
H. Reiterer & O. Deussen (Hrsg.): Mensch & Computer 2012
München: Oldenbourg Verlag, 2012, S. 399-408

2DGree: Rapid Prototyping for Games
Joerg Niesenhaus1, Burak Kahraman1, Johannes Klatt2

Interactive Systems Group, University of Duisburg-Essen1

Novacore Studios, Muelheim a.d. Ruhr2

Abstract

This paper introduces 2DGree, an experimental game prototyping framework, which enables users to
implement and playtest their game ideas within minutes. The framework’s main purpose is the evalua-
tion of different interaction techniques as well as methods of programming by demonstration and visual
programming for the application within the context of rapid game prototyping. The core of the 2DGree
framework consists of a game world editor tool and a script editor, which can be connected to further
components like game asset sharing platforms or evaluation tools. The paper describes the current stage
of the framework development, presents a user test and provides an outlook on the future plans for the
framework development and application.

1 Introduction

User participation in the context of digital games exists as long as the games itself but the
possible degree of participation changed a lot over the years (Edery & Mollick 2009, Nie-
senhaus 2009). Back in 1962 students added new content and features to the game Spacewar!
and brought it back to the community afterwards, making it one of the first game modifica-
tions. For years the modification of a game was only possible for skilled programmers using
tools like hex editors to manipulate the binary game files. In the mid-eighties the first graph-
ical level toolkits appeared1, giving users the opportunity to design and exchange new level
designs. The major breakthrough in the history of end-user development in the area of digital
games was the success of the modification CounterStrike2 for the game Half-Life, which
changed the attitude of developers and publishers towards user-generated content and game
modifications. Nowadays, several developers and publishers offer games with a focus on
user-generated content. Two examples of games building upon the success of user-generated

1
 The game Lode Runner offered one of the first level toolkits in 1983 (Amiga 800, Broderbund Software).

2
 The modification CounterStrike was made part of official Half-Life franchise and sold 10 million products

under its label.

400 Niesenhaus, Kahraman & Klatt

content in games are Spore (PC, Electronic Arts) and Little Big Planet (PS3, Sony Enter-
tainment). With Spore’s creature editor users generated over 171 million different creatures3,
which are distributed by the game’s servers to all users. The Little Big Planet games offer an
intuitive toolset enabling gamers to create compelling level designs without the knowledge
of technical background information4. The toolset is directly connected to the game, which
gives players the opportunity to test their design whenever they want to. Although a lot of
effort goes into the toolsets for creating user-generated content, most games offer user partic-
ipation only in the areas of graphical or level design content. Modifications, complete make-
overs (called “total conversions”) or the creation of a new game idea with frameworks like
XNA still have higher requirements at the users skills and knowledge, often including high-
er-level programming skills (Niesenhaus 2009). Consequently, only a few gamers are able to
generate a game prototype based on their own ideas and game mechanics. Furthermore,
game designers with little time for coding and the need for rapid game prototype tools to test
game mechanics and balancing issues expand the target user group for more powerful but
still rapid and intuitive prototyping tools.

The tools evaluated within the 2DGree game prototyping framework aim at this group of
users by offering interaction techniques to generate game mechanics via programming by
demonstration and visual programming. Applying these methods shall provide an intuitive
introduction into the framework tools for beginners and save time for professional game
designers. Although coding is an option to set up game mechanics within the 2DGree
framework, the vast majority of the game world and its rules can be generated without any
coding.

2 Related Work

There are several definitions and taxonomies, which offer different dimensions and criteria to
classify visual programming languages and environments. Burnett (2000) defines visual
programming as programming in which more than one dimension is used to convey seman-
tics. According to Myers (1986) the term visual programming refers to any system that al-
lows the user to specify a program in a two (or more) dimensional fashion. Both authors
emphasize the additional information, which is added through the use of visual elements.

