easy approach to
requirements syntax (EARS). In: Requirements Engineering Conference, 2009. REŠ09.
17th IEEE International. IEEE, pp. 317Ű322, 2009.

[Me92] Meyer, Bertrand: ApplyingŠdesign by contractŠ. Computer, 25(10):40Ű51, 1992.

260 Markus Grabowski, Bernhard Kaiser, Yu Bai