Programming by example is defined by Halbert (1984) as a process in which the user builds
an algorithm by working through a concrete example. The term is related to programming by
demonstration, which describes system being able to infer the program structure based on the
user’s inputs, recognizing patterns and apply them to an algorithm (Halbert 1984). Shu
(1986) distinguishes visual programming languages by the three categories “levels of lan-
guage”, “scope of language” and “extend of visual expression”. In contrast to this definition

3
 Sporepedia: http://www.spore.com/sporepedia (Last visit: 2012-03-31)

4
 There are more than 6 milion level designs available for Little Big Planet 1 & 2 (Playstation 3, Media Molecule)

2DGree: Rapid Prototyping for Games 401

Myers proposes three binary categories, which are labeled “binary vs. batch”, “visual pro-
gramming (or not)” and “programming by example (or not)” (Myers 1986). Burnett adds
common strategies in visual programming languages and how they are applied in different
environments (Burnett 2000). Kelleher and Pausch (2005) classify visual programming lan-
guages through their goals and distinguish between empowering systems and teaching sys-
tems. Although visual programming languages offer a lot of advantages for programming
tasks of lower complexity, more complex tasks are solved less efficiently compared to tradi-
tional text-based programming languages (Schiffer 1996).

There are several popular visual programming environments in research and on the commer-
cial market. The visual programming environment Alice focuses on digital storytelling and
the creation of games with 3D graphics to teach students basics of programming (Pausch
1995). The software-authoring environment AgentSheets allows its users to build domain-
oriented design environments including games, applications and simulations (Repenning
2004). Scratch is a visual programming environment using a puzzle metaphor to enforce the
formulation of syntactically correct expressions (Maloney et al. 2004). StarLogo TNG con-
sists of the visual programming language StarLogoBlocks and an integrated programming
environment (Resnick 1996). It uses a similar metaphor like Scratch by offering code blocks
of different shapes and colors which can be combined via drag and drop. Microsoft’s Kodu
Games Lab is available both on the Xbox360 console and the PC with the intention to offer
kids a tool to design, build and play user-generated games (MacLaurin 2009). Although these
tools provide a lot of good ideas how to set up game mechanics without coding, most of
them focus on teaching kids and students programming rather than supporting gamer com-
munities and game designers. In addition, all tools have a focus on specific interaction tech-
niques to generate programming logic rather than being made for exploring and comparing
different interaction techniques.

Next to the visual programming tools there are several toolkits and frameworks, which are
often used by professional game developers for prototyping game ideas or by students and
hobbyists to breathe life into their own game ideas. There are several toolkits and frame-
works, which support the development of (prototypical) games like e.g. XNA5, GameMaker6
or the Unity 3D7 game engine. The tools have different requirements in terms of skills and
knowledge, but most of them allow users to develop basic games without prior programming
skills and offer more complex development options for advanced users as well. Although
these tools and frameworks show potential on attracting beginners to the area of game devel-
opment, we are convinced that the application of methods of visual programming and pro-

5
 Microsoft XNA is a set of tools with a managed runtime environment that facilitates computer game develop-

ment. More information: http://create.msdn.com/en-US/ (Last visit: 2012-04-01)

6
 GameMaker is a Windows and Mac integrated development environment published by YoYo Games based on

the Delphi programming language: http://www.yoyogames.com/gamemaker/ (Last visit: 2012-04-01)

7
 Unity is an integrated authoring tool for creating 3D games and supports all major gaming platforms as well as

iOS and Android. More information: http://www.unity3d.com (Last visit: 2012-04-01)

402 Niesenhaus, Kahraman & Klatt

gramming by demonstration can be beneficial for the intuitive access and efficient usage of
the toolkits and frameworks.

For this reason, we started with the development of our own game prototyping framework
with interchangeable components in order to implement a flexible and controlled environ-
ment for the evaluation of different interaction techniques as well as to test the application of
different methods of visual programming and programming by demonstration. The acronym
2DGree relates to the term „to develop games – rapidly, efficiently, easily“ and replaces the
generic game prototyping framework description (Niesenhaus et al. 2009).

3 The experimental game prototyping framework

As already pointed out, some of the existing game prototyping tools need a lot of effort to
learn how to use the tools and often require at least basic programming skills. In order to
lower the entrance barrier for the user and to save time for professional developers, 2DGree
enables the users to create their game prototypes with no coding at all. 2DGree’s goal is to
combine the accessibility of game level editing tools with the depth and flexibility of visual
programming languages. In comparison to other available game prototyping frameworks,
2DGree uses methods of direct manipulation and programming by example to set up the
game world, place software sensors and events and change properties of game entities (Nie-
senhaus et al. 2009). The basic idea of this approach is to keep designers as long as possible
in the world editor before setting up more complex rules through visual programming in the
script editor or by optional script coding. The 2DGree framework architecture is build
around the world editor, which enables the users to set up the game world. The component
structure of the framework allows exchanging single components for evaluation purposes.
Within the past development cycles of the framework three different script editor tools were
developed and tested within the framework in order to gather knowledge, which interaction
techniques, logical structures and operators work best within the context of game prototyping
(Niesenhaus et al. 2009).

2DGree is the fourth iteration of an experimental game prototyping framework, which started
out as a basic game engine for 2D Flash games. All currently available tools are implement-
ed with Adobe Flex4 and run in all common browsers. World and script editor components
communicate via XML datasheets, which describe the game world’s tile set grid, all game
entities, software sensors and scripts.

Before presenting the results of a user study for the fourth framework iteration, the current
state of two 2DGree main components will be explained.

2DGree: Rapid Prototyping for Games 403

3.1 World editor

Within the world editor the user creates the visual representation of the game world by paint-
ing the tile set and placing the player object as well as all further game entities. In the current
version only a two-dimensional representation of the game world is available, which forces
the users to focus on the basic game mechanics and concepts rather than exploring the vast
possibilities of 3D world design. After creating the game’s entities, the user can place differ-
ent sensors to initiate or track game events. These software sensors are either world or entity-
bound and are represented through basic geometries (e.g. circle, square) or can be drawn by
the users (with a polygon tool) and are available as generic sensors or special presets (e.g.
vision, sense of hearing). The user can place a sensor via drag-and-drop on a game entity or a
grid tile in the game world. All sensors can be changed in size and alignment, some of them,
like the vision sensor offer additional parameters like an offset value, the angle of sight and
the length of the sensor. The parameters can be changed by direct manipulation with the
mouse cursor or by changing values in the right menu bar.

The direct manipulation commands are inspired by typical controls of well-known graphics
editing programs like Adobe Photoshop or Microsoft Paint. The acoustic sensors can be
adjusted to a certain tracking range to get connected to acoustic transmitters of the frequen-
cies within this range. Collisions are detected as soon as an entity moves into the radius of a
software sensor. In addition, collisions are subdivided into touch, enter and leave collision
events, offering the user possibilities to differentiate the respective phases of a collision
event, which are each visualized by their own symbol. When a collision is detected a small
symbol (e.g. an eye for the vision sensor) appears at the crossing border of both entities high-
lighting the collision. A context window opens with a direct input option to select an event,

Figure 1: Graphical User Interface of the World Editor component

404 Niesenhaus, Kahraman & Klatt

which shall be triggered in the case of the corresponding collision during the game. Typical
collision outcomes are the manipulation of entity properties (e.g. health points of characters),
deletion of entities, or the connection to higher level game mechanics created in the script
editor.

Table 1 provides some examples of typical goals within the 2DGree framework and how and
where the goals can be achieved. Most of these goals can only be achieved within one com-
ponent, but there are several goals, which can be solved in multiple ways within different
components. An example for a multiple-way solution is the already mentioned generation of
a collision event. To set up this event, a user can use the world editor component to maneu-
ver a character into an entity via drag-an-drop or – analogue to the gameplay experience -
with the control keys to generate a collision event. Another option would be the generation
of an IF-THEN-clause within the script editor (see description within chapter 3.2). These
three approaches generate the same outcome but offer users a choice of which interaction
technique fits their preference and their level of experience best.

Goal Action Component

Generate environment Use brushes to paint the tiles on the grid World Editor

Place entities
Drag and drop entities from taskbar to grid

OR generate through object manager
World Editor

Place software sensors
Drag and drop sensors on existing entities

or tiles
World Editor

Set up collision events

Move entity A via drag & drop onto entity
B OR use game controls to move entities
into a collision OR use script editor colli-

sion event

World Editor OR
Script Editor

Set up collision out-
come

Choose presets via drop-down menu OR
use visual script editor

World Editor OR
Script Editor

Set up global game
mechanics

Use IF-THEN script boxes to compose
game mechanics

Script Editor

Organize script hierar-
chy

Use drag & drop to setup relationships and
hierarchies between scripts

Script Editor

Table 1: Examples for goals and actions using the different components

3.2 Script editor

The current iteration of the script editor uses graphical representations of IF-THEN-clauses
(Condition & Action) to define game events, which can be attached to existing software
sensors already placed in the world editor. In addition, global variables and goals can be
defined in the script editor like listeners for global functions (e.g. a player’s health bar or a
hierarchical quest structure). The script editor GUI subdivides into three distinctive sub win-
dows: the script manager, the main workspace and the script property window (see figure 2,
from left to right). The script manager allows the user to organize the collection of previous
generated scripts. On the main workspace the user generates new scripts, sets up relation-

2DGree: Rapid Prototyping for Games 405

ships and hierarchies. Figure 3 shows the generation of a condition. Below the active condi-
tion facet the action facet is deactivated and downsized. The properties of the selected script
can be changed on the right hand side in the script property window.

Although the script editor differentiates a lot from the world editor GUI in terms of interac-
tion techniques and visualization of states, pretests showed that most users understand the
interrelation between both components.

Figure 3: Choosing a sensor condition

Figure 2: Script editor graphical user interface with workspace

406 Niesenhaus, Kahraman & Klatt

The first version of the script editor used building blocks to generate scripts, which worked
similar to the logical building blocks Kodu or other visual programming languages offer.
Although this process was fairly easy to understand for the users it introduced a lot of con-
straints regarding the generation of more complex queries and dependencies (Niesenhaus et
al. 2009). The second implementation introduced a hierarchical generation of scripts with a
context-sensitive selection method for appropriate choices of logical elements. Building upon
our experiences and several tests, the current version of the script editor offers a higher flexi-
bility in terms of hierarchical dependencies and a better overview of the scripts with the
option to zoom in via fish-eye view.

4 Evaluation

During the past two years of the framework development several user tests and expert re-
views were executed in order to evaluate the different components of the framework from
different perspectives (usability, user experience, performance) (Niesenhaus et al. 2009). The
latest study we present in this paper focuses on the world editor with the sensor setup and
modification. Twenty subjects (12 male, 8 female) participated in this study. All subjects are
computer science students and have basic knowledge of digital games. After a short tutorial
the subjects were asked to complete a scenario with four typical tasks within the world edi-
tor. The tasks included the generation of a landscape with different textures and assets (1),
the creation of two characters with different visual representations and properties (2), setting
up sound sensors and emitters to enable the ‘communication’ between both characters (3)
and creating non-personal characters with movement and collision behavior (4). After the
subjects finished the four tasks they filled out two questionnaires. The first questionnaire
offered the subjects the possibility to rate the quality of the tools and their functions and
asked them for their experience within the area of digital games and their knowledge of au-
thoring tools and general computer software. The second part was based on the German
ISONORM usability questionnaire, which is closely related to the ISO 9241-110 usability
standard and was used to judge the quality of the tools. Afterwards the subjects were animat-
ed to comment on the 2DGree tools and to provide additional feedback.

Table 2: Average item scores of the ISONORM questionnaire within both studies

2DGree: Rapid Prototyping for Games 407

Although most of the subjects were able to successfully complete the tasks, the time for the
completion of the tasks varied strongly. Subjects with previous knowledge of visual pro-
gramming tools were significantly faster (p≤0.001) than subjects without previous
knowledge. The analysis of the ISONORM usability questionnaire indicated average values
(between 3.26 and 4.40 on a scale between 1 and 7, with 7 being the best score). The self-
descriptiveness (M=3.26), suitability for individualization (M=3.47) and error tolerance
(M=3.71) achieved the lowest scores. The feedback of the subjects indicated that most of the
visual metaphors work very well for both beginners and experts, but also hinted on differ-
ences in the understanding of basic programming paradigms like parent-child relationships or
recursion. Further comments addressed the lack of an undo function, which was not available
at the time of the user test.

We compared the results of the latest study with our previous findings, which revealed
slightly higher average scores for the items error tolerance (Previous version: M=3.29; Cur-
rent version M=3.71), self-descriptiveness (M=2.86; M=3.26), suitability for the task
(M=4.10; M=4,40) and suitability for learning (M=2.76; M=4.20) in the current version
compared to the previous framework iteration and significant higher scores for the items
controllability (M=3,05; M=4,37) and suitability for learning (M=2,76; M=4,20). These
results reflect the improvements within the graphical user interface and the general interac-
tion process optimization of the current framework prototype, however there is still potential
for further improvements.

5 Future work

In response to the user test feedback, we are currently adding screencasts, tutorials and
mouse-over tool tips to all functions in order to give users a better impression of what each
GUI element represents. After the world and the script editor reach the beta status both com-
ponents will be connected to a community platform, which is currently under development.
The community platform will feature a shop system where users can select presets of game
entities and scripts for setting up their game. Next to predefined sets of characters, environ-
mental assets or scripts the users will be able to upload their creations to the community shop
system to give all other users access to their self-generated content. The main purpose of the
community platform is the evaluation of the different components through online user tests,
which will be extended through questionnaires and user feedback boards to get as much
feedback from users as possible. In addition, we are preparing further lab studies using a
larger variety of components and a large-scale online test in order to evaluate the implement-
ed methods of direct manipulation and programming by demonstration with a larger number
of subjects including both professional game designers as well as community users. Further
research will also compare existing prototyping tools with the 2DGree tools.

408 Niesenhaus, Kahraman & Klatt

References

Burnett, M. (2000). Visual Programming In: Encyclopedia of Electrical and Electronics Engineering.
Chichester, NY: Wiley.

Edery, D. & Mollick, E. (2009). Changing the game. How video games are transforming the future of
business. Upper Saddle River, New Jersey: Pearson Education.

Halbert, D. C. (1984). Programming by Example. University of California at Berkeley: Doctoral The-
sis.

Kelleher, C. & Pausch, R. (1995). Lowering the Barriers of Programming: A Taxonomy of Program-
ming Environments and Languages for Novice Programmers. ACM Computing Surveys. 37 (2), 83-
137.

MacLaurin, M. (2009). Kodu: End-User Programming and Design for Games. In: Proceedings of the
4th International Conference on Foundations of Digital Games (FDG’09). New York, NY: ACM.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B. & Resnick, M. (2004). Scratch: A Sneak
Preview. In: Second International Conference on Creating, Connecting, and Collaborating through
Computing. Kyoto, Japan.

Myers, B. A. (1986). Visual programming, programming by example, and program visualization: a
taxanomy. In: Proceedings of the International Conference on Human Factors in Computing Sys-
tems (CHI’86). New York, NY: ACM.

Niesenhaus, J. (2009). Challenges and Potentials of User Involvement in the Process of Creating
Games. International Reports on Socio-Informatics: Open Design Spaces Supporting User Innova-
tion. 6 (2), 56-68.

Niesenhaus, J., Löschner, J & Kahraman, B. (2009). Förderung der Nutzerinnovation im Rahmen digi-
taler Spiele durch intuitive Werkzeuge am Beispiel des Game Prototyping Frameworks. In: Gren-
zenlos frei!? Workshop Proceedings der Tagung Mensch & Computer 2009. Berlin: Logos Verlag.

Pausch, R. (1995). Alice: Rapid Prototyping for Virtual Reality. IEEE Computer Graphics and Appli-
cations. 15 (3), 8-11.

Repenning, A. (2004). Agent-based end-user development. In: Special Issue: End-User Development.
New York, NY: ACM.

Resnick, M. (1996). StarLogo: an environment for decentralized modeling and decentralized thinking.
In: Proceedings of the International Conference on Human Factors in Computing Systems
(CHI’96). New York, NY: ACM.

Schiffer, S. (1996). Visuelle Programmierung – Potenzial und Grenzen. In: Meyer, H.C. (Editor): Be-
herrschung von Informationssystemen. Munich: Oldenbourg.

Shu, N. C. (1986). Visual Programming Languages: A Perspective and a Dimensional Analysis. In:
Chang, S.-K. (Editor): Visual Languages. New York, NY: Plenum Press.

Contact Information

Joerg Niesenhaus, joerg.niesenhaus@uni-due.de, Forsthausweg 2, 47057 Duisburg, +49
(0)203- 379 1420

